Purpose: The aim of the present experimental 3D-finite element study was to evaluate the influence of an augmented sinus lift with an additional inserted bone graft block. The bone graft block stabilizes the implant in addition to conventional augmented bone. We placed the block in three different positions. The implants were loaded with axial force and forces secondary to laterotrusion and protrusion. Material and Methods: A simplified U-shaped 3D finite element model of the upper jaw and a more complex anatomical model of the left maxilla were created. The bone graft block was placed in three positions: in the lower third in contact with the sinus floor, the middle, and the upper third of the implant. Van Mises’ stress distribution was calculated and analyzed for the different models. We also compared the complex anatomical model with the simplified one. Results: The position of the bone graft block significantly influences the magnitude of stress distribution. A bone graft block positioned in the upper third or middle of the implant reduces the quantity of stress compared to the reference model without a bone graft block. The low bone graft block position is clearly associated with lower stress distribution in compact bone. We registered no significant differences in stress in compact bone with regard to laterotrusion or protrusion. Conclusions: Maximum values of von Mises stresses in compact bone can be reduced significantly by using a bone graft block. The reduction of stress is nearly the same for positions in the upper third and the middle of the implant. It is much more pronounced when the bone graft block is in the lower third of the implant near the sinus floor, which appeared to be the best position in the present study.
Keywords:
Subject: Medicine and Pharmacology - Dentistry and Oral Surgery
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.