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Abstract: A real-time two-way direct load control (TWDLC) of central air-conditioning chillers in 10 
wide area is proposed to provide demand response. The proposed TWDLC scheme is designed to 11 
optimize the load shedding ratio of every customer under control to ensure the target load to be 12 
shed is met at every scheduling period. In order to overcome the load reduction uncertainties of 13 
TWDLC, an innovative solution is proposed by applying a certain degree of loosening on the 14 
constraint of the actual shed load. Fuzzy linear programming is utilized to solve the optimization 15 
problem with fuzzy constraints. The proposed fuzzy linear programming problem is solved by 16 
delicately transforming it into a regular liner programming problem. A selection scheme used to 17 
obtain the feasible candidates set for load shedding at every sampling interval of TWDLC is also 18 
designed along with the fuzzy linear programming. 19 

Keywords: fuzzy linear programming, direct load control, scheduling optimization, chillers, air 20 

condition, demand response. 21 
 22 

1. Introduction 23 

The rapid development of smart grid [1-3] integrated with advanced metering infrastructure 24 
(AMI) and two-way communication capability offers a new opportunity for utility company to 25 
revolutionize the existing electrical systems. The emergence of these cyber-infrastructures allows 26 
utility to exploit demand side capability of electricity users in order to achieve certain grid-level 27 
operation objectives such as the reduction of peak demand and forced outage [4]. Utilities tend to 28 
deploy different demand response (DR) programs to fully realize the benefits of smart grid. Existing 29 
DR programs are categorized into two types, namely the price-based and incentive-based schemes 30 
[5-6]. For latter schemes, electricity users are incentivized by utility or curtail service provider (CSP) 31 
for being able to reduce their energy consumption for a certain periods of time upon request.  32 

Direct load control (DLC) is one common incentive-based DR programs used by utility or CSP 33 
to reshape load profile by scheduling the operation cycles of customer’s high-power appliances. 34 
Central air conditioning chillers of industrial and commercial customers are the excellent candidates 35 
to achieve a cost effective DLC because the potential load reduction capacity delivered can reach up 36 
to several hundred kilowatts. Given the impressive strides made in metering and intelligent control 37 
technologies in facilitating a continuous bidirectional communication between the utility or CSP and 38 
its customers [7-8], a two-way direct load control (TWDLC) scheme for central chillers can further be 39 
envisioned as an emergency DR program to deliver the real-time load shedding effect. In particular, 40 
the utility or CSP can transmit the load shedding signals to its controlled customers while 41 
monitoring the load shedding results continuously via the Internet. The TWDLC of central chillers 42 
can even serve as an ancillary service if a huge amount of air-conditioning loads can be aggregated, 43 
monitored and managed in smart grid [9-10].  44 
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Computational intelligence approach has gained popularity in recent years to solve complex 45 
DLC scheduling problems. An iterative deepening search strategy was incorporated into genetic 46 
algorithm [11] and genetic programming [12] to produce a DLC schedule of air conditioning load 47 
capable of meeting the target load shed profile with minimum cost. A DLC scheduling problem with 48 
multiobjective framework was solved from different perspectives using an interactive evolutionary 49 
algorithm [13], [14]. An optimal DLC dispatch of air-conditioning loads was proposed in [15] using 50 
an imperialist competitive algorithm to minimize the total deviation between the actual and target 51 
load shed profiles. A new DLC model for air-conditioning loads was coordinated along with unit 52 
commitment in [16] using distributed imperialist competitive algorithm to minimize system 53 
operational cost. Differential evolution was used in [17] to solve a DLC model aiming to minimize 54 
the operational cost of a microgrid with high penetration of solar power and air conditioning loads. 55 
A hierarchical DLC framework for large-scale air conditioning load dispatch was proposed in [18] 56 
using differential evolution algorithm to minimize the operational cost. With a two-way 57 
communication platform, a real-time load shedding of central air conditioning chillers was 58 
optimized with linear programming [19]. By considering the uncertainties of electricity prices and 59 
ambient temperature change, a DLC of air-conditioning loads was solved in [20] by mixed-integer 60 
linear programming to enhance wind power utilization level and minimize system operational cost. 61 
By considering the transmission system reliability, an optimal DLC schedule of air conditioning 62 
loads was obtained in [21] by a fuzzy DR to attain a tradeoff between peak load and system 63 
operation cost reduction. In [22], a nonlinear programming approach was formulated by considering 64 
DLC as a part of integrated resource planning to minimize the investment cost of microgrid. A DLC 65 
union was formed for the retailer and residential users in [23] using cooperative game to minimize 66 
the regulation cost of retailer by providing users an indirect access into balance market to improve 67 
market efficiency. A model estimator controller was designed in [24] using Markov chain model to 68 
coordinate aggregation of air-conditioning loads in order to address energy imbalance issue in 69 
power systems. Both of the distributed load shedding and micro-generator dispatching was 70 
coordinated in [25] using a probabilistic method to provide an emergency DR. A novel DLC scheme 71 
was proposed using queuing system model to control the air-conditioning loads without comprising 72 
users’ cooling comfort *26+. 73 

Most existing DLC scheduling strategies have not, to the authors’ best knowledge, considered 74 
the uncertainties of demand reduction provided by air-conditioning loads. The previous works 75 
assumed the target load shed to be met are fixed and crisp optimization constraints were formulated 76 
to guarantee the actual load shed is not less than the predefined target. In practical scenarios, the 77 
load reduction of air-conditioners in wide area vary with time of day, ambient temperature, number 78 
of people in the cooling environment, communication network signal strength, etc. [27]. The 79 
optimality of DLC schedules produced without taking these uncertainties into account is hence 80 
questionable. The main contribution of this paper is to propose an innovative approach based on 81 
fuzzy linear programming [30] allowing more flexibility in solving the optimization of TWDLC for 82 
central air conditioning systems. Particularly, a fuzzy inference system is designed to model the 83 
uncertainties of load reduction by allowing a certain degree of constraint loosening to obtain an 84 
optimal TWDLC schedule of central air conditioning systems. With these optimization flexibilities, a 85 
soft curtailment for the TWDLC of central air conditioning systems is achieved. With the proposed 86 
approach, a tolerance range of load reduction uncertainty is provided to the aggregators as they 87 
negotiate DR capacity and purchase prices with CSPs [28-29]. 88 

This paper is structured as follows. The problem to be solved for TWDLC of central air 89 
conditioning chillers is mathematically defined in Section 2.  Section 3 describes the optimization 90 
approach determining the best set of candidates for control in every sampling interval. The 91 
implementation of fuzzy linear programming for TWDLC is described in Section 4. Computer 92 
simulations verifying the performance of the proposed scheduling optimization approach are shown 93 
in Section 5.  Conclusions are made in Section 6. 94 

2. Two-way Direct Load Control of Central Chiller 95 
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Assume that N customers are recruited by utility company or CSP to participate the TWDLC 96 
program and 

iC chillers at every i-th customers are under control, i = 1…N. An optimal scheduling 97 

scheme for real time TWDLC is designed in this paper. Denote  ij t as the running status of the j-th 98 

central chiller unit at the i-th customer’s building at time t, where  ij t = 1 if the j-th central chiller 99 

belonging to the i-th customer is turned on at t, and  ij t = 0, otherwise, j = 1…
iC , i = 1…N.  The 100 

load shedding for a centrifugal compressor in the chiller is technically achieved by partially reducing 101 
the load instead of turning it off.  Chiller energy efficiency is measured using the coefficient of 102 
performance (COP), which varies with chiller’s load ratio. The COP drops drastically if load ratio is 103 
less than 50% for most chillers.  As chiller’s load is partially reduced for DLC, it needs to be 104 

assigned a lower bound of load ratio preventing chiller from having low COP. Denote f

ijW and 105 
c

ijW ( t )as chiller’s capacity and the load measured at time t, respectively, and ij as the lower bound of 106 

the load ratio for the j-th chiller of the i-th customer. The controllable load for the i-th customer, 107 

denoted as 
i

aW ( ),  is then defined as the total controllable load among all chillers belonging to that 108 

customer, i.e., 109 

where the controllable load for the j-th chiller of the i-th customer  a

ijW t is defined as: 110 

 ( )  if ( ) ; 
( )

0                otherwise.

c f c f

a ij ij ij ij ij ij

ij

W t W , W t W
W t

,

   
 


 (2) 

The utility company or CSP installs the gateway and chiller control network inside the building 111 

of customers willing to participate in the curtailed service program or similar demand response 112 

programs. Once the gateway receives the shedding command through the Internet over the 113 

broadband network from the control center at time t, it calculates the required load reduction for 114 

every central chiller and activates the load shedding through the chiller control network. Let the 115 

control interval for the entire TWDLC be cT . If the sampling interval for the control center to 116 

conduct TWDLC is defined as sT , the number of evaluations for TWDLC through an entire control 117 

interval is defined as c sM T / T .  118 

The main computer in control center reviews available customers for load control at the k-th 119 
sampling interval skT , k = 1…M. As long as the customer is available for control, the average 120 

controllable load is measured at every sampling interval. Denote ( )i

a sW kT as the average 121 

controllable load for the i-th available customer at skT and mT as the averaging interval for calculating 122 

( )a sW kT . Then, 123 

1
( ) ( )

s

s m

kT
i i

a s a
kT T

m

W kT W t dt
T 

  . (3) 

As soon as reviewing all the available customers for control, the main computer in control center 124 
selects certain number of available customers for load shedding by sending out load shedding 125 
commands through internet to the gateway at customer site. Figure 1 shows the load variation of a 126 
typical chiller starts shedding load to a certain ratio, maintains the load ratio for certain period of 127 
time and restores the load back to the original load before shedding.  It is shown in Figure 1 that a 128 
period of time is required for a chiller to conduct load shedding and load restoration. If the 129 
customer is selected for load shedding, the load that a chiller actually shed is measured by the 130 

gateway and sent back to control center through internet. Denote ( )i

b sW kT as the average load after 131 

load shedding for the i-th available customer and wT as the time interval to wait until the chiller 132 

finishes load shedding. Then,  133 

1

( ) ( ) ( )
iC

i c

a ij ij

j

W t t W t


 . (1) 
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1
( ) ( )

s w m

s w

kT T T
i i

b s a
kT T

m

W kT W t dt
T

 


  . (4) 
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Figure 1. Load variation as a typical chiller conducts load shedding and load restoration. 135 

 136 

With the average loads defined in (3) and (4), the average shed load
i

d sW ( kT ) is defined as  137 

( ) max(( ( ) ( )),0)i i i

d s a s b sW kT W kT W kT  . (5) 

At every time step, the average controllable load for every customer under control, ( )i

aW  , i = 138 

1…N, is measured and sent to control center through the Internet by the gateway installed at 139 
customer’s site. This paper proposes a real-time optimization approach for determining the 140 
combination of load shedding ratios for all customers at every time step through the entire control 141 

interval cT based on the received average controllable load ( )i

aW  , i = 1…N. Denote ( )i  as the 142 

expected load shedding ratio calculated by the main computer in the control center for the i-th 143 
customer. The calculated load shedding ratio ( )i  is the ratio of the expected shed load with respect 144 

to the average controllable load. The proposed optimization approach aims to find the best 145 
combination of load shedding ratio of every central air-conditioning chiller in real time so that the 146 
overall target shed load is individually achieved at every time step. The overall target shed load is 147 
the total amount of load required to shed by the direct control of entire set of central 148 
air-conditioning chillers.  149 

Denote the overall target shed load based on the load forecast as P(·) and the set containing all 150 
available customers for TWDLC as ( )J  . The utility aims to minimize the shed load by TWDLC in 151 

order to minimize utility’s electricity sale loss while satisfy overall and regional target shed load. 152 
Since the required shed load is based on the load forecast, it allows a certain degree of precision 153 
tolerance in response to weather, temperature, control timing, customer conditions, etc. In other 154 
words, the constraint for the calculated shed load being greater than the overall target shed load 155 
allows a certain degree of loosening. With this constraint loosening, more calculation flexibility is 156 
given to the optimization. Fuzzy linear programming is utilized to solve the optimization problem. 157 
The fuzzy linear programming categorized as linear programming with fuzzy resources is designed 158 
as follows. 159 

( ) [0 1] ( )
( ) ( )

( ( ) ( ))
i s s

i s s

i

i s a s
kT , ,i J kT

kT ,i J kT

min kT W kT





 



 . (6) 

subject to     160 

0.1   i skT   1  if  i skT > 0, i ( )sJ kT ; (7) 

and 161 
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( ) ( )

( ) ( ) ( )
i s s

i

i s a s s

kT ,i J kT

kT W kT P kT





 % . (8) 

 162 

The expected shedding ratios ( )i  range between 0 and 1. However, if the calculated ( )i  is too 163 

small, the required shed load at the corresponding customer might be barely greater than the 164 
disturbance, leading to insignificant shedding contribution to the entire load reduction. Even 165 
though some of the calculated shedding ratios are insignificantly small, the control center still needs 166 
to send these ratios one by one to the corresponding gateways at customer sites, leading to 167 
inefficient communication efforts. To avoid obtaining insignificantly small values, a lower bound is 168 
assigned to the shedding ratio. Therefore, the calculated shedding ratio in the optimization is 169 
constrained between 0.1 and 1 as in (7).  The sign “ %” in (8) symbolizes that the inequality is in 170 
essence with fuzziness. The load curtailment due to TWDLC in (8) could be considered as a soft 171 
curtailment because the load shed quantity is allowed to vary within a soft range. The fuzzy 172 

constraint in (8) is characterized by the membership function    defined in Figure 2, where the 173 

tolerance for the fuzzy constraint is characterized using two coefficients  1 2,   [0, 1]. Denote 174 

s( kT ) as the calculated shed load, i.e.,  175 

( ) ( )

( ) ( )
i s s

i

s i s a s

kT ,i J kT

kT  = kT W ( kT )


 


 . (9) 

The fuzzy constraint characterized by the membership function    in Figure 2 is defined as:  176 

2

1

1 2

1 2

1

if  ( ) ( ) ( )

( ) ( ) ( )
) if  ( ) ( ) ( ) ( ) ( )

( ) ( )

0  if  ( ) ( ) ( )

s s

s s

s s s s

s

s s

1,                           kT 1+ P kT

kT - 1- P kT
( kT = ,  1- P kT kT 1+ P kT

P kT

,                         kT 1- P kT

 

 
    

 

 

 



 


 

(  (10) 

( ( ))sη kT

1(1 ) ( )sP kT ( )skT

1

0

2(1 ) ( )sP kT
 177 

Figure 2. Membership function characterizing the fuzzy constraint in (8). 178 

3. Determination of Candidates for TWDLC 179 

The monitoring and control of every chiller for the main computer is through the gateway 180 
installed at every customer’s location. To ease the computational and communication effort, the main 181 
computer determines the load to be shed and sends the shedding control commands customer by 182 
customer rather than chiller by chiller. The customer determination for shedding at every time step is 183 
to fulfill the target shedding capacity P(·) and level off the contribution to the entire load shedding for 184 
every customer. To measure the shedding contribution of the i-th customer, a coefficient called 185 
shedding contribution ratio, denoted as ( )i̂  , is defined as a ratio of the average load actually shed 186 

with respect to the average controllable load: 187 
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( )
( )

( )

i

d s

i s i

a s

W kT
ˆ kT

W kT
  . (11) 

The main computer records the accumulated time under control for every customer and this 188 
accumulated times is used as one of the reference indices when determining customers for shedding 189 
at each time step.  For the i-th customer, denote the effective accumulated time under control and off 190 

control up to the k-th time step as ( )uc
i skT  and ( ),oc

i skT  respectively. The effective accumulated 191 

times ( )uc
i skT  and ( )oc

i skT are calculated by practically adding up the time intervals under control 192 

and off control for the i-th customer. The shedding contribution ratios are also taken into account. For 193 
instance, the customers with lower shedding contribution ratios lose cooling comfort less than those 194 
with high shedding contribution ratios. The effective increments of the accumulated times under 195 
control are considered to be shorter than the ones for the customer with high shedding contribution 196 
ratios. An adjustment scheme for the accumulated time under control and off control is proposed 197 
according to the load shedding control experience and customers’ response.  Customers with i

ˆ ( ) 198 

> 0.75 require no adjustment. But for customers with i
ˆ ( )   0.15, their equivalent shedding intervals 199 

are discounted to 1/3 since less cooling comfort loss was brought by TWDLC during this shedding 200 
control period.  For customers with 0.15 < i

ˆ ( )   0.75, their equivalent shedding intervals are 201 

linearly adjusted between 1 and 1/3. Let the adjustment coefficient for the i-th customer be i ( )  , 202 

i ( )  is defined as: 203 

1
                           if 0 ( ) 0.15

3

1 10
( ) ( ( ) 0.15)  if 0.15 ( ) 0.75  

3 9

1                             if ( ) 0.75 or ( ) 0

i

ˆ, ;

ˆ ˆ, ;

ˆ ˆ, .



  

 


  




       


   



 (12) 

Let  i ss kT  {0,1} be the control status of the i-th customer at the k-th sampling interval.  i ss kT = 1 if 204 

the i-th customer is under control while  i ss kT = 0 if the i-th customer is uncontrolled or restored 205 

from being controlled. ( )uc
i   and ( )oc

i  are effectively adjusted with reference to ( )i   as follows:  206 

( ) ( (( 1) ) ( ) ( ) ;uc uc
i s i s i s i s s skT k T s kT kT T T         (13) 

( ) ( (( 1) )  ( )  (1 ( ) 1/ 3) ) ( );oc oc
i s i s i s i s s s i skT k T s kT kT T T s kT            (14) 

 i = 1...N and k = 1...M, where (0) 0uc
i   and (0)oc

i  0.  207 

Note that is ( ) in both (13) and (14) denotes the complement of  is  . ( )uc
i   and ( )oc

i  are reset 208 

to zero as the control status changes. As shown in (13) and (14), customers with larger shedding 209 

contribution ratios in the previous time step have effectively more accumulated ( )uc
i   and vice 210 

versa. The accumulated time under control needs an upper limit in order not to affect too much 211 

cooling comfort due to load shedding. For the i-th customer, let uc
iT be the maximum time allowed 212 

for continuous shedding control, then 213 

( ) , 1... , 1... .uc uc
i s ikT T i N k M      (15) 

If the customer is off control, it means that the customer is restored from the previous shedding 214 

control. It takes time for the building to regain cooling comfort before it is controlled again. Let oc
iT  215 

be the least time the i-th customer needs to remain in off-control status, then 216 

( )  1... , 1... .oc oc
i s ikT T i N k M      (16) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2018                   doi:10.20944/preprints201801.0283.v1

Peer-reviewed version available at Energies 2018, 11, 492; doi:10.3390/en11030492

http://dx.doi.org/10.20944/preprints201801.0283.v1
http://dx.doi.org/10.3390/en11030492


 7 of 14 

 

Every i-th customer becomes a candidate for load shedding if both constraints in (15) and (16) 217 
are satisfied. On the contrary, if the constraint in either (15) or (16) is violated, the i-th customer is 218 
removed from the candidate list for load shedding in the next time step. Therefore, 219 

uc oc

i i(( ) ) 0  if  ( )  or ( )uc oc

i s s i s is k 1 T , kT T kT T     . (17) 

Every customer’s shedding contribution ratio is accumulated and recorded in the main computer 220 

at the control center. Denote  iΩ skT  and ( )skT as the accumulated shedding contribution ratio 221 

and its average value, respectively, for the i-th customer building at the k-th time step, then 222 

( ) ( ) ( )
i s i s s i s

ˆkT kT T kT    ; (18) 

1

1
( ) ( )

N

s i s

i

kT kT
N 

   ; (19) 

where the initial value  iΩ 0 = 0.  As the TWDLC is conducted day by day, the load shedding 223 

control fairness needs to be watched because it is a long-term change in cooling comforts for 224 
customers. To prevent some of the customers from being controlled too often and too long and thus 225 
biasing the fairness, every customer’s accumulated shedding contribution compared to the average 226 
value among customers is monitored at the main computer. For the i-th customer, if227 

   Ω Ωi s i skT kT , the customer can be removed from the candidate list for load shedding control in 228 

the next time step. Therefore, 229 

(( 1) ) 0 if  ( ) ( )i s i s ss k T ,  kT kT     . (20) 

Conversely, if    Ω Ωi s i skT kT , it is expected that more contribution to the TWDLC is required and 230 

the customer is taken as a candidate for load shedding. Let J((k+1)Ts) be the set of candidates available 231 
for load shedding at the (k+1)-th time step based on the records calculated up to the k-th time step. 232 
Referring to (15), (16) and (20), J((k+1)Ts) is defined as: 233 

1 { {1 }, 1 1 }uc uc oc oc

s i s i i s i i s i sJ(( k )T ) i i ...N ( kT ) T , ( kT ) T , ( kT ) ( kT ),k ...( M )          . (21) 

Referring to (6), the set of decision variables for the optimization, J(), is defined as in (21). 234 

4. Fuzzy Linear Programming 235 

The optimization in (6) with the crisp constraint (7) and the fuzzy constraint (8) that is 236 
characterized by the membership function in (10), can be solved by first solving the following two 237 
standard linear programming problems: 238 

s

( ) [0 1] ( )
( ) ( )

2

( ) ( )

( ) ( )

0.1 ( ) 1  if ( 0 ( )

( ) ( ) (1 ) ( )

i s s
i s

i s s

i

i s a s
kT , ,i J kT

kT ,i J kT

i s i s s

i

i s a s s

kT ,i J kT

min  kT W kT

subject to    kT ,   kT ) > , i J kT

kT W kT P kT








 

 

 









  

  





 

(22) 

s

( ) [0 1] ( )
( ) ( )

1

( ) ( )

( ) ( )

0.1 ( ) 1  if ( 0 ( )

( ) ( ) (1 ) ( )

i s s
i s

i s s

i

i s a s
kT , ,i J kT

kT ,i J kT

i s i s s

i

i s a s s

kT ,i J kT

min  kT W kT

subject to    kT ,   kT ) > , i J kT

kT W kT P kT








 

 

 









  

  





 

(23) 
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where
1 and

2 are defined in the membership function in (8). Assume that the optimal solution of 239 

(19) and (20) are 0

i s( kT ) and 1( )i skT , respectively. Denote the shed load corresponding to 0 ( )i skT240 

and 1( )i skT as 0 ( )skT  and 1( )skT , respectively, i.e., 241 

0

0 0

( ) ( )

( ) ( ) ( )

i s s

i

s i s a s

kT ,i J kT

kT  = kT W kT


 


 ; (24) 

1

1 1

( ) ( )

( ) ( ) ( )

i s s

i

s i s a s

kT ,i J kT

kT  = kT W kT


 


 . (25) 

The degree of optimality is characterized by the following membership function
0 ( )  shown in 242 

Figure 3 based on 
0

s( kT )  and 
1

s( kT )  as following : 243 

1

0
1 0

0 0 1

0

1 ( ( )

( ) - ( )
( )) ( ) ( ) ( )

( ) - ( )

0 ( ) ( );

s s

s s
s s s s

s s

s s

,             if  kT ) kT ;

kT kT
( kT = ,   if  kT kT kT ;

kT kT

,            if  kT kT

 

   

 

    
 

   

 (26) 

With the fuzzy constraint being transformed into the membership function  in (10) and the 244 
objective function associated with the fuzzy constraint being transformed into the membership 245 
function

0 in (26), the optimization in (6)-(8) is solved using a max-min approach as follows: 246 

0 ( ( ))skT 

( )skT

1

0 0 ( )skT1( )skT
 247 

Figure 3.  Membership function characterizing the degree of optimality. 248 
 249 

( ) [0 1] ( )
( ( )) ( ( )))

0.1 ( ) 1 if ( ) 0 ( )

i s s

0 s s
kT , ,i J kT

i s i s s

max min (kT , kT

subject to    T ,    kT  > , i J kT .


   

 

 



    

(27) 

The constrained max-min optimization problem in (27) can be implemented as a standard linear 250 
programming problem: 251 

[0 1], ( ) [0 1] ( )
 

i s s, kT , ,i J kT
max

 


  
 (28) 

0.1 ( ) 1  if ( ) 0i s i ssubject to    kT ,  kT  >    ; (29) 

( ( ))0 skT   ; (30) 

( ( ))skT    (31) 

where ( ) [0 1] ( )i s skT , , i J kT .     252 

Substituting (26) into (30), the constraint in (30) is equivalent to: 253 
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0 1

( ) [0 1] ( )

( ) ( ) (1 ( ) ( )
i s s

i

i s a s s s

kT , ,i J kT

kT W kT ) kT kT


  
 

    
 

(32) 

Similarly, substituting (10) into (31), the constraint in (31) is equivalent to: 254 

1 1 2

( ) [0 1] ( )

( ) ( ) (1 ) ( ) ( ) ( )
i s s

i

i s a s s s

kT , ,i J kT

kT W kT P kT P kT


    
 

    . 
(33) 

Note that the constraint in (29) is not in a typical form of constraint for linear programming. 255 
Define the surplus decision variables i(kTs)  {0, 1} i  J(kTs) and denote Q as a large constant, i.e., Q 256 
>> 1. The constraint in (29) can be restated as the constraints as follows: 257 

( ) ( )i s i skT kT Q   , (34) 

0.1 ( ) ( )i s i skT kT ,   ( ) {0,1}  ( )i s skT , i J kT .    (35) 

Therefore, the fuzzy linear programming in (6)-(8) is solved based on the equivalent linear 258 
programming problem in (28) with constraints in (32)-(35).   259 

5. Computer Simulation 260 

A set of 30 customers are selected to test the effectiveness and efficiency of the load aggregation 261 
and the proposed TWDLC algorithm using fuzzy linear programming. The control interval was set 262 
as a period of 5 consecutive days, 10:00 to 17:00 every day. The sampling interval sT  for the main 263 

computer retrieving every customer’s controllable load and conducting load shedding through the 264 
gateway is set as 15 minutes. The sampling time for the gateway measuring the controllable load of 265 
every chiller was is as 1 minute. The averaging interval mT in (3) and the waiting interval wT in (4) for 266 

the gateway to calculate the average controllable load before and after every sampling time are both 267 
set as 3 minutes. The capacity, time constraints and the maximum controllable load during the 5 day 268 
control period are listed in Table 1.  269 

 270 
TABLE 1. 271 

List of capacity, maximum load within control interval and time constraints of customers under control 272 

i 
Capacity 

(kW) 

Max( ( )i

d sW kT ) 

(kW) 

uc

jT  

(min) 

oc

jT  

(min) 
i 

Capacity 

(kW) 

Max( ( )i

d sW kT ) 

(kW) 

uc

jT  

(min) 

oc

jT  

(min) 

1 250 109 15 30 16 1300 727 15 16 

2 350 219 30 15 17 1380 846 30 17 

3 750 296 30 15 18 1550 1018 30 18 

4 800 466 30 15 19 2000 1083 15 19 

5 1000 585 30 15 20 2400 1198 30 20 

6 1150 727 30 15 21 320 193 15 21 

7 1350 772 30 15 22 530 253 30 22 

8 1430 930 30 15 23 800 461 30 23 

9 1800 1093 30 30 24 930 510 30 24 

10 2100 1194 30 15 25 1100 669 30 25 

11 250 140 30 15 26 1320 740 30 26 

12 500 237 15 30 27 1400 905 30 27 

13 800 347 15 30 28 1720 1045 30 28 

14 800 494 30 30 29 2100 1131 30 29 

15 1100 698 30 15 30 2400 1427 30 30 

 273 
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Recall that 
1  and 

2  in association with the membership function     in (10) characterize 274 

the fuzzy constraint in (8) that the calculated load shed greater than or equal to the target load P() to 275 
a certain degree of precision tolerance. Both coefficients 

1  and 
2  could be either constants or 276 

time-varying functions since the degree of precision tolerance for the fuzzy constraint in (8) can vary 277 
with the temperature, load in regional power system, or time of a day, etc. In this paper, the 278 
variations of 

1  and 
2  are both set as time-varying functions, as shown in Figures 4 and 5, 279 

respectively. Using the proposed optimal real-time scheduling approach based on fuzzy linear 280 

programming, the calculated load shed,  skT , is shown in Figure 6. The upper and lower limits 281 

for the fuzzy constraints in (8), i.e.,    1 s1 P kT  and    2 s1 P kT , as well as the target load 282 

expected to shed  sP kT  are also compared with  skT  in Figure 6. It is shown in Figure 6 that 283 

the calculated load shed  skT  matches the target load  sP kT  well in response to the variations 284 

in target load tolerance. The calculated shedding ratios and the corresponding controllable load of 285 
the customer with the largest capacity are shown in Figures 7(a) and 7(b), respectively.   286 

 287 
Figure 4. The variation of coefficient  288 

 289 
Figure 5. The variation of coefficient  290 
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 292 
Figure 6. Comparison of calculated load shed (kTs), the target load required to shed P(kTs),  the upper and 293 

lower bound of target (1-1)P(kTs) and  (1+2)P(kTs). 294 
 295 

 296 
(a) 297 

 298 
(b) 299 

Figure 7. (a) Variation of expected shedding contribution ratios for the customer with the largest capacity. (b) 300 
Profile of controllable load for the customer with the largest capacity. 301 
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Both the number of shedding times and shedding ratio distributions vary among customers. In 302 
order to show the effectiveness of the filtering scheme defined in (20), define the standard deviation 303 
of the accumulated shedding contribution ratios at the k-th time step defined as: 304 

( ) ( ( ) ( ))
N

2

s i s s

i 1

1
kT kT kT

N




    (33) 

where the accumulated shedding contribution ratio of the i-th customer  i   and the average 305 

accumulated shedding contribution ratio ( )  are shown in (18) and (19), respectively. The variation 306 

profiles of ( )   with and without the filtering scheme in (20) are both shown in Figures 8(a) and 307 

8(b), respectively. Figure 8(a) shows that the standard deviation of accumulated shedding 308 
contribution ratios varies within a limited range as time goes on if the filtering scheme in (20) is 309 
applied. This shows that the filtering scheme levels off every customer’s contribution to the load 310 
shedding and achieves load shedding fairness. Conversely, if the filtering scheme in (20) is removed 311 
from the customer selection process, the standard deviation of the accumulated shedding 312 
contribution ratios increased drastically with time.  313 

 314 
(a) 315 

 316 
(b) 317 

Figure 8. Variation of standard deviation of shedding contribution ratios (a) with (b) without filtering scheme in 318 
(20). 319 
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6. Conclusion 321 

A real-time TWDLC optimization scheme is proposed as an effective demand response 322 
approach by scheduling the direct load control of the central air-conditioning chillers in wide area. 323 
The proposed TWDLC works well through the broadband network with gateway installed at the site 324 
of every customer under control. Fuzzy linear programming is utilized for optimization providing 325 
more optimization flexibility by allowing a precision tolerance for the shed load constraints. It is 326 
shown in simulation that the proposed TWDLC scheme is computationally efficient and effective, 327 
hence feasible for real-time optimization and time-varying precision tolerance in response to 328 
variable target load profile. 329 

For future work, the degree of precision tolerance for the fuzzy constraints can be linked with 330 
weather condition, regional load, time of a day, etc., depending on the application scenario. Delicate 331 
modeling can be designed to automatically adjust the precision tolerance in response to environment 332 
changes. Type-2 membership functions can also be used to define precision tolerance of constraints 333 
for future work. 334 
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