

1 Article

2

Elastic three-dimensional graphene sponge fabricated 3 by the liquid crystals of controlled large graphene 4 oxide sheets

5 **Qiuli Wei¹, Anaerguli Wufuer¹, Meisong Wang¹, Yuanyuan Wang^{1,*} and Liyi Dai¹**6 ¹ College of Chemistry and Molecular Engineering, East China Normal University; 500 Dongchuan Road,
7 Shanghai 200241, China

8 * Correspondence: ecnu_yywang@163.com; Tel.: +86-21-54340133

9

10 **Abstract:** Three-dimensional graphene (3DG) sponge has attracted increasing attention because it
11 combines the unique properties of cellular materials and the excellent performance of graphene.
12 The preparation of 3DG sponge depends mainly on the self-assembly of graphene oxide sheets.
13 Here, we demonstrate facile fabrication of 3DG sponge with a large-scale and ordered porous
14 structure, exploiting the liquid crystals of large graphene oxide (LGO) and ultralarge graphene
15 oxide (ULGO) sheets. The resulting materials exhibit a low density, high porosity and elasticity. Our
16 work explores a new strategy for organizing the ordered alignment of controlled large GO sheets
17 and exploring the relationship between the microstructures and mechanical properties of 3DG
18 sponge.19 **Keywords:** elastic; three-dimensional, liquid crystals; graphene sponge

20

21

1. Introduction

22 The Graphene, a single atomic plane of graphite, can be well used as the building block of
23 graphene-based macroscopic materials [1, 2]. Recently, the graphene-based macroscopic materials
24 such as one dimensional graphene (1DG) fiber, two dimensional graphene (2DG) paper, and three-
25 dimensional graphene (3DG) sponge have attracted significant attention as a means of further
26 expanding the significance of graphene [3]. Because GO sheets are a precursor for the cost-effective
27 and mass production of graphene-based materials, the lateral dimensions of GO sheets play an
28 important role in determining the structures and properties of graphene-based macroscopic
29 materials [4].30 The large GO sheets are ideally suited for the preparation of ultrastrong 1DG fibers [5], highly
31 aligned 2DG papers [6]. In these cases, their better alignments are the main factors to improve the
32 mechanical performance. The liquid crystals (LCs) of GO sheets with regular ordering provides the
33 most viable fluid assembly approach. It is an important precursor for fabrication of high
34 performance aligned graphene-based macroscopic materials. Therefore, the LCs suspensions of
35 high aspect ratio GO are of strong practical interest. From a fundamental point of view, the LCs of
36 GO sheets could be the closest experimental realization of theoretical models based on infinitely
37 thin and high aspect ratio rigid platelets [4, 7, 8]. The 1DG fiber and 2DG paper prepared with the
38 LCs of controlled large GO sheet s have excellent mechanical properties [5, 6]. Therefore, the 3DG
39 sponge constructed with these systems have huge potential in further research.40 It is a great challenge to precisely arrange controlled large GO sheets and control the reduction
41 process in 3D architectures because of their high flexibility, size heterogeneity, random distribution
42 of functional groups and unordered stacking of GO sheets [9]. It is known that fluid phase assembly
43 or the formation of lyotropic LCs is one of the most viable approaches to obtain large-scale, ordered

44 microstructures from nanoscale building blocks [10]. The forming of LCs of GO sheets depends on
45 the sizes distribution, concentration of GO solution and the viscosities of solvents [4]. The liquid
46 crystalline phase is produced easily with concentrated GO constructed using large size sheets [11,
47 12]. Nevertheless, the ordered 3DG sponge produced with LCs of concentrated large GO sheets will
48 lose its advantage of low weight densities. An excellent work by Shi et al. addresses this issue to
49 some extent. They successfully regulate the arrangement of GO sheets via increasing its pH value
50 with potassium hydroxide (KOH) [9]. The 3DG sponge constructed using the LCs of GO sheets [9]
51 and large GO sheets [13, 14, 15] are reported recently. However, the ordered structure of 3DG
52 sponge fabricated by controlled large GO sheets has been rarely discussed.

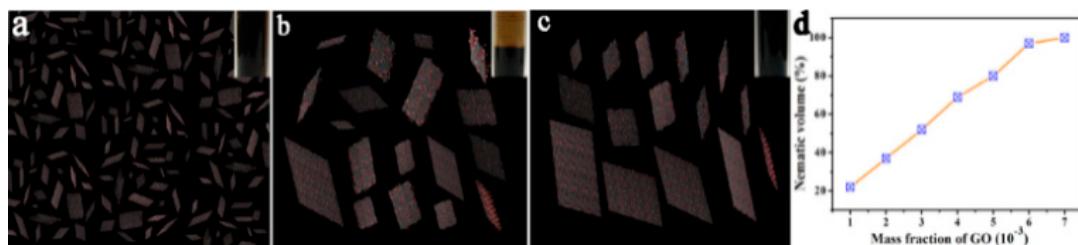
53 This paper reports a chemical reduction method to prepare elastic and low-density 3DG sponge
54 fabricated by highly oriented LCs of large graphene oxide (LGO) and ultralarge graphene oxide
55 (ULGO) sheets [7]. The LGO and ULGO sheets with extremely high aspect ratios as building blocks
56 reduce defective edges, and achieve highly ordered alignment of rGO sheets in 3DG sponge. This
57 work provides a new method for the preparation of 3DG materials constructed using LCs of
58 controlled large GO sheets and the mechanical properties of 3DG sponge are expected to be
59 improved. The method may shed new light on the relationship between the microstructures and
60 mechanical properties of 3D graphene assemblies.

61 2. Materials and Methods

62 2.1 Preparation of LCs of controlled large GO sheets

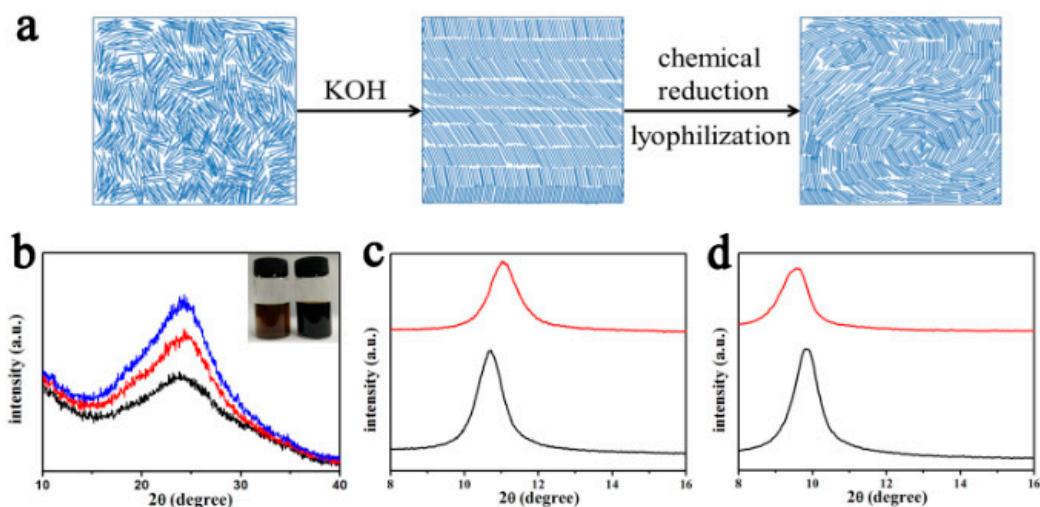
63 The SGO, LGO and ULGO solution were prepared by different natural graphite flakes with 32,
64 325 and 1200 mesh. The process included three steps: oxidization, size fractionation, and exfoliation.
65 In the first step, the three kinds of GO sheets were oxidized by a modified Hummer method. In the
66 second step, the mixture was repeatedly washed with HCl solution (1:10) and water, after the process
67 of oxidation. The GO dispersion was centrifuged at 1100 rpm for 3 min to separate into two portions:
68 large and small lateral dimensions. Larger GO (32 and 325 mesh) left the larger part, while the smaller
69 portion was left by 1200 mesh. The low speed centrifugation process was repeated three times for
70 narrowing the size distribution. Then, it was purified by dialysis for one week. In the third step,
71 graphite oxide was exfoliated by the freeze–thaw method [9]. The LCs of controlled large GO sheets
72 were formed with LGO and ULGO solution (5 g 3 mg g⁻¹) with the adding of KOH (0.014M)
73 respectively.

74 2.2 Preparation of 3DG sponge and 3DEG sponge


75 These two kinds of LCs of large GO solution constructed with LGO and ULGO sheets were put
76 in the glass bottle through freeze-drying process. The GO sponges were obtained. The 3DG sponges
77 were prepared by mild chemical reduction. The ascorbic acid was added in the LCs of GO solution
78 (3 mg g⁻¹) constructed using LGO and ULGO sheets respectively. The ratio of ascorbic acid to GO
79 was double. Then, the bottles were maintained at 90 °C for 1 h. The 3DG sponges were obtained. In
80 order to prepare the elastic materials, the network of 3DG sponge should be strengthened by one
81 more step. The LCs of GO solution were freezing in dry ice before chemical reduction. Then, these
82 samples were maintained at 90 °C for 1 h. The 3D EG sponges prepared by LGO and ULGO solution
83 were obtained.

84 3. Results and discussion

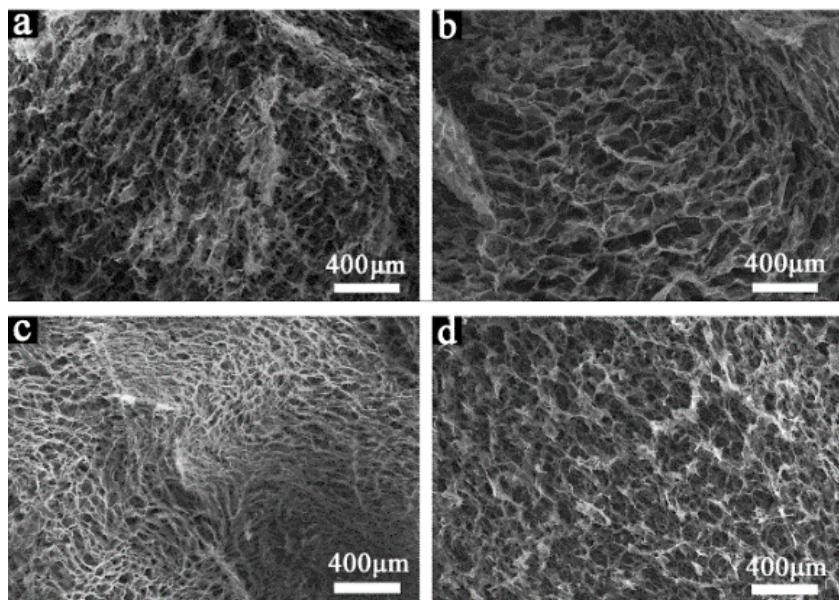
85 3.1 The formation of LCs of GO solution at low concentration


86 The LCs behavior of aqueous GO dispersion depends on the sizes distribution and concentration
87 of GO sheets [14, 16]. The effect of these two aspects were discussed below. There are three kinds of
88 GO sheets. The GO sheets were mostly smaller than 20 μm in small graphene oxide (SGO), 20–43 μm
89 in LGO, and larger than 60 μm in ULGO (Fig. S1). A low concentration of GO dispersion (3 mg g⁻¹)
90 was immobilized for a sufficiently long time (usually more than 3 weeks) and macroscopically phase-

91 separated into two phases was formed [17]. The SGO solution still kept uniform dispersions because
 92 of the smaller size distribution of GO sheets, belong to isotropic phase (Fig. 1a). To the naked eye, the
 93 as-prepared ULGO dispersions exhibited an inhomogeneous dark chocolate-milk like wavy
 94 appearance which might be mistaken for precipitation. In fact, it was an indication of nematic LC
 95 phase due to its high viscosity and ultralarge sheet size, as shown in the inset (Fig. 1d)[18 19]. The
 96 LGO solution was separated into two phases, as shown in the inset (Fig. 1b). The low-density top
 97 phase was isotropic and the high-density bottom phase was demonstrated nematic [14, 17]. We
 98 provided respective models for their isotropic and nematic phases as shown in Fig. 1. The GO sheets
 99 showed a chaotic distribution in SGO solution and ordered alignments in the ULGO solution. The
 100 model of biphasic phase transition of LGO solution was proven in Fig. 1b. The LCs solution was
 101 formed when the concentration of LGO dispersion was higher than 7 mg g⁻¹ (Fig. 1d) [19].

102 Fig 1. Schematic models and photographs (in the inset) of isotropic, biphasic and nematic
 103 LC phase of SGO (a), LGO (b), and ULGO (c) solution respectively after phase separation.
 104 d) The relative volume of the nematic phase after phase separation as a function of LGO
 105 mass fraction, revealing three phase states include isotropic, biphasic and nematic phases
 106 along with the mass fraction.

107 In order to decrease the concentration of LCs solution, KOH was induced. From GO sheets to
 108 3DG sponge, the principle schematic of forming process was showed in Fig. 2. The rearrangement of
 109 GO sheets was guided upon adding the base. During the reduction of GO solution, the sheets was
 110 aggregated in a wavelike form. The effect of base was studied by characterizing the structure of GO
 111 sheets and 3DG sponge. The GO sheets were partially deoxygenation an alkaline solution, restoring
 112 their conjugated structures. The reduction was confirmed by the darkening of the solution upon
 113 adding this base (inset of Fig. 2b) and the changes of peak of 3DG sponge with different content of
 114 base. The XRD pattern of 3DG sponge (Fig. 2b) exhibited a sharp (002) reflection peak at 2θ=23°.
 115 The more content of KOH added, the stronger (002) peak was. The oxygen-containing groups existed
 116 on the GO sheets were reduced heavily with more base.

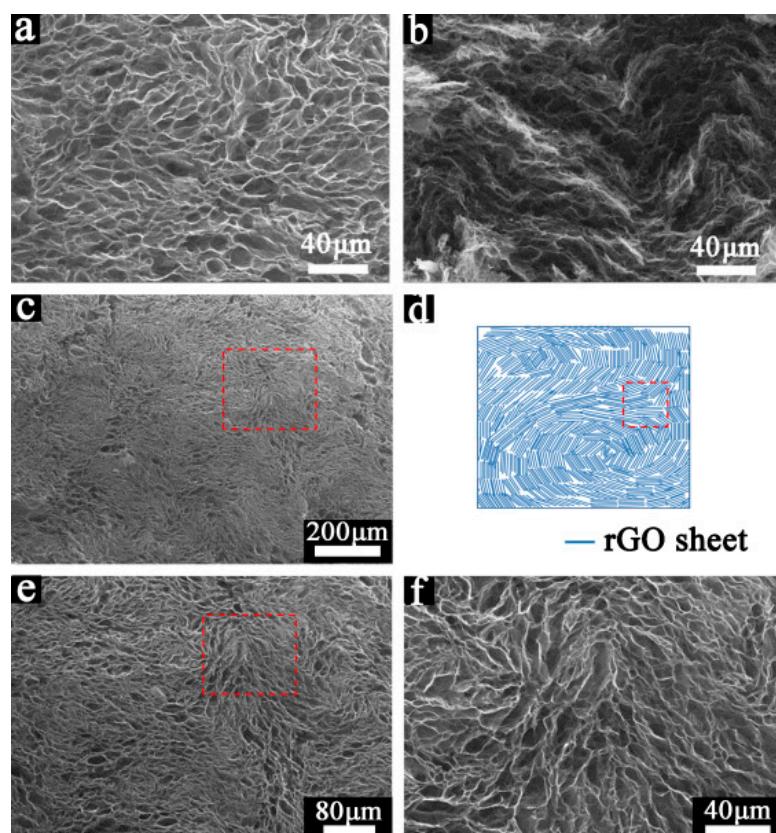

118
 119 Fig. 2. a) Schematic illustration of the fabrication of 3DG. b) XRD patterns of 3DG sponge
 120 prepared with LGO (black), LGO + KOH (0.014M) (red) and LGO + KOH (0.018M) (blue)

121 solution; the photographs (inset) of GO and GO + KOH solution. XRD patterns of GO
122 sponge (c) and LCs GO sponge (d) (LGO (red) and ultra-LGO (black)).

123 The GO sheets with more oxygenated groups were more flexible, which formed more wrinkled
124 morphology and influenced the formation of LCs phase [20]. The treatment with KOH extended the
125 rigid domains of GO sheets, enabling them to self-assemble into a highly ordered structure. However,
126 the order degree of LCs solution was insufficient and the large-scale ordered arrangement could not
127 be obtained in GO sponge with inadequate amount of base (Fig. S2a). The fewer oxygenated groups
128 with excess base led to stacking behavior of sheets and influenced the ordered arrangement in 3DG
129 sponge (Fig. S2b).

130 *3.2 The ordered structure of GO sponge*

131 The aggregation extent of GO sponge could be characterized by XRD analysis with the value of
132 d-spacing. The lamellar spacing depended on the content of oxygen-containing groups or spaces
133 existed in the sponge. The two kinds of GO sponges without the adding of KOH were prepared with
134 LGO and ULGO solution and their d-spacing were calculated to be 8.01 Å and 8.23 Å,
135 correspondingly (Fig. 2c). The d-spacing between the adjacent GO sheets showed a rising trend with
136 growing sheet size. In this case, the main reason was determined by the spaces existed in GO sponge
137 due to the unordered stacking of GO sheets. The GO sponges with the adding of KOH were prepared
138 with LGO and ULGO solution and their d-spacing were 9.24 Å and 9.01 Å, respectively (Fig. 2d). The
139 variation tendency indicated that the d-spacing was decided by the number of oxygen-containing
140 functional groups in GO sheets. This result was explained by the ordered and large-scale network
141 structure in GO sponge characterized by SEM (Fig. 3c, d).

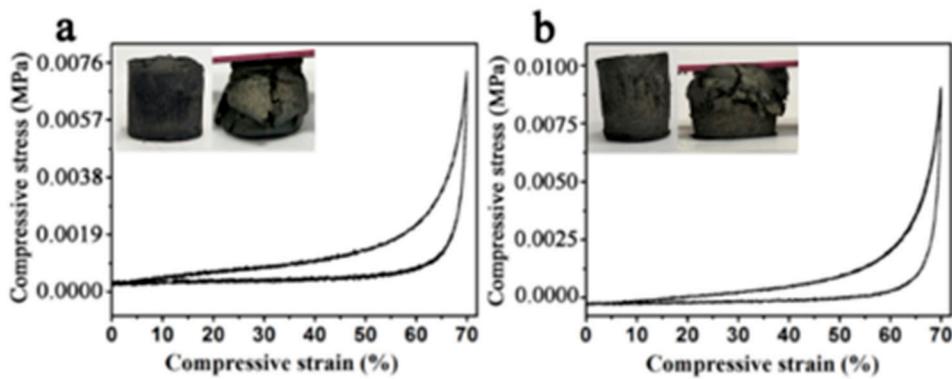

142
143 Fig 3. SEM images of GO sponge (8 mg g⁻¹ GO) (a, b) and LC GO sponge (3 mg g⁻¹ GO) (c,
144 d) prepared with ultra-LGO (a, c) and LGO (b, d) sheets.

145 There was another way to form GO sponge with the LCs of concentrated GO solution (7mg g⁻¹)
146 after lyophilization (Fig. 3a, b). By contrast, the GO sponge prepared with LCs of GO solution (3 mg
147 g⁻¹) had larger scale network due to the ordered arrangement of LCs solution upon adding the base
148 (Fig. 3c, d). The enhanced electrostatic repulsion between GO sheets by excess KOH prevented sheets
149 from precipitation and stacking each other, enabling them to form an ordered structure in LCs. The
150 enhanced electrostatic repulsion also increased the fluidity of a GO solution. Furthermore, the

151 increased fluidity facilitated tuning the direction vector of LCs, realizing rational regulation of the
152 arrangement of GO sheets [12].

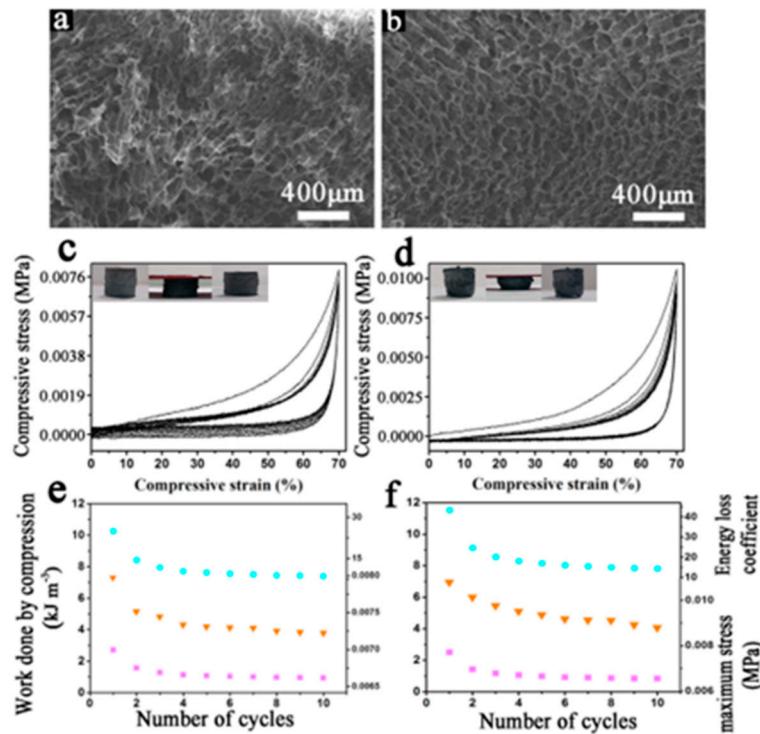
153 *3.3 The ordered structure of 3DG sponge*

154 The LCs of GO solution with ordered arrangement was reduced by ascorbic acid. After chemical
155 reduction [21], the GO solution was converted to 3DG sponge with rGO sheets orderly organization
156 as shown in Fig. 4a, b. The forming process of 3DG sponge was explained in Fig. 2a. The reduced part
157 of GO sheet was hydrophobic and another part with oxygen-containing groups was hydrophilic.
158 These sheets turned to the different directions, because the distribution of oxygen-containing groups
159 was asymmetrical dispersed in the GO sheet. The rGO walls were bridged with each other. When the
160 mixture was reducing at 90 °C, the LCs of GO solution with ordered arrangement were reduced and
161 showed slightly deformation (Fig. 4d). The resulting materials possessed wavelike microstructures
162 with orderly organized rGO sheets (Fig. 4e, f). The forming of 3DG sponge had a mild reaction
163 condition with the adding of reducing agent, heating to 90 °C at constant pressure. However, it was
164 difficult to shape into 3D structure, if the reducing agent was lesser. When the reducing agent was
165 more, the reducing speed was too fast to keep the ordered arrangement of sheets (Fig. S3). The orderly
166 arrangement of LCs should be kept with the adding of reducing agent. The ranges of the content of
167 ascorbic acid were tested to be 2-3 times of the mass of GO, which were suitable for the forming of
168 oriented morphology.



169

170 Fig 4. SEM images of 3DG sponge constructed with ULGO (a) and LGO (b) sheets. SEM
171 images of 3DG sponge constructed with ULGO in a wavelike form with different
172 magnifications (c, e, f). Schematic illustration of the arrangement of graphene sheets in 3DG
173 sponge. The images in panels (c) and (e) correspond to the area in scheme (d).


174 *3.4 The elastic property of 3D elastic graphene (EG) sponge*

175 The preparation of 3D EG sponge required one more step-freeze drying. The LCs of GO solution
176 was freezing in dry ice before chemical reduction. The network was strengthened by this treatment
177 and further freeze was found to have little effect on the structure of network [22]. The freezing LCs
178 of GO solution was reduced by chemical reduction, meanwhile the sheets can keep the ordered
179 arrangement. The microstructures of 3D EG sponge was shown in Fig. 6a, b. The pore structure
180 showed a linear arrangement and the pore size was larger comparing with 3DG sponge. These
181 structural characteristics made the 3D EG sponge have a good elastic property. The 3D EG sponge
182 prepared by crude LGO and ULGO solution showed a poor elastic properties comparing with the
183 LCs of GO solution. The materials without the LCs of GO sheets were tested by cycling compression
184 and broken for 2-3 cycles. (Fig. 5). It indicated that the ordered arrangement of rGO sheets play an
185 important role in determining the mechanical property of 3DG sponge.

186
187 Fig 5. Compressive stress-strain curves of 3 cycles of loading and unloading of 3D EG
188 sponge prepared with crude ULGO (a) and LGO (b).

189 The elasticity of 3D EG sponges prepared by the LCs of GO solution were tested by cycling
190 compression and relaxing at a strain rate of 100% min⁻¹ (Fig. 6c, d). Compression tests revealed that
191 the 3D EG sponge exhibited excellent resilience when released from compression. Three regimes of
192 deformation could be observed in the loading stress-strain curve: nearly linear elastic regime,
193 corresponding to bending of the cell walls; relatively flat stress plateau, corresponding to elastic
194 buckling of cell walls; and abrupt stress increasing regime, corresponding to densification of cells
195 (Fig. 6c, d) [22, 23]. For the first compression cycle, the nearly linear elastic region of the sponge
196 extended up to 20% strain. The plateau region was very short because of the strong pore walls of 3D
197 EG sponge [24]. The compressive stress was 2.6 kPa at the plateau, and was 8.0 kPa at 70% strain for
198 the 3D EG sponge prepared by ULGO sheets (Fig. 6c). The compressive stress was 2.6 kPa at the
199 plateau, and was 10.8 kPa at 70% strain for the 3D EG sponge prepared by LGO sheets (Fig. 6d). In
200 the following compression cycles, the loading curves showed only two regions: a linear region, and
201 a densification region. Thanks to the high strength and the uniform orientation of the pore walls, the
202 contacted walls resisted the attraction of the Van der Waals force with each other, recovering to their
203 original shapes after unloading.

204

205 Fig 6. SEM images of 3D EG sponge with ULGO (a) and LGO (b). Compressive stress-strain
 206 curves of 10 cycles of loading and unloading of 3D EG sponge with ULGO (c) and LGO (d).
 207 Work done by compression (pink squares), maximum stress at 70% strain (orange triangles)
 208 and energy loss coefficient (blue circles) during the 10 compression cycles in 3D EG sponge
 209 with ULGO (e) and LGO (f).

210 The maximum stress of the 3D EG sponge fabricated by ULGO sheets decreased from 2.5 to 2.2
 211 kPa for 10 cycles. The energy loss coefficient was measured to be $\approx 25\%$ in the first cycle and 9% after
 212 10 cycles. In the 3D EG sponge fabricated by LGO sheets, its maximum stress decreased from 3.4 kPa
 213 to 2.7 kPa. The energy loss coefficient was measured to be $\approx 43\%$ in the first cycle and 15% after 10
 214 cycles (Fig. 6e). These results indicated that the 3D EG sponge constructed using LGO solution had
 215 better elastic property. The preparation method extended the application of controlled large GO
 216 sheets, but it still had limitation. The technology did not take full advantage of the self-assembly of
 217 ULGO sheets. The forming of 3D EG sponge was more complex than fibers and papers. It was
 218 difficult to control the reduction process of ULGO sheets into 3D EG sponge with large scale network
 219 structure, because of their high flexibility, less functional groups and highly wrinkled topography
 220 [25] resulting in unordered stacking of ULGO sheets.

221 **4. Conclusions**

222 In summary, in the case of using uniform LGO and ULGO sheets, the nematic LCs phases are
 223 formed at low concentration. After chemical reduction, the LCs of GO solution are converted to 3DG
 224 sponges with a high degree of orientation, offering a new methodology to regulate the controlled
 225 large GO sheets. The orientation of GO solution can be inherited by 3DG sponge, making the sponge
 226 to have a large-scale ordered network structure. The ordered arrangement of rGO sheets play an
 227 important role in determining the mechanical property of 3DG sponge. The 3D EG sponges have low
 228 density and good elasticity, promising for the applications in strain sensing, shock damping, and
 229 energy cushioning. This work provides a new method for the preparation of 3DG materials
 230 constructed using the LCs of controlled large GO sheets and may shed new light on the relationship
 231 between the microstructures and mechanical properties of 3DG sponge.

232 **Acknowledgments:** This work was financially supported by the key project of Shanghai Science and Technology
233 Committee (No.14231200300), Shanghai Key Laboratory of Green Chemistry and Chemical Processes and SRF
234 for ROCS, SEM.

235 **Author Contributions:** Qiuli Wei and Meisong Wang conceived and designed the experiments; Qiuli Wei and
236 Anaerguli Wufuer performed the experiments; Qiuli Wei and Meisong Wang analyzed the data; Yuanyuan Wang
237 and Liyi Dai contributed reagents/materials/analysis tools; Qiuli Wei and Meisong Wang wrote the paper.

238 **Conflicts of Interest:** The authors declare no conflict of interest.

239 **References**

1. W. Lv, C. Zhang, Z. Li and Q. H. Yang. Self-assembled 3D graphene monolith from solution. *Chem. Lett.* **2015**, *6*, 658-688, DOI: 10.1021/jz502655m
2. L. Jiang and Z. Fan. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. *Nanoscale*. **2014**, *6*, 1922-1945, DOI: 10.1039/c3nr04555b
3. H. P. Cong, J. F. Chen and S. H. Yu, Chem. Graphene-based macroscopic assemblies and architectures: an emerging material system. *Soc. Rev.* **2014**, *43*, 7295-7325, DOI: 10.1039/c4cs00181h
4. B. Dan, N. Behabtu, A. Martinez, J. S. Evans, D. V. Kosynkin, J. M. Tour, M. Pasquali and I. I. Smalyukh. Liquid crystals of aqueous, giant graphene oxide flakes. *Soft Matter*. **2011**, *7*, 11154-1159, DOI: 10.1039/c1sm06418e
5. Z. Xu, H. Y. Sun, X. L. Zhao and C. Gao. Ultrastrong fibers assembled from giant graphene oxide sheets. *Adv. Mater.* **2013**, *25*, 188-193, DOI: 10.1002/adma.201203448
6. X. Y. Lin, X. Shen, Q. B. Zheng, N. Yousefi, L. Ye, Y. W. Mai and J. K. Kim. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. *ACS Nano*. **2012**, *6*, 10708-10719, DOI: 10.1021/nn303904z
7. M. S. Wang, Y. L. Huang, Y. Y. Wang and L. Y. Dai. The effect of tunable graphene oxide sheet size on the structures and catalytic properties of three dimensional reduced graphene oxide sponge. *RSC Adv.* **2016**, *6*, 112086-112091, DOI: 10.1039/c6ra24253g
8. Y. D. Gao, Q. Q. Kong, Z. Liu, X. M. Li, C. M. Chen and R. Cai. Graphene oxide aerogels constructed using large or small graphene oxide with different electrical, mechanical and adsorbent properties. *RSC Adv.* **2016**, *6*, 9851-9856, DOI: 10.1039/c5ra26922a
9. B. Yao, J. Chen, L. Huang, Q. Zhou and G. Shi. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. *Adv. Mater.* **2016**, *28*, 1623-1629,
10. Z. Xu and C. Gao. Aqueous liquid crystals of graphene oxide. *ACS Nano*. **2011**, *5*, 2908-2915, DOI: 10.1002/adma.201504594
11. S. H. Aboutalebi, M. M. Gudarzi, Q. B. Zheng and J. K. Kim. Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. *Adv. Funct. Mater.* **2011**, *21*, 2978-2988, DOI: 10.1002/adfm.201100448
12. A. Akbari, P. Sheath, S. T. Martin, D. B. Shinde, M. Shaibani, P. C. Banerjee, R. Tkacz, D. Bhattacharyya and M. Majumder. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. *Nat. Commun.* **2016**, *7*, 1-9, DOI: 10.1038/ncomms10891
13. S. Zhang, Y. Li, J. Sun, J. Wang, C. Qin and L. Dai. Size fractionation of graphene oxide sheets assisted by circular flow and their graphene aerogels with size-dependent adsorption. *RSC Adv.* **2016**, *6*, 74053-74060, DOI: 10.1039/c6ra16363g
14. M. A. Bates and D. Frenkel. Nematic-isotropic transition in polydisperse systems of infinitely thin hard platelets. *J. Chem. Phys.* **1999**, *110*, 6553-6559, DOI: 10.1063/1.478558
15. R. Eppenga and D. Frenkel. Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets. *Mol. Phys.* **1984**, *52*, 1303-1334, DOI: 10.1080/00268978400101951
16. Z. Xu and C. Gao. Graphene chiral liquid crystals and macroscopic assembled fibres. *Nat. Commun.* **2011**, *2*, 1145-1154, DOI: 10.1038/ncomms1583
17. J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun and S. O. Kim. Graphene oxide liquid crystals. *Angew. Chem. Int. Ed.* **2011**, *50*, 3043-3047, DOI: 10.1002/anie.201004692

283 18. C. Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C. H. Tsai and L. J. Li. Electrical and spectroscopic
284 characterizations of ultra-large reduced graphene oxide monolayers. *Chem. Mater.* **2009**, *21*, 5674-5680,
285 DOI: 10.1021/cm902182y

286 19. R. Narayan, J. E. Kim, J. Y. Kim, K. E. Lee and S. O. Kim. Graphene oxide liquid crystals: discovery,
287 evolution and applications. *Adv. Mater.* **2016**, *28*, 3045-3068, DOI: 10.1002/adma.201505122

288 20. F. M. V. D. Kooij, D. V. D Beek and H. N. W. Lekkerkerker. Isotropic-nematic phase separation in
289 suspensions of polydisperse colloidal platelets. *J. Phys. Chem. B.* **2001**, *105*, 1696-1700,
290 DOI: 10.1021/jp0031597

291 21. W. Chen and L. Yan. In situ self-assembly of mild chemical reduction graphene for three-dimensional
292 architectures. *Nanoscale* **2011**, *3*, 3132-3137, DOI: 10.1039/c1nr10355e

293 22. L. Qiu, J. Z. Liu, S. L. Y. Chang, Y. Wu and D. Li. Biomimetic superelastic graphene-based cellular
294 monoliths. *Nat. Commun.* **2012**, *3*, 187-190, DOI: 10.1038/ncomms2251

295 23. T. Liu, M. Huang, X. Li, C. Wang, C. Gui and Z. Z. Yu. Highly compressible anisotropic graphene
296 aerogels fabricated by directional freezing for efficient absorption of organic liquids. *Carbon* **2016**, *100*,
297 456-464, DOI: 10.1016/j.carbon.2016.01.038

298 24. Y. R. Li, J. Chen, L. Huang, C. Li, J. D. Hong and G. Shi. Highly compressible macroporous graphene
299 monoliths via an improved hydrothermal process. *Adv. Mater.* **2014**, *26*, 4789-4793,
300 DOI: 10.1002/adma.201400657.

301 25. R. Jalili, S. H. Aboutalebi, D. Esrafilzadeh, K. Konstantinov, S. E. Moulton, J. M. Razal and G. G.
302 Wallace. Organic solvent-based graphene oxide liquid crystals: a facile route toward the next
303 generation of self-assembled layer-by-layer multifunctional 3D architectures. *Acs Nano* **2013**, *7*, 3981-
304 3990, DOI: 10.1021/nn305906z.

305