Preprint
Article

Fluorine Translational Anion Dynamics in Nanocrystalline Ceramics: SrF2-YF3 Solid Solutions

Altmetrics

Downloads

953

Views

643

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

24 January 2018

Posted:

25 January 2018

You are already at the latest version

Alerts
Abstract
Nanostructured materials have already become an integral part of our daily life. In many applications ion mobility decisively affects the performance of, e.g., batteries and sensors. Nanocrystalline ceramics often exhibit enhanced transport properties due to their heterogeneous structure showing crystalline (defect-rich) grains and disordered interfacial regions. In particular, anion conductivity in nonstructural binary fluorides easily exceeds that of their coarse-grained counterparts. To further increase ion dynamics aliovalent substitution is a practical method to influence the number of (i) defect sites and (ii) the charge carrier density. Here, we used high energy-ball milling to incorporate Y3+ ions into the cubic structure of SrF2. As compared to pure nanocrystalline SrF2 the ionic conductivity of Sr1-xYxF2+x with x = 0.3 increased by 4 orders of magnitude reaching 0.8 x 10 -5 S/cm-1 at 450 K. We discuss the effect of YF3 incorporation on conductivities isotherms determined by both activation energies and Arrhenius pre-factors. The enhancement seen is explained by size mismatch of the cations involved, which are forced to form a cubic crystal structure with extra F anions if x is kept smaller than 0.5
Keywords: 
Subject: Chemistry and Materials Science  -   Ceramics and Composites
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated