

1 Article

2 **Potential of new isolates of *Dunaliella salina* for**
3 **natural β -carotene production**4 **Yanan Xu¹, Iskander M. Ibrahim¹, Chiziezi I. Wosu¹, Ami Ben-Amotz² and Patricia J. Harvey^{1*}**5 ¹ University of Greenwich, Faculty of Engineering and Science, Central Avenue, Chatham Maritime, Kent,
6 ME4 4TB UK;7 ² Nature Beta Technologies (NBT) Ltd, Eilat 88106, Israel; amiba@bezeqint.net8 * Correspondence: p.j.harvey@greenwich.ac.uk; Tel.: +44-20-8331-9972

9

10 **Abstract:** The halotolerant microalga *Dunaliella salina* has been widely studied for natural
11 β -carotene production. This work shows biochemical characterization of three newly isolated
12 *Dunaliella salina* strains DF15, DF17 and DF40 compared with *D. salina* CCAP 19/30 (confirmed to
13 be *D. tertiolecta*) and *D. salina* UTEX 2538 (also known as *D. bardawil*). Although all three new strains
14 have been genetically characterized as *Dunaliella salina* strains, their ability to accumulate
15 carotenoids and their capacity for photoprotection against high light stress are different. DF15 and
16 UTEX 2538 reveal great potential for producing large amount of β -carotene and maintained a high
17 rate of photosynthesis under light of high intensity; however, DF17, DF40 and CCAP 19/30 showed
18 increasing photoinhibition with increasing light intensity, and reduced contents of carotenoids, in
19 particular β -carotene, suggesting that the capacity of photoprotection is dependent on the cellular
20 content of carotenoids, in particular β -carotene. Strong positive correlations were found between
21 the cellular content of each of *all-trans* β -carotene, *9-cis* β -carotene, *all-trans* α -carotene and
22 zeaxanthin but not lutein in the *D. salina* strains. Lutein was strongly correlated with respiration in
23 photosynthetic cells and strongly related to photosynthesis, chlorophyll and respiration,
24 suggesting an important and not hitherto identified role for lutein in co-ordinated control of the
25 cellular functions of photosynthesis and respiration in response to changes in light conditions,
26 which is broadly conserved in *Dunaliella* strains. Statistical analysis based on biochemical data
27 revealed a different grouping strategy from the genetic classification of the strains. The significance
28 of these data for strain selection for commercial carotenoid production is discussed.

29 **Keywords:** *Dunaliella salina*, new isolates, characterization, light intensity, β -carotene, carotenoids,
30 correlations, lutein, classification

31 **1. Introduction**

32 Natural carotenoids have gained increasing attention in recent years because of their health
33 benefits compared to synthetic carotenoids [1]. These lipophilic compounds comprise a range of
34 carotenes and xanthophylls and their health benefits generally derive from their ability to quench
35 oxygen radicals and absorb potential damaging visible light [2-4]. Carotenoids predominantly occur
36 in their *trans* configuration but are also naturally found in their *cis* configuration [5]. Methods for
37 producing synthetic carotenoids especially β -carotene and zeaxanthin are well-established [1],
38 however synthetic carotenoids are predominantly *all-trans* compounds and are of questionable
39 benefit [6]. By contrast, intake of food supplements enriched with natural β -carotene containing
40 both *cis*- and *trans*- stereoisomers is linked with mitigation of a range of diseases including
41 atherosclerosis, diabetes, psoriasis and ophthalmologic diseases [7-9]. *9-cis* β -carotene is of particular
42 nutritional and medical interest as a retinoid precursor and is associated with therapeutic effects in a
43 number of diseases as well as possessing a good adverse effect profile [10]. This stereoisomer is
44 difficult to synthesise chemically, it is not produced biologically by heterotrophs such as bacteria or
45 yeasts, through fermentation, and it is present in only low amounts in fruits and vegetables [10]. *9-cis*
46 β -carotene, along with the *13-cis* and *15-cis* isomers found in food and naturally-occurring

47 substances, may serve an important function in human physiology that cannot be replaced by
48 synthetic β -carotene.

49 Microalgae are considered the richest sources of natural carotenoids, especially strains of the
50 chlorophyta such as *Dunaliella salina*, *Haematococcus pluvialis* and various *Chlorella* species [3]. The
51 content of lutein in marigold flowers for example is commonly reported to be 0.3 mg g⁻¹, but in
52 microalgae, the content can be over 4 mg g⁻¹ [11]. *Dunaliella* strains are well known for being rich in
53 lutein, zeaxanthin and β -carotene [12] and *D. salina* has been particularly widely studied as it is the
54 richest source of natural β -carotene [13] and contains high content of the 9-cis isomer (~50% of the
55 total β -carotene) [14,15]. Other valuable carotenoids with potential medical value are also present in
56 *D. salina* including violaxanthin, antheraxanthin, zeaxanthin, α -carotene and lycopene [16]. The
57 genus *Dunaliella* contains a number of species and many strains which have been identified under
58 the same species possess various carotenogenic abilities and carotenoid compositions [17].

59 In this study, as part of the D-Factory, an EU funded project, three new strains of *Dunaliella*
60 species, DF15, DF17 and DF40 isolated from salt ponds in Israel and Spain were characterised. The
61 strains have been genetically identified as strains of *Dunaliella salina* but under different subgroups
62 (MBA, www.mba.ac.uk/culture-collection/). The biochemical properties of the strains were
63 examined in this study in comparison to the known carotene hyperaccumulator, *D. salina* UTEX
64 2538, also classified as *D. bardawil* in some studies [4] and *D. salina* CCAP19/30, which has been
65 found to be identical to a *D. tertiolecta* strain and does not accumulate β -carotene under stress [18], in
66 order to assess their potential for the commercial production of carotenoids and provide further
67 insight into carotenoid metabolism.

68 2. Materials and Methods

69 2.1. Algal strains and cultivation

70 *D. salina* UTEX 2538 was obtained from the UTEX Culture Collection (Austin, TX 78712 USA)
71 and CCAP 19/30 was obtained from the Culture Collection of Algae and Protozoa (CCAP, Scotland,
72 UK). D-Factory strains DF15 and DF17 were isolated from a salt pond in Israel, and DF40 was
73 isolated from a salt pond in Monzon, Spain. The new isolates were identified as strains of or closely
74 related to *Dunaliella salina* (*bardawil*) by The Marine Biological Association, UK (MBA) and are now
75 deposited at the MBA culture collection (www.mba.ac.uk/culture-collection/). Algae were cultured
76 in Modified Johnsons Medium [19] containing 10 mM NaHCO₃ with the pH value adjusted to 7.5
77 with 10 mM Tris-buffer, and 1.5 M NaCl, which has been tested as the optimal salinity for cell
78 growth of the strains. Cultures were maintained in a temperature controlled growth chamber at (20 \pm
79 2) °C with illumination provided under a 12 h light, 12 h dark cycle (12/12 LD) by white LED lights
80 with a light intensity of ~200 μ mol photons m⁻² s⁻¹. Small stock cultures were grown to mid-log phase
81 and diluted 1 in 50 (v/v) as inoculum for larger cultures in each experiment.

82 For algal cultivation, Erlenmeyer flasks containing 500 ml culture each were maintained at 25
83 °C in an ALGEM Environmental Modeling Labscale Photobioreactor (Algenuity, UK) with strictly
84 controlled conditions of light, temperature and mixing level. Under 12/12 LD conditions, cell growth
85 under a range of light intensities (200, 500, 1000 and 1500 μ mol m⁻² s⁻¹) of white LED light were
86 compared. Each growth condition was set up at least in triplicate. Cell growth was monitored
87 automatically in the bioreactor by recording the value obtained for light scatter at 725 nm in OD
88 units. Cell concentration was determined by counting the cell number in culture broth using a
89 haemocytometer after fixing the cells with 2 % formalin. The maximum specific growth rate of all
90 cultures was calculated to compare cell growth under different conditions.

91 2.2. Microscopy observations

92 The Eclipse Ti-U inverted research microscope (Nikon, Japan) with a Nikon Digital Sight DS-Fi1
93 camera system was used to take brightfield microscopy photographs of cells of each *Dunaliella*
94 strain. The objective lens used was Nikon SPlan Fluor ELWD 60x/0.7 and the ocular lens was Nikon
95 CFI 10x/22. The NIS-Elements software was used to acquire the photos. Differential interference

96 contrast (DIC) microscopy photographs were also obtained using a confocal microscope system
97 ZEISS LSM 880 (Carl Zeiss Microscopy, US). The ZEISS Plan Apochromat 63x/1.4 oil DIC objective
98 lens and the Carl Zeiss PI 10x/23 ocular lens were used. Images were acquired and analysed through
99 the ZEN 2.1 LSM software.

100 *2.3 Algal biomass analysis*

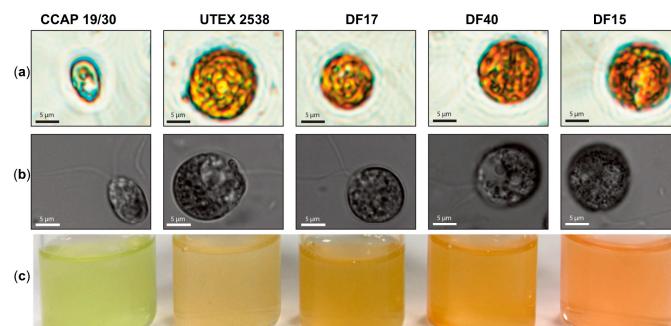
101 Algae grown under different light intensities were harvested during mid log phase of growth at
102 the end of the light period. Pigments were extracted from the biomass harvested from 1 ml samples
103 of the cultures using 1m of 80 % (v/v) acetone. The absorbance of the acetone extract after
104 clarification at the centrifuge was measured at 480 nm for total carotenoids using a UV/Vis
105 spectrophotometer. The content of total carotenoids was calculated according to Strickland &
106 Parsons [20]. Chlorophyll a, b and total Chlorophyll were evaluated by measuring absorbance of the
107 acetone extract at 664 nm and 647 nm and calculated according to Porra et al. [21].

108 The compositions of pigments extracted from different strains were analysed using HPLC with
109 diode array detection (DAD). Carotenoid standards of *all-trans* α -carotene, *all-trans* β -carotene and
110 zeaxanthin were obtained from Sigma-Aldrich. Lutein and 9-cis β -carotene were obtained from
111 Dynamic Extractions (UK). Carotenoids and chlorophylls were extracted from freshly harvested
112 cells using methyl tert-butyl ether (MTBE) and Methanol (20:80) as extraction solvent. 15 ml of algal
113 culture was centrifuged at 3,000 g at 18 °C for 5 min and the pellet was extracted with 10 ml
114 MTBE-MeOH (20:80) and sonicated for 20 s. The sample was clarified by centrifugation at 3,000 g at
115 18 °C for 5 min, then 1-2 ml of the supernatant was filtered through 0.45 μ m syringe filter into amber
116 HPLC vials. It was then analysed using a YMC30 250 X 4.9 mm I.D S-5 μ HPLC column with DAD at
117 25 °C, and isocratic elution with 80 % methanol: 20 % MTBE, flow rate of 1 mL min⁻¹, pressure of 90
118 bar. The quantities of 9-cis and *all-trans* β -carotene, *all-trans* α -carotene, lutein and zeaxanthin in the
119 biomass were determined from the corresponding standard curves. Glycerol, known to be regulated
120 by salinity, was determined according to the procedures described in a previous study [18].

121 *2.4 Oxygen evolution and dark respiration*

122 Cells were harvested during the exponential phase and NaHCO₃ was added to a final
123 concentration of 10 mM 5 minutes before the start of each measurement. The rate of net O₂ evolution
124 and dark respiration were measured as described by Brindley et al. [22] at 25 °C using a Clark-type
125 electrode (Hansatech) [23]. O₂ evolution was induced with 1500 μ mol photons \cdot m⁻² \cdot s⁻¹ actinic light.
126 After initial 30 minutes of dark adaption, O₂ evolution was measured for 5 minutes followed by dark
127 respiration for 20 minutes. The average net rate of photosynthesis was then determined from the
128 oxygen concentration gradient recorded over 5 minutes, dO₂/dt. Dark respiration was determined
129 by following the same procedure, except that oxygen uptake was calculated from data recorded
130 during the last 5 minutes of the 20-min experiment. Sodium dithionite was used to calibrate the
131 oxygen electrode.

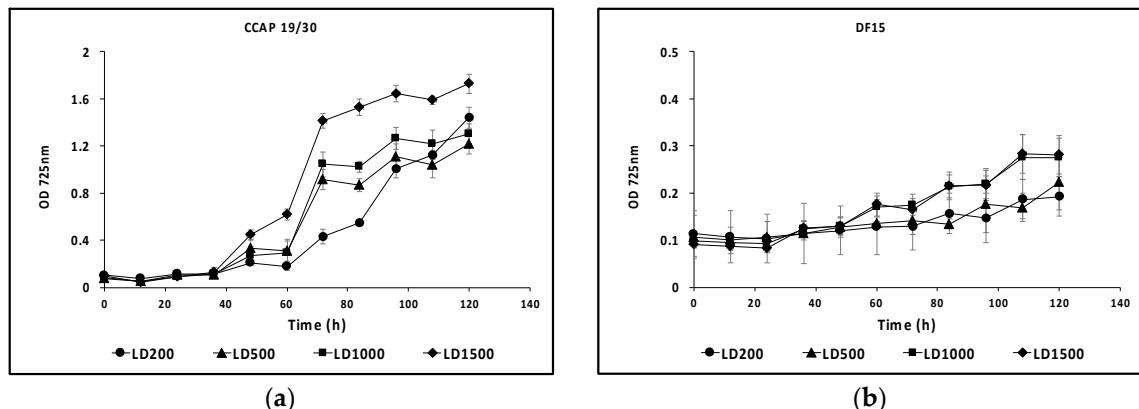
132 *2.5 Statistical analysis*

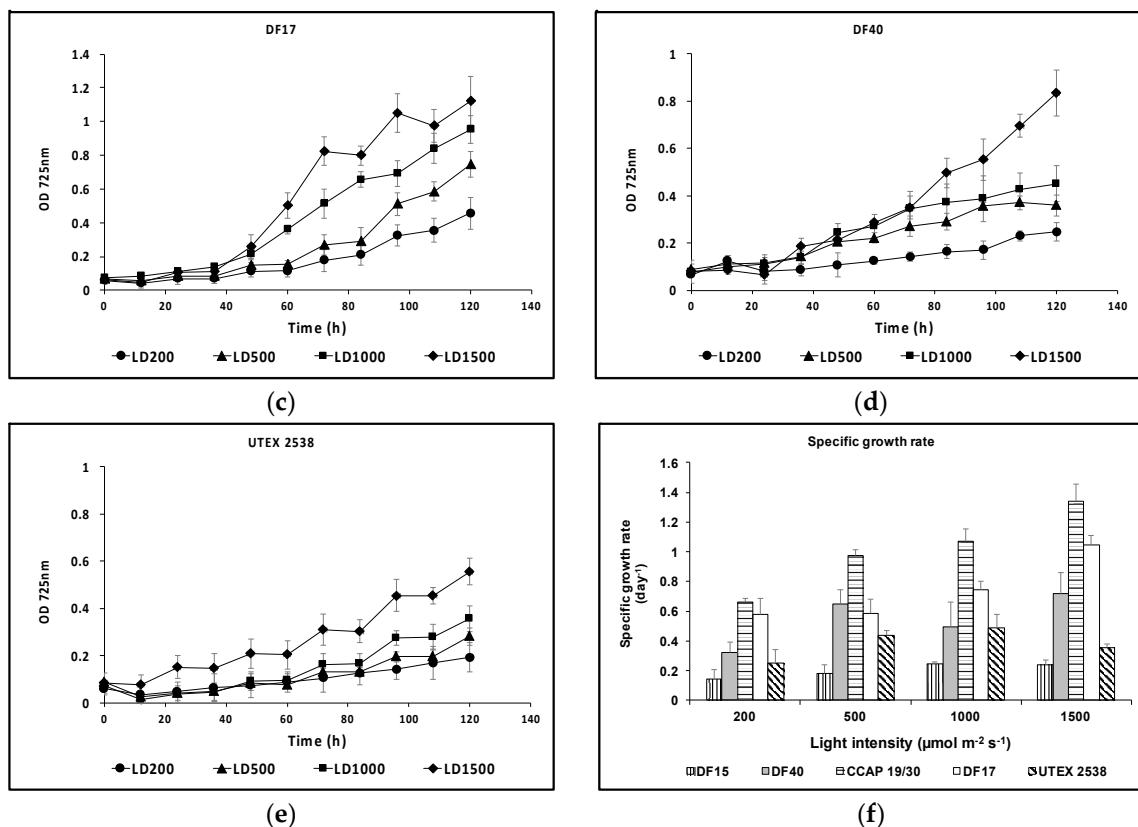

133 The data generated in this study was analysed in R. A two-way ANOVA analysis was
134 performed to study the relationships of a series of variables measured with two factors in this work:
135 strain and light intensity. The two-way ANOVA tests three omnibus effects: the main effect of strain
136 or light intensity, and the interaction effect between these two factors. Correlation analysis was used
137 to evaluate the association between each pair of the variables and the Pearson correlation method
138 was chosen to measure the linear dependence between two variables. In correlation analysis, a
139 correlation coefficient (the Pearson Product Moment correlation coefficient) was estimated for each
140 pair of the variables studied. Whether or not an observed correlation is statistically significant or not
141 was evaluated by P values. Hierarchical cluster analysis is based on the strength of the correlations
142 and the distance in the clustering dendrogram reflects the dissimilarity among these parameters.

143 Traits examined with strong correlations are grouped as a cluster. A principle component analysis
 144 was carried out using the whole data set to reveal the relatedness between the examined traits.

145 **3. Results**

146 *3.1 Cell growth*

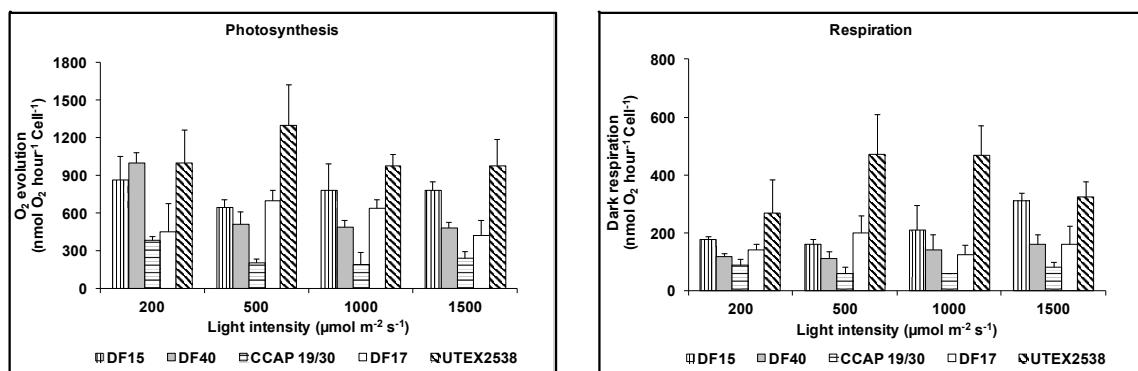

147 The work presented here shows biochemical and biophysical characterisation of the three
 148 newly isolated *D. salina* strains: DF15, DF17 and DF40 compared with *D. tertiolecta* CCAP 19/30 and
 149 *D. salina (bardawil)* UTEX 2538, cultured under a series of light intensities. Cultures of five *Dunaliella*
 150 strains: CCAP 19/30, DF15, DF17, DF40 and UTEX 2538, were each maintained under identical
 151 conditions of light of 100~200 $\mu\text{mol m}^{-2} \text{s}^{-1}$ in the incubator until stationary phase, and cells were
 152 photographed using a light microscope and a confocal microscope. The five strains differed in cell
 153 shape, volume and colour from each other (Figure 1(a), (b)) and the cultures of each strain were
 154 differently coloured (Figure 1(c)). The four *D. salina* strains were orange in colour, while CCAP 19/30
 155 maintained a green colour throughout.



156
 157
 158
 159
 160
 161
 162

Figure 1. Microscopy observation of *Dunaliella* cells and photographs of stationary phase cultures of CCAP 19/30, UTEX 2538, DF17, DF40 and DF15 grown under a light intensity of 100~200 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at 20 °C. (a) Microscopy photographs taken through a light microscope (Nikon Eclipse Ti-U) with a magnification of 600x; (b) Differential interference contrast (DIC) microscopy photographs taken through a confocal microscope (ZEISS LSM 880) with a magnification of 630x. (c) Photographs of the cultures obtained for each *Dunaliella* strain grown under identical conditions.

163 Growth curves for the five strains cultivated under the same conditions of different light
 164 intensities of 200, 500, 1000 and 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$ are shown in Figure 2, from which the maximum
 165 specific growth rate was calculated for each growth condition. Generally, these strains grew at a
 166 faster rate under higher light intensities. This is clearly shown for CCAP 19/30 and DF17. All strains
 167 showed the slowest growth rates under 200 $\mu\text{mol m}^{-2} \text{s}^{-1}$ light intensity. In DF15 and UTEX 2538,
 168 when increasing the light intensity from 1000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ to 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$, no further
 169 improvement in cell growth rate was observed. It is likely that the optimal light intensity for fastest
 170 growth of DF15 or UTEX 2538 is around 1000 $\mu\text{mol m}^{-2} \text{s}^{-1}$, while 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$ or higher is
 171 optimal for the other three strains. DF15 had the slowest growth rate and CCAP 19/30 the fastest.



172
173 **Figure 2.** Growth curves for the five *Dunaliella* strains: (a) CCAP 19/30; (b) DF15; (c) DF17; (d) DF40;
174 (e) UTEX 2538 each grown under four identical light intensities of 200, 500, 1000 and 1500 $\mu\text{mol m}^{-2}$
175 s^{-1} ; (f) specific growth rates of each strain grown under the four light intensities. Each culture
condition was set up in triplicate.

176 3.2. Photosynthesis and respiration

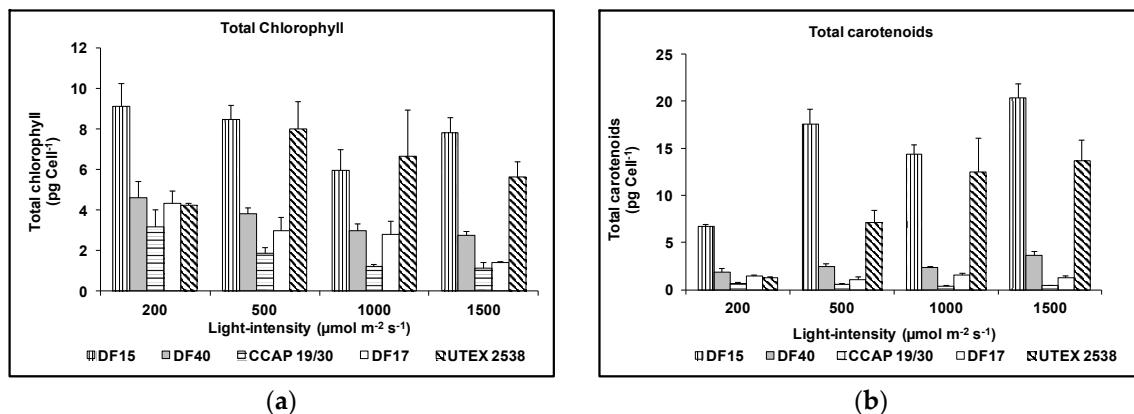
177 Figure 3(a) shows that as the light intensity increased, the rate of photosynthesis decreased for
178 DF17, DF40 and CCAP 19/30, indicating that these three strains are susceptible to photoinhibition.
179 However, DF15 and UTEX 2538 did not exhibit photoinhibition with increase in light intensity,
180 suggesting that these two strains have a more robust photoprotection mechanism. Figure 3(b) shows
181 that the dark respiration rate patterns were similar for DF17, DF40 and CCAP 19/30. These three
182 strains showed a slight decrease or no change in dark respiration rate with the increase in light
183 intensity. DF15 and UTEX 2538 had a similar pattern to each other and their respiration rate
184 increased slightly with increase in light intensity. From statistical analysis using two-way ANOVA,
185 both strain difference and light intensity are significant factors affecting photosynthesis; less
186 significant is the interaction between them. However, light intensity showed no significant impact
187 on dark respiration but strain played a major role in the observed differences in dark respiration
188 (Table 1).

(a)

(b)

189
190
191 **Figure 3.** Photosynthesis (a) and respiration (b) of the five *Dunaliella* strains cultivated under four
light intensities of 200, 500, 1000 and 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Samples were taken at the mid log phase and
all culture conditions were repeated at least in triplicates.

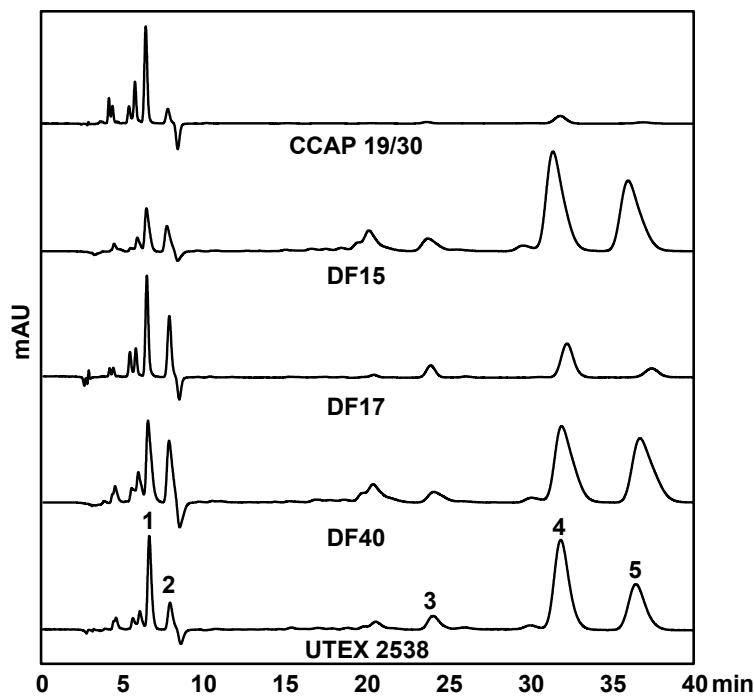
192
193
194
195
196 **Table 1.** Two-way ANOVA analysis of the responses of all examined variables (photosynthesis,
respiration, doubling time, *all-trans* β -carotene, *9-cis* β -carotene, glycerol, lutein, zeaxanthin, *all-trans*
(Light intensity*Strain). The values of all observations were transformed by taking log function,
square root function or reciprocal to fit linear models.


Response	Light intensity			Strain			Light intensity * Strain					
	Df	F	P	Df	F	P	Df	F	P			
Photosynthesis	3	8.1825	0.0002	***	4	71.2528	<2.2e-16	***	12	2.7966	0.0073	**
Respiration	3	1.7925	0.1641		4	52.7992	1.96e-15	***	12	2.4328	0.0176	*
Total carotenoids	3	2.9403	0.0446	*	4	693.560	< 2.2e-16	***	12	7.9749	2.52e-07	***
Total chlorophyll	3	36.529	1.55e-11	***	4	161.782	< 2.2e-16	***	12	10.285	8.41e-09	***
All-trans β -carotene	3	88.922	< 2.2e-16	***	4	474.255	< 2.2e-16	***	12	3.6878	0.0009	***
9-cis β -carotene	3	28.119	6.02e-10	***	4	730.574	< 2.2e-16	***	12	6.8407	1.67e-06	***
Lutein	3	7.3679	0.0005	***	4	118.762	< 2.2e-16	***	12	6.4955	3.08e-06	***
Zeaxanthin	3	35.542	2.31e-11	***	4	83.0526	< 2.2e-16	***	12	5.2669	3.13e-05	***
All-trans α -carotene	3	113.39	< 2.2e-16	***	4	408.180	< 2.2e-16	***	12	5.9987	7.64e-06	***
Glycerol	3	2.1170	0.1132		4	95.5589	< 2.2e-16	***	12	5.0858	4.50e-05	***

197

198

3.3 Pigment composition


199 Cellular contents of total chlorophyll and total carotenoids were determined for the five
200 *Dunaliella* strains grown under the four light intensities (200, 500, 1000 and 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$) using
201 UV/Vis spectrometry (Figure 4). Generally, the cellular content of total chlorophyll decreased while
202 total carotenoids increased with the increase in light intensity for all five *Dunaliella* strains. Statistical
203 analysis showed that strain difference significantly affected total carotenoids and total chlorophyll
204 content, although total carotenoids and total chlorophyll content also responded significantly to
205 light intensity (Table 1).
206

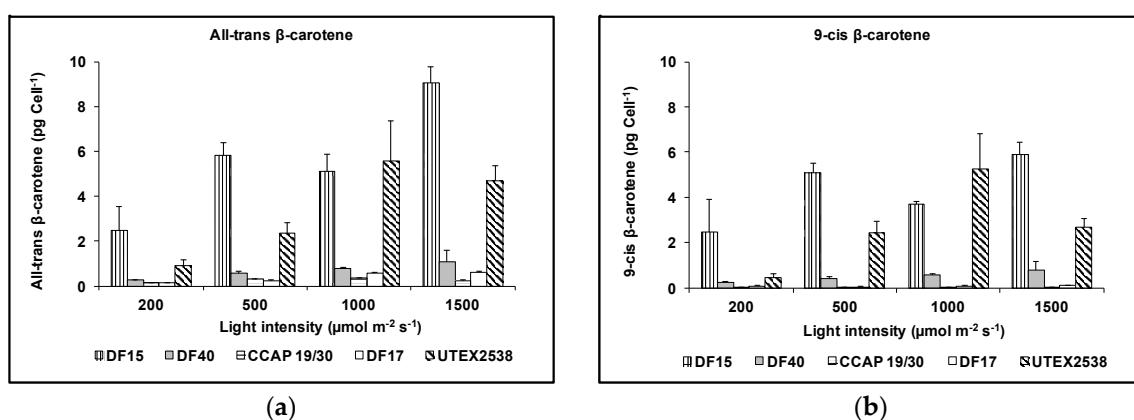
207
208
209 **Figure 4.** Cellular content of total chlorophyll (a) and total carotenoids (b) of the five *Dunaliella*
strains grown under four light intensities of 200, 500, 1000 and 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Samples were taken
at the mid log phase and all culture conditions were repeated at least in triplicates.

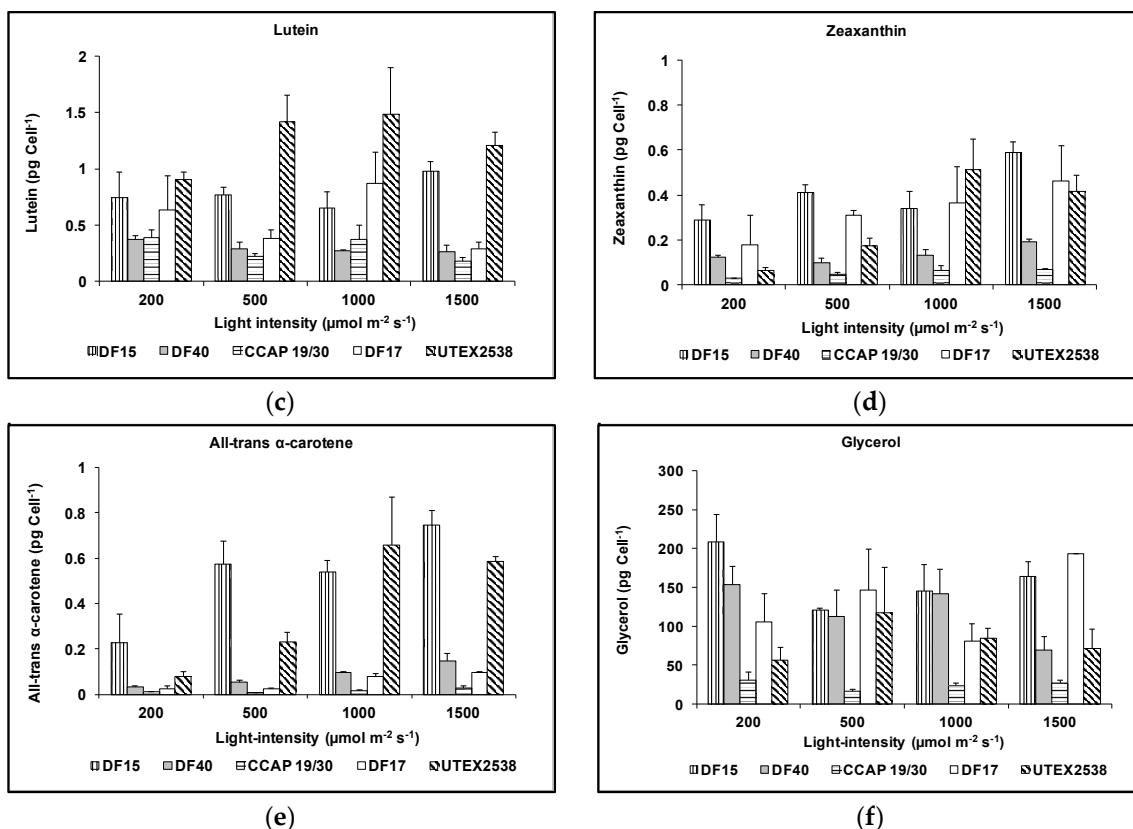
210 HPLC-DAD was used to quantify the contents of major carotenoids, namely lutein, zeaxanthin,
211 *all-trans* β -carotene, *9-cis* β -carotene, and *all-trans* α -carotene, in each strain acclimated in response to
212 four light intensities, to understand the effect of light in carotenoid metabolism. Figure 5 shows
213 HPLC chromatograms of the pigment extracts from the five *Dunaliella* strains grown under the light
214 intensity of 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$. It is clear that CCAP 19/30 does not accumulate β -carotene even under

215 high light intensity. DF15, DF40 and UTEX 2538 have a similar pigment profile and β -carotene
 216 dominates the carotenoid composition. DF17 produced a higher relative amount of zeaxanthin
 217 under high light stress compared with the other strains, indicating the important role of zeaxanthin
 218 in DF17 for photoprotection.

219

220 **Figure 5.** HPLC chromatograms of MTBE/ethanol extracts of the five *Dunaliella* strains cultivated
 221 under $1500 \mu\text{mol m}^{-2} \text{s}^{-1}$. The major peaks shown are: (1) lutein, (2) zeaxanthin, (3) *all-trans* α -carotene,
 222 (4) *all-trans* β -carotene and (5) 9-*cis* β -carotene.

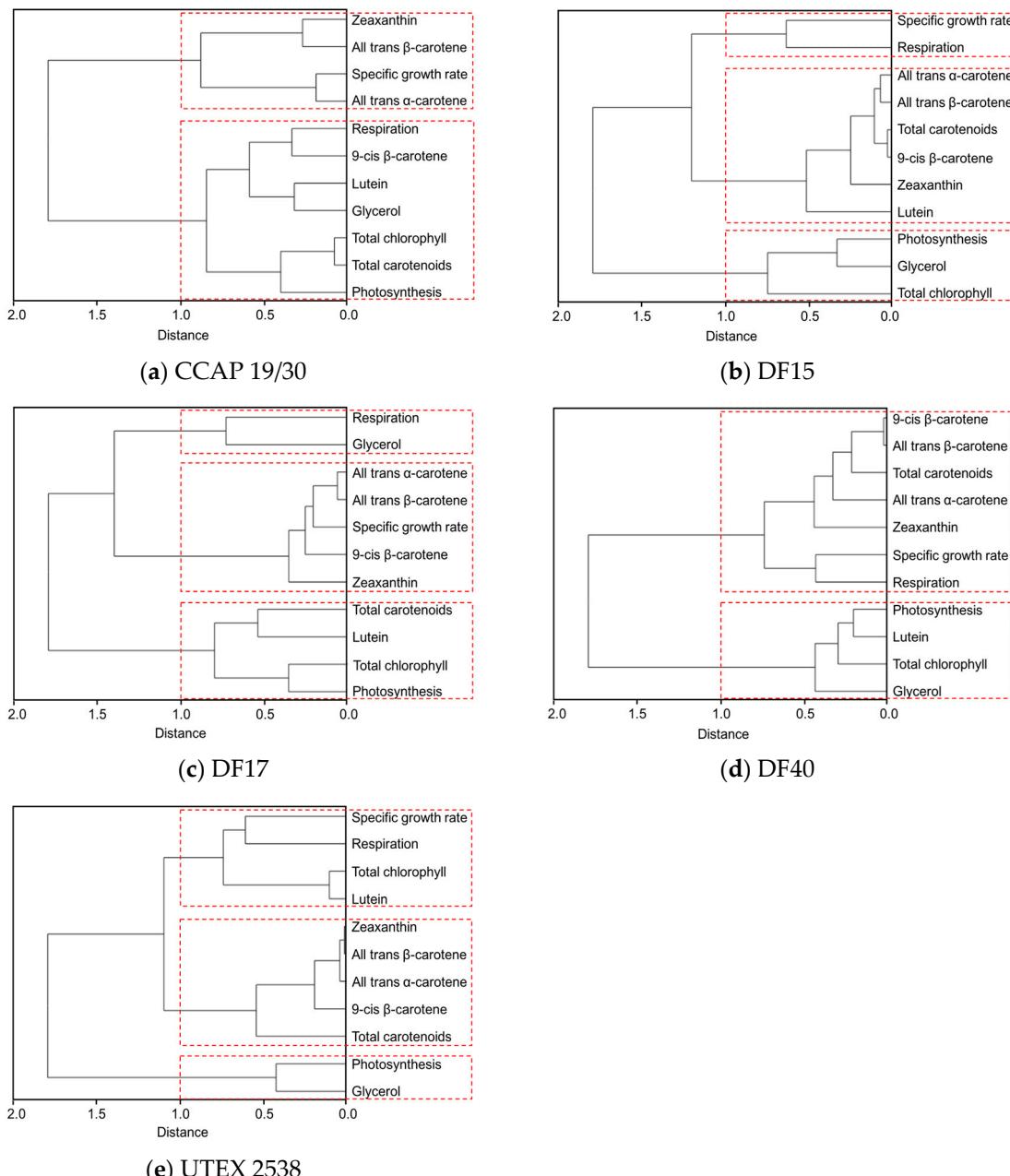

223 The major difference between the strains was their ability to accumulate β -carotene. As shown
 224 in Figure 6(a) and 6(b), the contents of *all-trans*- β - and 9-*cis* β -carotene increased with increasing
 225 light intensity in all five strains apart from UTEX 2538, which produced the highest cellular amount
 226 of *all-trans* or 9-*cis* β -carotene under $1000 \mu\text{mol m}^{-2} \text{s}^{-1}$. From the two-way ANOVA analysis, the
 227 cellular contents of *all-trans*- or 9-*cis* β -carotene were found to vary significantly among strains and
 228 under different light intensities (Table 1). CCAP 19/30, DF17 and DF40 had similar responses to
 229 increasing light with a mild β -carotene accumulation, while DF15 and UTEX 2538 significantly
 230 increased β -carotene content with increasing light (Figure 6(a), (b)). DF15 and UTEX 2538 have
 231 significantly higher cellular contents of *all-trans*- or 9-*cis* β -carotene than the other three strains and
 232 DF15 produces more β -carotene than UTEX 2538 under most of the light conditions. UTEX 2538,
 233 already known to be a massive carotene-accumulating strain [4], had a slightly faster growth rate
 234 than DF15 shown in Figure 2. On the other hand, DF15 accumulated a high carotene content even
 235 under low light intensity. In *Dunaliella*, variation in β -carotene content has been reported to correlate
 236 with the integral irradiance received during a division cycle and to be a specific mechanism of
 237 photoprotection [24], which may explain why DF15 has a slightly higher cellular content of
 238 β -carotene than UTEX 2538. DF15 has the advantage of accumulating a large amount of β -carotene
 239 even without light stress (Figure 5), therefore has great potential for the commercial production of
 240 β -carotene with less light energy input required.


241 The cellular content of lutein in the five *Dunaliella* strains grown under various light intensities
 242 is shown in Figure 6(c). Lutein, the most abundant xanthophyll in higher plants, is found in the light
 243 harvesting complexes in higher plants and also protects against photodamage. Its most important
 244 function is thought to be in quenching triplet chlorophyll ($^3\text{Chl}^*$) to prevent energy transfer to
 245 molecular oxygen and consequent formation of singlet oxygen $^1\text{O}_2^*$ [25], but it also quenches excited
 246 $^1\text{Chl}^*$ (NPQ) to prevent the formation of reactive oxygen species (ROS) under high light [26]. It also

247 contributes to light harvesting, by transferring excitation energy to chlorophyll, and has a structural
 248 role associated with the antenna system [25], consequently the changes in antenna size due to
 249 photodamage under high light may also affect lutein content. Lutein in *D. salina* has been
 250 previously reported as a growth-coupled primary metabolite with a strong correlation with
 251 chlorophyll synthesis, but interestingly, not with light [27]. Shown in Figure 6(c), all strains
 252 accumulated considerably different amounts of lutein and the response to increasing light intensities
 253 varied among different strains. Lutein increased with light intensity from 200 $\mu\text{mol m}^{-2} \text{s}^{-1}$ to 1000
 254 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and then decreased when light increased to 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$ in UTEX 2538. In DF15,
 255 lutein content did not change with light intensity from 200 $\mu\text{mol m}^{-2} \text{s}^{-1}$ to 1000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and only
 256 increased from 1000 to 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Both DF15 and UTEX 2538 accumulated significantly larger
 257 amounts of lutein under high light compared with the other strains. DF17 had the highest lutein
 258 content at 1000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and lowest at 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Two-way ANOVA shows the cellular
 259 content of lutein is significantly affected by both the strain and light intensity.

260 Figure 6(d) shows that zeaxanthin content in all strains increased with light intensity. DF15
 261 accumulated the highest amount of zeaxanthin, followed by DF17, UTEX 2538, DF40 and CCAP
 262 19/30 accumulated the lowest amount. Zeaxanthin is linked to energy dissipation when excess light
 263 is absorbed via the xanthophyll cycle [25,28]. Zeaxanthin receives excess excitation energy from
 264 excited-state singlet chlorophyll (^1Chl) and dissipates it harmlessly and rapidly as heat in a process
 265 that is commonly assessed as non-photochemical quenching (NPQ) of chlorophyll fluorescence
 266 [25,28]. The carotenoids participating in this cycle are the only carotenoids present in the
 267 photosynthetic membrane that undergo very rapid, light-triggered concentration changes. High
 268 light induces de-epoxidation of violaxanthin and converts it into zeaxanthin, leading to its
 269 accumulation. This process is reversed in low light conditions. The accumulation of zeaxanthin in
 270 *Dunaliella* has been shown to parallel the accumulation of photodamaged PSII centers in the
 271 chloroplast thylakoids and decays with chloroplast recovery from photoinhibition [29]. In the
 272 present work, the increase in zeaxanthin content in high light, therefore shows that these strains
 273 have an efficient photoprotective mechanism also based on the xanthophyll cycle. Two-way
 274 ANOVA analysis (Table 1) shows that the factors of strain and light intensity determined the
 275 accumulation of zeaxanthin. Zeaxanthin accumulation was significantly different among strains and
 276 at different light intensities. Among the different strains, DF17 and UTEX 2538 had similar responses
 277 in terms of zeaxanthin accumulation.

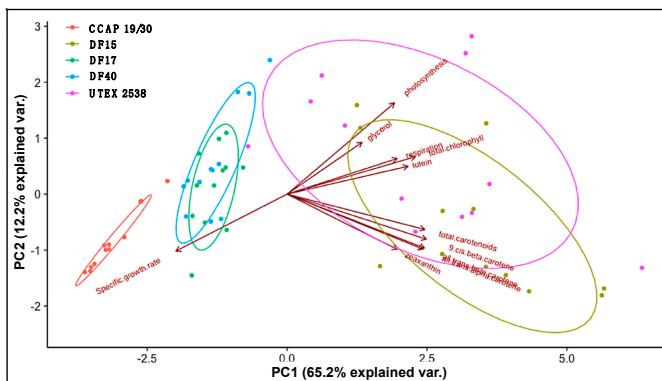
278 The cellular content of *all-trans* α -carotene of the five strains grown under different light
 279 intensities is shown in Figure 6(e) and the cellular content of glycerol is shown in Figure 6(f). The
 280 content of *all-trans* α -carotene in DF15 or UTEX 2538 is much higher than that in the other three
 281 strains. α -carotene is the precursor of lutein but surprisingly α -carotene did not respond to light
 282 stress in the same way as lutein. *All-trans* α -carotene increased with the light intensity in all strains
 283 examined, and its response to increasing light intensity was very similar to the pattern of
 284 accumulation obtained for *all-trans* and *9-cis* β -carotene.


Figure 6. Cellular contents of (a) *all-trans* β -carotene, (b) *9-cis* β -carotene, (c) lutein, (d) zeaxanthin, (e) *all-trans* α -carotene and (f) glycerol in the five *Dunaliella* strains cultivated under four light intensities of 200, 500, 1000 and 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Samples were taken at the mid log phase and all culture conditions were repeated at least in triplicate.

3.4. Statistical analysis

Whilst the accumulated data permit elucidation of strain differences for carotenoid production, they also provided the opportunity to explore the use of statistical analysis to provide new insights into carotenoid metabolism coupled to the interdependent metabolic functions of photosynthesis and respiration. This was possible with the large set of data generated across five strains and four light intensities combined with tools of ANOVA analysis, correlation analysis and principal component analysis used in this study. With the quantitative data obtained for the five *Dunaliella* strains, statistical analysis was used as a tool in order to assess the strength of the correlations among the carotenoids and other cell growth parameters and examine the differences among the five strains. A correlation and clustering analysis was performed on the growth, photosynthesis and pigment data presented, to all five strains grown under four light conditions. The analysis was performed for each strain using all variables examined in this study (*all-trans* β -carotene, *9-cis* β -carotene, glycerol, lutein, zeaxanthin, *all-trans* α -carotene, photosynthesis, respiration, total carotenoids, total chlorophyll, and specific growth rate). Among them, glycerol is known to maintain osmotic balance in *Dunaliella* strains and as expected, the cellular content of glycerol would not respond to changes in light intensity, as shown in Figure 6(f). Glycerol content therefore was used to index the analysis.

The clustering dendrogram of the examined traits for each strain is shown in Figure 7 and depicts graphically several features of note amongst the strains. First, it shows that the individual carotenoids of *all-trans* β -carotene, *9-cis* β -carotene, zeaxanthin and *all-trans* α -carotene in the four *D. salina* strains are strongly correlated with each other but significantly not with lutein, except in CCAP 19/30. From this, it is clear that there is greater similarity between the four *D. salina* strains than with the CCAP19/30 strain, consistent with CCAP 19/30 not being a *D. salina* strain but instead, a *D. tertiolecta* strain [18]. Second, the dendrogram shows that accumulation of both *9-cis*


313 β-carotene and *all-trans* β-carotene is positively correlated with photosynthesis over all light
 314 intensities for the *D. salina* strains, signifying a role for β-carotene in photoprotection. Third, lutein is
 315 not correlated closely with the other carotenoids but correlates more strongly with photosynthesis
 316 and respiration. This result suggests an important and not hitherto identified role for lutein in
 317 co-ordinated control of the cellular functions of photosynthesis and respiration in response to
 318 changes in light conditions, which is moreover broadly conserved in *Dunaliella* strains. Glycerol,
 319 which was not expected to change with light intensity, is weakly correlation with the different
 320 carotenoids in the *Dunaliella* strains as anticipated, but also correlates more closely with either
 321 photosynthesis or respiration.
 322

323 **Figure 7.** Cluster dendrograms of all-trans β-carotene, 9-cis β-carotene, glycerol, lutein, zeaxanthin,
 324 all-trans α-carotene, photosynthesis, respiration, total carotenoids, total chlorophyll for all five
 325 *Dunaliella* strains cultivated at four light intensities.

326 A principle component analysis was performed with all strains growing at all tested conditions
 327 as shown in Figure 8. The examined 11 traits can be roughly grouped into 4 groups as shown in the

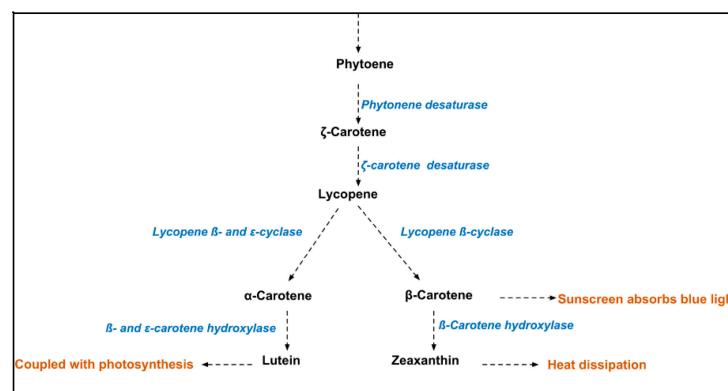
328 graph, where *all-trans* β -carotene, *all-trans* α -carotene, 9-*cis* β carotene and zeaxanthin were clustered
 329 closely, lutein, respiration and total chlorophyll were found in a second cluster, glycerol and
 330 photosynthesis were closely correlated, and the specific growth rate stands separately. The
 331 formation of two separate clusters of the carotenoids indicates two functionally distinct mechanisms
 332 for co-ordinated adaptation to changes in light conditions, broadly conserved between DF15, DF40,
 333 CCAP 19/30, DF17 and UTEX 2538. More importantly, it shows that DF17 and DF40 performed
 334 similarly under the tested environmental conditions; that DF15 is closely related to UTEX 2538, and
 335 that CCAP 19/30 is different compared to all the other strains.

336

337 **Figure 8.** Principle component analysis of 11 traits (all-trans β -carotene, 9-*cis* β -carotene, glycerol,
 338 lutein, zeaxanthin, all-trans α -carotene, photosynthesis, respiration, total carotenoids, total
 339 chlorophyll and specific growth rate) for all five *Dunaliella* strains cultivated at four light intensities.

340 4. Discussion

341 In photosynthesis, light energy absorbed by the chlorophyll- and carotenoid-binding complexes
 342 of photosystem II is transferred to reaction centres to drive photochemistry. Excess light energy will
 343 cause light-induced damage of photosynthetic apparatus or photo-oxidative damage.
 344 Photosynthetic organisms have evolved a robust repair mechanism to replace the photodamaged
 345 photosystems; however, when the rate of photodamage exceeds the repair cycle, photosynthetic
 346 efficiency will be impaired [30]. Based on this study, it is apparent that CCAP 19/30, DF17 and DF40
 347 are susceptible to photoinhibition, while photosynthetic efficiency of DF15 and UTEX 2538 was not
 348 affected by high light and was maintained high over all light intensities studied, suggesting they
 349 have developed better photoprotective mechanisms against light stress.

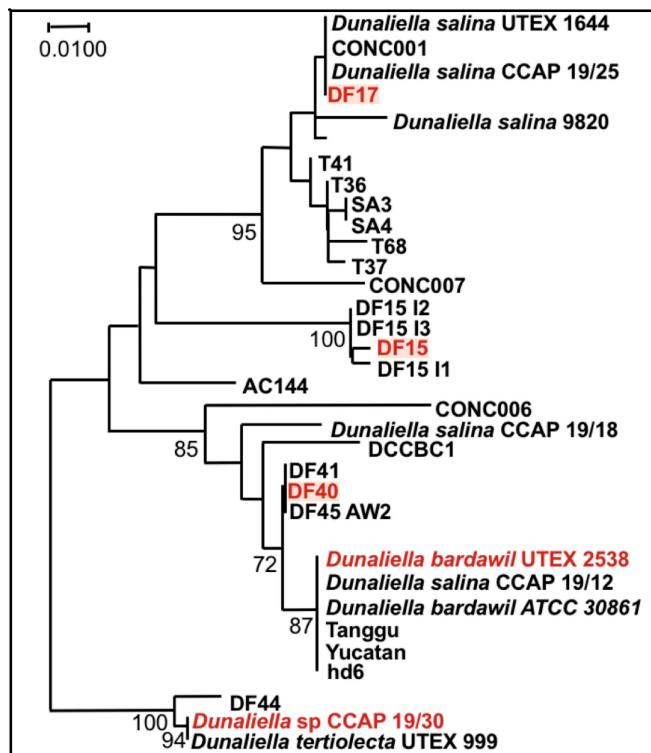

350 Carotenoids are variously involved in harvesting light for photosynthesis as well as preventing
 351 photoinhibition under high light stress. Exposure to white light is associated with generation of
 352 ROS, which have been shown to replace light in the induction of hyper-accumulation of carotenoids
 353 [31]. β -carotene is also associated with photoprotection and most of the beneficial effects of
 354 β -carotene is attributed to its ability to prevent oxidation processes by quenching $^1\text{O}_2^*$ once formed,
 355 or terminating free radical chain reactions as a result of the presence of the polyene chain, with 9-*cis*
 356 β -carotene being a better scavenger of free radicals than *all-trans* β -carotene [32]. DF15 and UTEX
 357 2538, which showed no evidence of photoinhibition with increase in light intensity, also
 358 accumulated large amounts of carotenoids, especially β -carotene, compared to the other strains.

359 The fact that DF15 and UTEX 2538 accumulated very large amounts of β -carotene over all light
 360 intensities is noteworthy. The accumulation of β -carotene in *D. salina* when exposed to high light
 361 mainly occurs in the β -carotene plastoglobuli, while the thylakoidal β -carotene content remains
 362 relatively unchanged [33,34]. These plastoglobuli have also been shown to contain many enzymes
 363 found in the eyespot of other flagellate algae [35,36]. However, most of the proteins that are required
 364 for the eyespot function are no longer found in *Dunaliella* and no eyespot structural elements could
 365 be found in *Dunaliella* [37]. This suggests that the plastoglobuli were once components of a
 366 functional eyespot of *Dunaliella*. The β -carotene in the eyespot probably played a crucial role in
 367 perception of light, but once it lost its function, the non-functional eyespot acted as a β -carotene

368 storage compartment. It is possible therefore that both DF15 and UTEX 2538 accumulated very large
369 amounts of β -carotene in a vestigial eye-spot.

370 Statistical analysis tools used here have been able to reveal the correlative relationships between
371 different carotenoids (lutein, zeaxanthin, *all-trans* and *9-cis* β -carotene and α -carotene) and the
372 relationships between carotenoids and photosynthesis and respiration. In particular, they have
373 identified a strong positive correlation of lutein with photosynthesis and respiration (Figure 7 and
374 Figure 8). In humans, lutein influences brain function through a variety of mechanisms that are not
375 well understood, but its accumulation in brain mitochondria has been proposed to protect these
376 organelles from oxidative damage [38]. Lutein also specifically accumulates in the retina of the eye
377 and has been linked with protection against mitochondrial stress and with mitochondrial biogenesis
378 [39]. In plants there is a close interdependence between respiration and photosynthesis for the flow
379 of ATP, NAD(P)H and carbon skeletons such that excess photosynthetic reducing equivalents
380 formed by photosynthesis in light can be removed in mitochondrial respiration to reduce the
381 tendency for ROS accumulation and photoinhibition [40] and thereby regulate the NAD(P)H:
382 oxygen ratio to avoid cell death [41]. The clustering of lutein, photosynthesis, chlorophyll and
383 respiration reported here attests to the strong interdependence between respiration and
384 photosynthesis to regulate the redox state of the cell [40], and in *Dunaliella* both are linked to lutein
385 accumulation.

386 Figure 9 shows the pathway for the synthesis of key carotenoids in this study. Significantly the
387 data presented here show that α -carotene is linearly correlated with β -carotene but not lutein,
388 although α -carotene is the precursor of lutein. This finding points to additional interactions involved
389 in the synthesis of lutein, which are linked specifically to chlorophyll synthesis. Moreover, the
390 positive correlation between β -carotene and zeaxanthin may suggest a proportional partitioning of
391 β -carotene into the xanthophyll cycle and the β -carotene plastoglobuli, which is consistent with the
392 idea that two complete pathways for β -carotene biosynthesis exist in *D. barawil*, one in the
393 chloroplast membranes for the biosynthesis of β -carotene and one in the plastoglobuli for the
394 accumulation of β -carotene [34]. It is possible to conclude that *D. salina* strains have evolved
395 coordinated universal photoprotection mechanisms for the maintenance of high efficiency under
396 high light stress by accumulating carotenoids, in particular β -carotene. However, the effectiveness of
397 these mechanisms varies greatly between strains and therefore the potential for β -carotene
398 production varies among strains.



399

400 **Figure 9.** Carotenoids pathway showing synthesis of lutein, β -carotene, α -carotene and zeaxanthin
401 from phytoene in *D. salina* [42]. Metabolites of carotenoids are shown in black bold and enzymes are
402 displayed in italics.

403 Finally, it is noteworthy that the statistical analysis based on the data obtained from the
404 biochemical characterisation suggests a grouping of the five strains into three different groups: (1)
405 DF15 and UTEX 2538; (2) DF17 and DF40; and (3) CCAP 19/30 as shown in Figure 8. However,
406 genetic classification using the approaches of bar coding shows a higher similarity between DF40
407 and UTEX 2538, and therefore groups the five strains into four different groups: (1) DF40 and UTEX
408 2538, (2) DF17, (3) DF15 and (4) CCAP 19/30 as shown in the phylogenetic tree provided by Dr.

409 Declan Schroeder at The Marine Biological Association, UK [43] (Figure 10). This indicates the
 410 complicity of strain classification in *Dunaliella* by using a single classification method and the
 411 importance of strain selection for the commercial production of *Dunaliella* biomass and natural
 412 β -carotene.

413

414 **Figure 10.** Phylogenetic tree showing the location of the three newly isolated *Dunaliella* strains (DF15,
 415 DF17 and DF40) compared to CCAP 19/30 and UTEX 2538 used in this study [43].

416 5. Conclusion

417 This study shows how strain difference plays a significant role in the accumulation of
 418 carotenoids in *D. salina*. Carotenoid content increased with the increase of light intensity and
 419 contributed to photoprotection against photodamage. Cellular contents of *all-trans* β -carotene, *9-cis*
 420 β -carotene, *all-trans* α -carotene and zeaxanthin, but not lutein, were closely correlated with each
 421 other, signifying synthesis of these carotenes and zeaxanthin along a metabolic pathway that is
 422 under common control. Significantly a strong correlation between lutein and respiration in
 423 photosynthetic cells was identified; there was also a strong relationship between lutein,
 424 photosynthesis, chlorophyll and respiration. Among the three newly isolated *D. salina* strains, DF15
 425 produced a significantly higher (> 5-fold) content of β -carotene over different light intensities
 426 compared to DF17 or DF40, despite the fact that they are all strains of *D. salina*. Physiological study
 427 on the biochemical performance of the new isolated strains shows a different grouping strategy to
 428 that obtained from genetic classification. The data demonstrate the importance of strain selection
 429 from a number of *Dunaliella* strains based on their biochemical performance for the commercial
 430 production of β -carotene.

431 **Acknowledgments:** This research was supported by the grant EU KBBE.2013.3.2-02 programme (D-Factory:
 432 368 613870). The authors would like to express their sincere gratitude to Dr. Declan Schroeder at MBA for
 433 invaluable discussion.

434 **Author Contributions:** Y.X., I.I., A.B and P.H conceived and designed the experiments; Y.X., I.I. and C.W
 435 performed the experiments; Y.X. and I.I. analyzed the data; P.H contributed reagents/materials/analysis tools;
 436 Y.X. I.I. and P.H. wrote the paper.

437 **Conflicts of Interest:** The authors declare no conflict of interest. The founding sponsors had no role in the
438 design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in
439 the decision to publish the results.

440 **References**

- 441 1. Gong, M.; Bassi, A. Carotenoids from microalgae: A review of recent developments. *Biotechnol. Adv.* **2016**, *34*,
442 1396–1412.
- 443 2. Takaichi, S. Carotenoids in algae: distributions, biosyntheses and functions. *Mar Drugs* **2011**, *9*, 1101–1118.
- 444 3. Zhang, J.; Sun, Z.; Sun, P.; Chen, T.; Chen, F. Microalgal carotenoids: beneficial effects and potential in
445 human health. *Food & Function* **2014**, *5*, 413–425.
- 446 4. Ben-Amotz, A.; Shaish, A.; Avron, M. Mode of action of the massively accumulated β -Carotene of *Dunaliella*
447 *bardawil* in protecting the alga against damage by excess irradiation. *Plant Physiol.* **1989**, *91*, 1040–1043.
- 448 5. Schieber, A.; Carle, R. Occurrence of carotenoid cis-isomers in food: Technological, analytical, and
449 nutritional implications. *Trends in Food Science & Technology* **2005**, *16*, 416–422.
- 450 6. Levy, Y.; Zaltsberg, H.; Ben-Amotz, A.; Kanter, Y.; Aviram, M. Dietary supplementation of a natural isomer
451 mixture of beta-carotene inhibits oxidation of LDL derived from patients with diabetes mellitus. *Ann.*
452 *Nutr. Metab.* **2000**, *44*, 54–60.
- 453 7. Bechor, S.; Zolberg Relevy, N.; Harari, A.; Almog, T.; Kamari, Y.; Ben-Amotz, A.; Harats, D.; Shaish, A. 9-cis
454 β -Carotene increased cholesterol efflux to HDL in macrophages. *Nutrients* **2016**, *8*, 435.
- 455 8. Greenberger, S.; Harats, D.; Salameh, F.; Lubish, T.; Harari, A.; Trau, H.; Shaish, A. 9-cis-rich β -carotene
456 powder of the alga *Dunaliella* reduces the severity of chronic plaque psoriasis: a randomized,
457 double-blind, placebo-controlled clinical trial. *J Am Coll Nutr* **2012**, *31*, 320–326.
- 458 9. Rotenstreich, Y.; Belkin, M.; Sadetzki, S.; Chetrit, A.; Ferman-Attar, G.; Sher, I.; Harari, A.; Shaish, A.; Harats,
459 D. Treatment with 9-cis β -carotene-rich powder in patients with retinitis pigmentosa: a randomized
460 crossover trial. *JAMA Ophthalmol* **2013**, *131*, 985–992.
- 461 10. Wang, X. D.; Krinsky, N. I.; Benotti, P. N.; Russell, R. M. Biosynthesis of 9-cis-retinoic acid from
462 9-cis-beta-carotene in human intestinal mucosa in vitro. *Arch. Biochem. Biophys.* **1994**, *313*, 150–155.
- 463 11. Ho, S.-H.; Chan, M.-C.; Liu, C.-C.; Chen, C.-Y.; Lee, W.-L.; Lee, D.-J.; Chang, J.-S. Enhancing lutein
464 productivity of an indigenous microalga *Scenedesmus obliquus* FSP-3 using light-related strategies.
465 *Bioresour. Technol.* **2014**, *152*, 275–282.
- 466 12. Jin, E. S.; Melis, A. Microalgal biotechnology: Carotenoid production by the green algae *Dunaliella salina*.
467 *Biotechnol. Bioprocess Eng.* **2003**, *8*, 331–337.
- 468 13. Tafreshi, A. H.; Shariati, M. *Dunaliella* biotechnology: methods and applications. *J. Appl. Microbiol.* **2009**, *107*,
469 14–35.
- 470 14. Khoo, H.-E.; Prasad, K. N.; Kong, K.-W.; Jiang, Y.; Ismail, A. Carotenoids and their isomers: Color pigments
471 in fruits and vegetables. *Molecules* **2011**, Vol. 16, Pages 1710–1738 **2011**, *16*, 1710–1738.
- 472 15. Raja, R.; Hemaiswarya, S.; Rengasamy, R. Exploitation of *Dunaliella* for β -carotene production. *Appl.*
473 *Microbiol. Biotechnol.* **2007**, *74*, 517–523.
- 474 16. Fu, W.; Guðmundsson, Ó.; Paglia, G.; Herjólfsson, G.; Andrésson, Ó. S.; Palsson, B. Ø.; Brynjólfsson, S.
475 Enhancement of carotenoid biosynthesis in the green microalga *Dunaliella salina* with light-emitting
476 diodes and adaptive laboratory evolution. *Appl. Microbiol. Biotechnol.* **2013**, *97*, 2395–2403.
- 477 17. Borowitzka, M. A.; Siva, C. J. The taxonomy of the genus *Dunaliella* (Chlorophyta, Dunaliellales) with
478 emphasis on the marine and halophilic species. *J. Appl. Phycol.* **2007**, *19*, 567–590.
- 479 18. Xu, Y.; Ibrahim, I. M.; Harvey, P. J. The influence of photoperiod and light intensity on the growth and
480 photosynthesis of *Dunaliella salina* (chlorophyta) CCAP 19/30. *Plant Physiol. Biochem.* **2016**, *106*, 305–315.
- 481 19. Borowitzka, M. A. Algal growth media and sources of cultures. In *Microalgal biotechnology*; Borowitzka, M.
482 A.; Borowitzka, L. J., Eds.; 1988; pp. 456–465.
- 483 20. Strickland, J.; Parsons, T. R. A practical handbook of seawater analysis; 2nd ed.; Fish Res Board Can Bull,
484 1972.
- 485 21. Porra, R. J.; Thompson, W. A.; Kriedemann, P. E. Determination of accurate extinction coefficients and
486 simultaneous equations for assaying chlorophylls a and b extracted with four different solvents:
487 verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. *Biochim.*
488 *Biophys. Acta, Bioenerg.* **1989**, *975*, 384–394.
- 489 22. Brindley, C.; Acién, F. G.; Fernández Sevilla, J. M. The oxygen evolution methodology affects

490 photosynthetic rate measurements of microalgae in well-defined light regimes. *Biotechnol. Bioeng.* **2010**,
491 *106*, 228–237.

492 23. Delieu, T. J.; Walker, D. A. Simultaneous measurement of oxygen evolution and chlorophyll fluorescence
493 from leaf. *Plant Physiol.* **1983**, *73*, 534–541.

494 24. Ben-Amotz, A. Effect of low temperature on the stereoisomer composition of β -carotene in the halotolerant
495 alga *Dunaliella bardawil* (Chlorophyta). *J. Phycol.* **1996**, *32*, 272–275.

496 25. Jahns, P.; Holzwarth, A. R. The role of the xanthophyll cycle and of lutein in photoprotection of
497 photosystem II. *Biochim. Biophys. Acta, Bioenerg.* **2012**, *1817*, 182–193.

498 26. Dall'Osto, L.; Lico, C.; Alric, J.; Giuliano, G.; Havaux, M.; Bassi, R. Lutein is needed for efficient chlorophyll
499 triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in
500 vivo under strong light. *BMC Plant Biol.* **2006**, *6*, 32.

501 27. Fu, W.; Paglia, G.; Magnúsdóttir, M.; Steinarsdóttir, E. A.; Gudmundsson, S.; Palsson, B. Ø.; Andrésson, Ó.
502 S.; Brynjólfsson, S. Effects of abiotic stressors on lutein production in the green microalga *Dunaliella salina*.
503 *Microb. Cell Fact.* **2014**, *13*, 3.

504 28. Demmig-Adams, B.; Adams, W. W., III The role of xanthophyll cycle carotenoids in the protection of
505 photosynthesis. *Trends Plant Sci.* **1996**, *1*, 21–26.

506 29. Jin, E.; Yokthongwattana, K.; Polle, J. E. W.; Melis, A. Role of the reversible xanthophyll cycle in the
507 photosystem II damage and repair cycle in *Dunaliella salina*. *Plant Physiol.* **2003**, *132*, 352–364.

508 30. Melis, A. Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of
509 photodamage? *Trends Plant Sci.* **1999**, *4*, 130–135.

510 31. Shaish, A.; Avron, M.; Pick, U.; Ben-Amotz, A. Are active oxygen species involved in induction of
511 β -carotene in *Dunaliella bardawil*? *Planta* **1993**, *190*, 363–368.

512 32. Levin, G.; Mokady, S. Antioxidant activity of 9-cis compared to all-trans β -carotene in vitro. *Free Radical
513 Biology and Medicine* **1994**, *17*, 77–82.

514 33. Orset, S. C.; Young, A. J. Exposure to low irradiances favors the synthesis of 9-cis beta, beta-carotene in
515 *Dunaliella salina* (Teod.). *Plant Physiol.* **2000**, *122*, 609–618.

516 34. Davidi, L.; Levin, Y.; Ben-Dor, S.; Pick, U. Proteome analysis of cytoplasmatic and plastidic β -carotene lipid
517 droplets in *Dunaliella bardawil*. *Plant Physiol.* **2015**, *167*, 60–79.

518 35. Foster, K. W.; Smyth, R. D. Light Antennas in phototactic algae. *Microbiological Reviews* **1980**, *44*, 572–630.

519 36. Eitzinger, N.; Wagner, V.; Weisheit, W.; Geimer, S.; Boness, D.; Kreimer, G.; Mittag, M. Proteomic analysis
520 of a fraction with intact eyespots of *Chlamydomonas reinhardtii* and assignment of protein methylation.
521 *Frontiers in Plant Science* **2015**, *6*, 3389.

522 37. Davidi, L.; Shimon, E.; Khozin-Goldberg, I.; Zamir, A.; Pick, U. Origin of β -carotene-rich plastoglobuli in
523 *Dunaliella bardawil*. *Plant Physiol.* **2014**, *164*, 2139–2156.

524 38. Erdman, J. W.; Smith, J. W.; Kuchan, M. J.; Mohn, E. S.; Johnson, E. J.; Rubakhin, S. S.; Wang, L.; Sweedler, J.
525 V.; Neuringer, M. Lutein and brain function. *Foods* **2015**, *4*, 547–564.

526 39. Yu, H.; Wark, L.; Ji, H.; Willard, L.; Jaing, Y.; Han, J.; He, H.; Ortiz, E.; Zhang, Y.; Medeiros, D. M.; Lin, D.
527 Dietary wolfberry upregulates carotenoid metabolic genes and enhances mitochondrial biogenesis in the
528 retina of db/db diabetic mice. *Mol Nutr Food Res* **2013**, *57*, 1158–1169.

529 40. Hoefnagel, M. H. N.; Atkin, O. K.; Wiskich, J. T. Interdependence between chloroplasts and mitochondria
530 in the light and the dark. *Biochim. Biophys. Acta, Bioenerg.* **1998**, *1366*, 235–255.

531 41. Hansberg, W.; Aguirre, J. Hyperoxidant states cause microbial cell differentiation by cell isolation from
532 dioxygen. *Journal of Theoretical Biology* **1990**, *142*, 201–221.

533 42. Lamers, P. P.; Janssen, M.; De Vos, R. C. H.; Bino, R. J.; Wijffels, R. H. Exploring and exploiting carotenoid
534 accumulation in *Dunaliella salina* for cell-factory applications. *Trends in Biotechnology* **2008**, *26*, 631–638.

535 43. Xu, Y.; Schroeder, D.; Harvey, P. *Dunaliella* sp from hypersaline environments. *Algae Biorefineries for Europe*
536 2017. Available online: <https://algaebiorefineryconference.eu/wp-content/uploads/2017/11/S16.pdf>