In this paper, we study the fractional pseudo-parabolic equations ut + (−△)su + (−△)sut = u log |u|. Firstly, we recall the relationship between the fractional Laplace operator (−△)s and the fractional Sobolev space Hs and discuss the invariant sets and the vacuum isolating behavior of solutions with the help of a family of potential wells. Then, we derive a threshold result of existence of global weak solution: for the low initial energy J(u0) < d, the solution is global in time with I(u0) > 0 or ∥u0∥X0(Ω) = 0 and blows up +∞ with I(u0) < 0; for the critical initial energy J(u0) = d, the solution is global in time with I(u0) ≥ 0 and blows up at +∞ with I(u0) < 0. The decay estimate of the energy functional for the global solution is also given.
Keywords:
Subject: Computer Science and Mathematics - Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.