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10 Abstract: A real-time two-way direct load control (TWDLC) of central air-conditioning chillers in
11 wide area is proposed to provide demand response. The proposed TWDLC scheme is designed to
12 optimize the load shedding ratio of every customer under control to ensure the target load to be
13 shed is met at every scheduling period. In order to overcome the load reduction uncertainties of
14 TWDLC, an innovative solution is proposed by applying a certain degree of loosening on the
15 constraint of the actual shed load. Fuzzy linear programming is utilized to solve the optimization
16 problem with fuzzy constraints. The proposed fuzzy linear programming problem is solved by
17 delicately transforming it into a regular liner programming problem. A selection scheme used to
18 obtain the feasible candidates set for load shedding at every sampling interval of TWDLC is also
19 designed along with the fuzzy linear programming.
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21 condition, demand response.

22

23  1.Introduction

24 The rapid development of smart grid [1-3] integrated with advanced metering infrastructure
25 (AMI) and two-way communication capability offers a new opportunity for utility company to
26  revolutionize the existing electrical systems. The emergence of these cyber-infrastructures allows
27  utility to exploit demand side capability of electricity users in order to achieve certain grid-level
28  operation objectives such as the reduction of peak demand and forced outage [4]. Utilities tend to
29  deploy different demand response (DR) programs to fully realize the benefits of smart grid. Existing
30 DR programs are categorized into two types, namely the price-based and incentive-based schemes
31  [5-6]. For latter schemes, electricity users are incentivized by utility or curtail service provider (CSP)
32 for being able to reduce their energy consumption for a certain periods of time upon request.

33 Direct load control (DLC) is one common incentive-based DR programs used by utility or CSP
34 to reshape load profile by scheduling the operation cycles of customer’s high-power appliances.
35  Central air conditioning chillers of industrial and commercial customers are the excellent candidates
36  to achieve a cost effective DLC because the potential load reduction capacity delivered can reach up
37  to several hundred kilowatts. Given the impressive strides made in metering and intelligent control
38  technologies in facilitating a continuous bidirectional communication between the utility or CSP and
39 its customers [7-8], a two-way direct load control (TWDLC) scheme for central chillers can further be
40  envisioned as an emergency DR program to deliver the real-time load shedding effect. In particular,
41  the utility or CSP can transmit the load shedding signals to its controlled customers while
42  monitoring the load shedding results continuously via the Internet. The TWDLC of central chillers
43  can even serve as an ancillary service if a huge amount of air-conditioning loads can be aggregated,
44 monitored and managed in smart grid [9-10].
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45 Computational intelligence approach has gained popularity in recent years to solve complex
46  DLC scheduling problems. An iterative deepening search strategy was incorporated into genetic
47  algorithm [11] and genetic programming [12] to produce a DLC schedule of air conditioning load
48  capable of meeting the target load shed profile with minimum cost. A DLC scheduling problem with
49  multiobjective framework was solved from different perspectives using an interactive evolutionary
50  algorithm [13], [14]. An optimal DLC dispatch of air-conditioning loads was proposed in [15] using
51  an imperialist competitive algorithm to minimize the total deviation between the actual and target
52 load shed profiles. A new DLC model for air-conditioning loads was coordinated along with unit
53  commitment in [16] using distributed imperialist competitive algorithm to minimize system
54 operational cost. Differential evolution was used in [17] to solve a DLC model aiming to minimize
55 the operational cost of a microgrid with high penetration of solar power and air conditioning loads.
56 A hierarchical DLC framework for large-scale air conditioning load dispatch was proposed in [18]
57  using differential evolution algorithm to minimize the operational cost. With a two-way
58  communication platform, a real-time load shedding of central air conditioning chillers was
59  optimized with linear programming [19]. By considering the uncertainties of electricity prices and
60  ambient temperature change, a DLC of air-conditioning loads was solved in [20] by mixed-integer
61 linear programming to enhance wind power utilization level and minimize system operational cost.
62 By considering the transmission system reliability, an optimal DLC schedule of air conditioning
63 loads was obtained in [21] by a fuzzy DR to attain a tradeoff between peak load and system
64  operation cost reduction. In [22], a nonlinear programming approach was formulated by considering
65  DLC as a part of integrated resource planning to minimize the investment cost of microgrid. A DLC
66  union was formed for the retailer and residential users in [23] using cooperative game to minimize
67  the regulation cost of retailer by providing users an indirect access into balance market to improve
68  market efficiency. A model estimator controller was designed in [24] using Markov chain model to
69  coordinate aggregation of air-conditioning loads in order to address energy imbalance issue in
70  power systems. Both of the distributed load shedding and micro-generator dispatching was
71 coordinated in [25] using a probabilistic method to provide an emergency DR. A novel DLC scheme
72 was proposed using queuing system model to control the air-conditioning loads without comprising
73 users’ cooling comfort [26].

74 Most existing DLC scheduling strategies have not, to the authors’ best knowledge, considered
75  the uncertainties of demand reduction provided by air-conditioning loads. The previous works
76 assumed the target load shed to be met are fixed and crisp optimization constraints were formulated
77  to guarantee the actual load shed is not less than the predefined target. In practical scenarios, the
78  load reduction of air-conditioners in wide area vary with time of day, ambient temperature, number
79  of people in the cooling environment, communication network signal strength, etc. [27]. The
80  optimality of DLC schedules produced without taking these uncertainties into account is hence
81  questionable. The main contribution of this paper is to propose an innovative approach based on
82  fuzzy linear programming [30] allowing more flexibility in solving the optimization of TWDLC for
83  central air conditioning systems. Particularly, a fuzzy inference system is designed to model the
84  uncertainties of load reduction by allowing a certain degree of constraint loosening to obtain an
85  optimal TWDLC schedule of central air conditioning systems. With these optimization flexibilities, a
86  soft curtailment for the TWDLC of central air conditioning systems is achieved. With the proposed
87  approach, a tolerance range of load reduction uncertainty is provided to the aggregators as they
88  negotiate DR capacity and purchase prices with CSPs [28-29].

89 This paper is structured as follows. The problem to be solved for TWDLC of central air
90  conditioning chillers is mathematically defined in Section 2. Section 3 describes the optimization
91  approach determining the best set of candidates for control in every sampling interval. The
92  implementation of fuzzy linear programming for TWDLC is described in Section 4. Computer
93  simulations verifying the performance of the proposed scheduling optimization approach are shown
94 inSection5. Conclusions are made in Section 6.

95 2. Two-way Direct Load Control of Central Chiller
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96 Assume that N customers are recruited by utility company or CSP to participate the TWDLC
97  program and C,chillers at every i-th customers are under control, i = 1...N. An optimal scheduling

98  scheme for real time TWDLC is designed in this paper. Denote 4 (t) as the running status of the j-th
99  central chiller unit at the i-th customer’s building at time ¢, where 4, (t) = 1 if the j-th central chiller
100  belonging to the i-th customer is turned on at ¢, and 4; (t) = 0, otherwise, j=1...C;, i=1...N. The

101  load shedding for a centrifugal compressor in the chiller is technically achieved by partially reducing
102  the load instead of turning it off. Chiller energy efficiency is measured using the coefficient of
103  performance (COP), which varies with chiller’s load ratio. The COP drops drastically if load ratio is
104  less than 50% for most chillers. As chiller’s load is partially reduced for DLC, it needs to be
105  assigned a lower bound of load ratio preventing chiller from having low COP. Denote Wijf and
106 W (t)as chiller’s capacity and the load measured at time ¢, respectively, and v; as the lower bound of
107  the load ratio for the j-th chiller of the i-th customer. The controllable load for the i-th customer,
108  denoted as W,(+), is then defined as the total controllable load among all chillers belonging to that

109  customer, i.e.,
c,
W, (t) = > A (W (1) . )
=

110 where the controllable load for the j-th chiller of the i-th customer W, (t)is defined as:

) —v. Wi W) = v W
Vvija (t) — Wu (t) VUVVU ' If WU (t) — VIJWIJ ’ (2)
0, otherwise.
111 The utility company or CSP installs the gateway and chiller control network inside the building

112 of customers willing to participate in the curtailed service program or similar demand response
113 programs. Once the gateway receives the shedding command through the Internet over the
114 broadband network from the control center at time ¢, it calculates the required load reduction for
115  every central chiller and activates the load shedding through the chiller control network. Let the
116  control interval for the entire TWDLC beT,. If the sampling interval for the control center to
117  conduct TWDLC is defined asT,, the number of evaluations for TWDLC through an entire control
118  interval is defined asM =T_/T,.

119 The main computer in control center reviews available customers for load control at the k-th
120  sampling interval KT, k = 1...M. As long as the customer is available for control, the average
121  controllable load is measured at every sampling interval. Denote W, (KT,) as the average

122 controllable load for the i-th available customer at kT, and T, as the averaging interval for calculating

123 W,(KT,) . Then,
—i 1 kT, i
W (kT,) = T jkTs PUACLY @3)

124 As soon as reviewing all the available customers for control, the main computer in control center
125  selects certain number of available customers for load shedding by sending out load shedding
126  commands through internet to the gateway at customer site. Figure 1 shows the load variation of a
127  typical chiller starts shedding load to a certain ratio, maintains the load ratio for certain period of
128  time and restores the load back to the original load before shedding. It is shown in Figure 1 that a
129  period of time is required for a chiller to conduct load shedding and load restoration. If the
130  customer is selected for load shedding, the load that a chiller actually shed is measured by the
131  gateway and sent back to control center through internet. Denote W, (KT,) as the average load after
132  load shedding for the i-th available customer and T, as the time interval to wait until the chiller

133 finishes load shedding. Then,
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Figure 1. Load variation as a typical chiller conducts load shedding and load restoration.
With the average loads defined in (3) and (4), the average shed load W, (KT, ) is defined as
V\_/dI (kTs) = max((\/\_/aI (kTs) _V\_/bl (kTs))IO) . (5)

At every time step, the average controllable load for every customer under control, W(),i=

1...N, is measured and sent to control center through the Internet by the gateway installed at
customer’s site. This paper proposes a real-time optimization approach for determining the
combination of load shedding ratios for all customers at every time step through the entire control
interval T, based on the received average controllable load Vva' (), i = 1...N. Denote 7;(-) as the

expected load shedding ratio calculated by the main computer in the control center for the i-th
customer. The calculated load shedding ratio 77 (-) is the ratio of the expected shed load with respect

to the average controllable load. The proposed optimization approach aims to find the best
combination of load shedding ratio of every central air-conditioning chiller in real time so that the
overall target shed load is individually achieved at every time step. The overall target shed load is
the total amount of load required to shed by the direct control of entire set of central
air-conditioning chillers.

Denote the overall target shed load based on the load forecast as P(-) and the set containing all
available customers for TWDLC as J(-) . The utility aims to minimize the shed load by TWDLC in

order to minimize utility’s electricity sale loss while satisfy overall and regional target shed load.
Since the required shed load is based on the load forecast, it allows a certain degree of precision
tolerance in response to weather, temperature, control timing, customer conditions, etc. In other
words, the constraint for the calculated shed load being greater than the overall target shed load
allows a certain degree of loosening. With this constraint loosening, more calculation flexibility is
given to the optimization. Fuzzy linear programming is utilized to solve the optimization problem.
The fuzzy linear programming categorized as linear programming with fuzzy resources is designed

as follows.
[ C(KTOW, (KT,))
m(kTs)er[TcH]r,]ieJ(kn)(,7i (kTs)Zie:J(kTs)n'( JWa (KT.)) ©)
subject to
0.1< 7, (kT,) <1 if 7 (KT,)>0, ie J(KT,); 7)
and

doi:10.20944/preprints201801.0283.v1
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Z 77| (kTs )V\_Ial (kTs) %P(kTs) * (8)

7 (KTg ) ied (KTg)

The expected shedding ratios 7;(-) range between 0 and 1. However, if the calculated 7 (") is too

small, the required shed load at the corresponding customer might be barely greater than the
disturbance, leading to insignificant shedding contribution to the entire load reduction. Even
though some of the calculated shedding ratios are insignificantly small, the control center still needs
to send these ratios one by one to the corresponding gateways at customer sites, leading to
inefficient communication efforts. To avoid obtaining insignificantly small values, a lower bound is
assigned to the shedding ratio. Therefore, the calculated shedding ratio in the optimization is
constrained between 0.1 and 1 as in (7). The sign “ %” in (8) symbolizes that the inequality is in
essence with fuzziness. The load curtailment due to TWDLC in (8) could be considered as a soft
curtailment because the load shed quantity is allowed to vary within a soft range. The fuzzy
constraint in (8) is characterized by the membership function x(-) defined in Figure 2, where the

tolerance for the fuzzy constraint is characterized using two coefficients v,, v, e [0, 1]. Denote
¥(KT, ) as the calculated shed load, i.e.,

T(kTs) = z ﬂi (kTs )V\_Ial ( kTs ) ° (9)

7 (KTg) ied (KTy)

The fuzzy constraint characterized by the membership function x(-) in Figure 2 is defined as:

1, if ¥(KT,)> (1+v,)P(KT,)
Hln(KT, = (U, +0,)P(KT,) i (L1-0)P(KT,) < ¥(KT,) < (L+0,) P(KT,) (10)
0, if P(kT,) < (1-v,)P(KT,)
A u(nkT)
N |
[
[
[
[
[
|
|
|
|
0 1 >
@-u)PKT,) (L+0,)P(KT,) #(KT,)

Figure 2. Membership function characterizing the fuzzy constraint in (8).

3. Determination of Candidates for TWDLC

The monitoring and control of every chiller for the main computer is through the gateway
installed at every customer’s location. To ease the computational and communication effort, the main
computer determines the load to be shed and sends the shedding control commands customer by
customer rather than chiller by chiller. The customer determination for shedding at every time step is
to fulfill the target shedding capacity P(-) and level off the contribution to the entire load shedding for
every customer. To measure the shedding contribution of the i-th customer, a coefficient called
shedding contribution ratio, denoted as 7;("), is defined as a ratio of the average load actually shed

with respect to the average controllable load:

d0i:10.20944/preprints201801.0283.v1
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. W, (KT,)
(KT,) = =—=
7, (KT) W (KT (11)
188 The main computer records the accumulated time under control for every customer and this

189  accumulated times is used as one of the reference indices when determining customers for shedding
190 at each time step. For the i-th customer, denote the effective accumulated time under control and off

191  control up to the k-th time step as z{°(kT,) and 7°(KT,), respectively. The effective accumulated
192 times 77°(KT,) and 7 °(KT,) are calculated by practically adding up the time intervals under control

193  and off control for the i-th customer. The shedding contribution ratios are also taken into account. For
194  instance, the customers with lower shedding contribution ratios lose cooling comfort less than those
195  with high shedding contribution ratios. The effective increments of the accumulated times under
196  control are considered to be shorter than the ones for the customer with high shedding contribution
197  ratios. An adjustment scheme for the accumulated time under control and off control is proposed
198  according to the load shedding control experience and customers’ response. Customers with 7(-)
199  >0.75 require no adjustment. But for customers with 7,(-) < 0.15, their equivalent shedding intervals

200  are discounted to 1/3 since less cooling comfort loss was brought by TWDLC during this shedding
201  control period. For customers with 0.15 <7(-) < 0.75, their equivalent shedding intervals are

202 linearly adjusted between 1 and 1/3. Let the adjustment coefficient for the i-th customer be &(-),
203  &(-)is defined as:

%, if 0< () <0.15;
1 10,. . .

£ =15+ (70)-0.15), if 015 </7() <0.75; (12)
1, if () > 0.75 or () =0.

204 Lets; (KT,) e {0,1} be the control status of the i-th customer at the k-th sampling interval. s, (KT,)=1 if
205  the i-th customer is under control while s, (kT,)= 0 if the i-th customer is uncontrolled or restored

206  from being controlled. 7;°() and z°(") are effectively adjusted with reference to & (-) as follows:

z_iuc (kTs) = (Tiuc ((k _1)Ts) +5 (kTs) x ‘fl (kTs _Ts) xTs; (13)

7o (KTo) = (7 (K —DTg) + S (KTg) x (1-& (KT —Tg) +1/3) xTg) x5 (KT,); (14)

207 Vvi=1..Nand k=1..M, where 7°(0)=0 and 7°(0)=0.

208 Note that §(-)in both (13) and (14) denotes the complement of s;(+). 7°(:) and 7*(:) are reset
209  to zero as the control status changes. As shown in (13) and (14), customers with larger shedding
210 contribution ratios in the previous time step have effectively more accumulated 7;°() and vice
211  versa. The accumulated time under control needs an upper limit in order not to affect too much
212 cooling comfort due to load shedding. For the i-th customer, let T;" be the maximum time allowed
213  for continuous shedding control, then

o (KT) <T*,Vi=1..N,k =1..M. (15)

214 1If the customer is off control, it means that the customer is restored from the previous shedding
215  control. It takes time for the building to regain cooling comfort before it is controlled again. Let T,

216  De the least time the i-th customer needs to remain in off-control status, then

2 (KT,) 2T Vi=1..N,k =1..M, (16)
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217 Every i-th customer becomes a candidate for load shedding if both constraints in (15) and (16)
218 are satisfied. On the contrary, if the constraint in either (15) or (16) is violated, the i-th customer is
219  removed from the candidate list for load shedding in the next time step. Therefore,

S, (k+DT,) =0, if 7;“(KT,) >T.“ or 77 (kT,) <T,”. (17)
220 Every customer’s shedding contribution ratio is accumulated and recorded in the main computer

221  at the control center. Denote €, (kT,) and Q(KT,) as the accumulated shedding contribution ratio

222  and its average value, respectively, for the i-th customer building at the k-th time step, then

Q,(KT,) = (KT, -T,) +7,(KT,); (18)

BT =43 0, (KT,) (19

223 where the initial value ©(0)=0. As the TWDLC is conducted day by day, the load shedding

224 control fairness needs to be watched because it is a long-term change in cooling comforts for
225  customers. To prevent some of the customers from being controlled too often and too long and thus
226  biasing the fairness, every customer’s accumulated shedding contribution compared to the average
227  value among customers is monitored at the main computer. For the i-th customer, if
228 O, (KT,)=Q (KT,), the customer can be removed from the candidate list for load shedding control in

229  the next time step. Therefore,
s,(K+D)T,) =0, if Q,(KT,)>Q(KT,). (20)

230  Conversely, if Q, (KT, )< Q; (KT,), it is expected that more contribution to the TWDLC is required and
231  the customer is taken as a candidate for load shedding. Let J((k+1)Ts) be the set of candidates available

232  for load shedding at the (k+1)-th time step based on the records calculated up to the k-th time step.
233  Referring to (15), (16) and (20), J((k+1)Ts) is defined as:

J((k+1)T,) :{i| i e{l.N}, 2 (KT,) <T*,z%(KT, ) > T, (KT, ) <Q,(KT, ),k =1...(M —-1)}. (21)
234 Referring to (6), the set of decision variables for the optimization, (-), is defined as in (21).

235 4. Fuzzy Linear Programming

236 The optimization in (6) with the crisp constraint (7) and the fuzzy constraint (8) that is
237  characterized by the membership function in (10), can be solved by first solving the following two
238  standard linear programming problems:

min (KTOW (KT
7 (KT, )e[01]ied (KT,) ”i(kTs);J(kTs)n'( S) a( S)

subjectto  0.1<n,(KT,) <1, if 7 (KT,)>0,ieJ(KT,) (22)

2 m(KTOW, (KT,) = (L+0,)P(KT,)

7 (KTg) ied (KT,)

Y. mKTOW(KT,)

7; (KT),ied (KTg)

subjectto  0.1<n,(KT,) <1, if 7 (KT,)>0,ieJ(KT,) (23)

Z 7; (k-l—s)\,\_/a\I (kTs) 2 (1_Ul)P(kTs)

7; (KTs )i (KT;)

min
7 (KT )€[01],i€ (KT;)
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239  wherev, and v, are defined in the membership function in (8). Assume that the optimal solution of
240  (19) and (20) are (KT, ) and ; (KT,) , respectively. Denote the shed load corresponding to 7] (KT,)
241  and7(KT,)as P°(KT,) and ¥*'(KT,), respectively, i.e.,

YOKT) = Y (KTOW, (KT,); (24)
7} (KTy) ied (KTg)

VKT = Y ahKTOW(KT,). (25)
(KT, ).ied (KT,)

242  The degree of optimality is characterized by the following membership function y,(-) shown in
243  Figure 3based on ¥°(kT,) and ¥'(KT,) as following :

1, if (KT, )<Y (KT,);
WO(KT,) - P(KT,)

WOKT,)-PH(KT,)
0, if W(KT,)> WO (KT,);

Ho(m(KT))= if WH(KT,) < W(KT,) < WO (KT,); (26)

244 With the fuzzy constraint being transformed into the membership function x in (10) and the
245  objective function associated with the fuzzy constraint being transformed into the membership
246  function g, in (26), the optimization in (6)-(8) is solved using a max-min approach as follows:

A o)

1
I
I
|
|
|
|
|
|
I
0 l(l|< ) WO, V(i)
YH(kT,) PU(KT,
247 s
248 Figure 3. Membership function characterizing the degree of optimality.
249
i KT.)), KT,
Wi(kTs)ErEg%)yi(eJ(kTs) mln(ﬂo (77( S)) ﬂ(n( S))) (27)
subjectto  0.1<7,(T,) <1, if 7 (kT,)>0,ie J(KT,).
250 The constrained max-min optimization problem in (27) can be implemented as a standard linear

251  programming problem:

ae[o;u.n.(kr{]%u,ieukm “ (28)

subjectto  0.1<7,(kT,) <1, if 7, (kT,)>0; (29)
t(n(KT)) 2 ; (30)

u(n(KT)) = a (B1)

252  where 7,(kT,) €[0,1], i € J(KT,).
253 Substituting (26) into (30), the constraint in (30) is equivalent to:
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7, (KTOW, (KT,) < (1-a )¥° (KT,) + a¥* (KT,) (32)
7; (KTs)e[01],i€d (KT )
Similarly, substituting (10) into (31), the constraint in (31) is equivalent to:
77| (kTs)VVaI (kTs) 2 (1_ U1) P(kTs) + a(Ul + UZ) P(kTs) ) (33)

7; (KT5)e[0/1]i€d (kT )

Note that the constraint in (29) is not in a typical form of constraint for linear programming.
Define the surplus decision variables y(kTs) € {0, 1} i € J(kTs) and denote Q as a large constant, i.e., Q
>> 1. The constraint in (29) can be restated as the constraints as follows:

m(KT) < 7 (KT)=Q, (34)

0.1xy;(KT,) <7 (KT,), 7 (KT,) {0,1}, i € J(KT,). (35)

Therefore, the fuzzy linear programming in (6)-(8) is solved based on the equivalent linear
programming problem in (28) with constraints in (32)-(35).

5. Computer Simulation

A set of 30 customers are selected to test the effectiveness and efficiency of the load aggregation
and the proposed TWDLC algorithm using fuzzy linear programming. The control interval was set
as a period of 5 consecutive days, 10:00 to 17:00 every day. The sampling interval T, for the main
computer retrieving every customer’s controllable load and conducting load shedding through the
gateway is set as 15 minutes. The sampling time for the gateway measuring the controllable load of
every chiller was is as 1 minute. The averaging interval T, in (3) and the waiting interval T, in (4) for
the gateway to calculate the average controllable load before and after every sampling time are both
set as 3 minutes. The capacity, time constraints and the maximum controllable load during the 5 day
control period are listed in Table 1.

TABLE 1.
List of capacity, maximum load within control interval and time constraints of customers under control
Capacity ~Max(W;kt)) T* T . Capacity Max(w;kt)) T;° T
(kW) (kW) (min) (min) | (kW) (kW) (min) (min)

1 250 109 15 30 16 1300 727 15 16
2 350 219 30 15 17 1380 846 30 17
3 750 296 30 15 18 1550 1018 30 18
4 800 466 30 15 19 2000 1083 15 19
5 1000 585 30 15 20 2400 1198 30 20
6 1150 727 30 15 21 320 193 15 21
7 1350 772 30 15 22 530 253 30 22
8 1430 930 30 15 23 800 461 30 23
9 1800 1093 30 30 |24 930 510 30 24
10 2100 1194 30 15 25 1100 669 30 25
11 250 140 30 15 26 1320 740 30 26
12 500 237 15 30 27 1400 905 30 27
13 800 347 15 30 28 1720 1045 30 28
14 800 494 30 30 [29 2100 1131 30 29
15 1100 698 30 15 30 2400 1427 30 30
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Recall that v; and v, in association with the membership function x(-) in (10) characterize
the fuzzy constraint in (8) that the calculated load shed greater than or equal to the target load P(-) to
a certain degree of precision tolerance. Both coefficients v, and v, could be either constants or

time-varying functions since the degree of precision tolerance for the fuzzy constraint in (8) can vary
with the temperature, load in regional power system, or time of a day, etc. In this paper, the
variations of v, and v, are both set as time-varying functions, as shown in Figures 4 and 5,

respectively. Using the proposed optimal real-time scheduling approach based on fuzzy linear
programming, the calculated load shed, ¥ (KT;), is shown in Figure 6. The upper and lower limits

(1-v,)P(KT,) and (1+v,)P(KT,), as well as the target load
expected to shed P(KkT,) are also compared with ¥ (kT,) in Figure 6. It is shown in Figure 6 that

for the fuzzy constraints in (8), i.e,,

the calculated load shed ¥ (kT,) matches the targetload P(KT,) well in response to the variations

in target load tolerance. The calculated shedding ratios and the corresponding controllable load of
the customer with the largest capacity are shown in Figures 7(a) and 7(b), respectively.

Coefficient v1 Setting
0.2 T T T T T T T T T T T T T T

0.181- ]

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

L L [ L [ L [ [ L [ L [ L L [ L [ L [

10 12 14 1610 12 14 1610 12 14 1610 12 14 1610 12 14 16
1st Day 2nd Day 3rd Day 4th Day 5th Day
Time
Figure 4. The variation of coefficient v,.
Coefficient v2 Setting
02 T 8 T 8 8 T 8 8 8 T 8 T T [ 8 T [ 8 T
0.18 B
0.16 -
0.14-
0.12 V\l
0.1r-
0.08
0.06 -
0.04 *
0.02- *
0 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
10 12 14 1610 12 14 1610 12 14 1610 12 14 1610 12 14 16
1st Day 2nd Day 3rd Day 4th Day 5th Day
Time

Figure 5. The variation of coefficient v..
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293 Figure 6. Comparison of calculated load shed ¥(kTs), the target load required to shed P(kTs), the upper and
294 lower bound of target (1-v1)P(kTs) and  (1+v2)P(kTs).
295
Shedding Contribution Ratio
U T T U U T T U U T T U T U T U T
1 = —
0.8 .
0.6 i
0.4 .
0.2 ‘ ‘ .
0 r [ r r r [ I r r [ r [ r r I [ i [
10 12 14 1610 12 14 1610 12 14 1610 12 14 1610 12 14 16
1st Day 2nd Day 3rd Day 4th Day 5th Day
Time
296
297 (@)
1500 T T T T T — T T T T T T T T T
fonsr ) n———
minia n AN
1000~ -
2
4
500~ u L i
0 [ [ [T L L L r [ [ [ r [ [ [ [ [ [
10 12 14 1610 12 14 1610 12 14 1610 12 14 1610 12 14 16
1stDay 2nd Day 3rd Day 4th Day 5th Day
298 Time
299 (b)
300 Figure 7. (a) Variation of expected shedding contribution ratios for the customer with the largest capacity. (b)

301 Profile of controllable load for the customer with the largest capacity.
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302 Both the number of shedding times and shedding ratio distributions vary among customers. In
303  order to show the effectiveness of the filtering scheme defined in (20), define the standard deviation
304  of the accumulated shedding contribution ratios at the k-th time step defined as:

o(KT.) =\/ﬁz<ﬂi<k1)—ﬁ(kn»2 (33)

305  where the accumulated shedding contribution ratio of the i-th customer € (-) and the average

306 accumulated shedding contribution ratio ﬁ() are shown in (18) and (19), respectively. The variation
307  profiles of o(-) with and without the filtering scheme in (20) are both shown in Figures 8(a) and
308  8(b), respectively. Figure 8(a) shows that the standard deviation of accumulated shedding
309  contribution ratios varies within a limited range as time goes on if the filtering scheme in (20) is
310  applied. This shows that the filtering scheme levels off every customer’s contribution to the load
311  shedding and achieves load shedding fairness. Conversely, if the filtering scheme in (20) is removed
312  from the customer selection process, the standard deviation of the accumulated shedding
313  contribution ratios increased drastically with time.

The Variance of Accumulated Shedding Contribution Ratios
14 T T T T T T T T T T T T T T

1.2 b

[ [ [ [ [ [ [

0 [ [ [ [ [ r [ [ [ [ [
10 12 14 1610 12 14 1610 12 14 1610 12 14 1610 12 14 16
1st Day 2nd Day 3rd Day 4th Day 5th Day
314 Time
315 (a)
The Variance of Accumulated Shedding Contribution Ratios
30 T T T T T T T T T T T T T T
25 B
20 —
15+~ b
10+~ B
5 |- —
0 [ r r r [ [ [ [ [ r [ [ [ [ r r r [
10 12 14 1610 12 14 1610 12 14 1610 12 14 1610 12 14 16
1st Day 2nd Day 3rd Day 4th Day 5th Day
316 Time
317 (b)
318 Figure 8. Variation of standard deviation of shedding contribution ratios (a) with (b) without filtering scheme in
319 (20).
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321 6. Conclusion

322 A real-time TWDLC optimization scheme is proposed as an effective demand response
323  approach by scheduling the direct load control of the central air-conditioning chillers in wide area.
324  The proposed TWDLC works well through the broadband network with gateway installed at the site
325  of every customer under control. Fuzzy linear programming is utilized for optimization providing
326  more optimization flexibility by allowing a precision tolerance for the shed load constraints. It is
327  shown in simulation that the proposed TWDLC scheme is computationally efficient and effective,
328  hence feasible for real-time optimization and time-varying precision tolerance in response to
329  variable target load profile.

330 For future work, the degree of precision tolerance for the fuzzy constraints can be linked with
331  weather condition, regional load, time of a day, etc., depending on the application scenario. Delicate
332  modeling can be designed to automatically adjust the precision tolerance in response to environment
333  changes. Type-2 membership functions can also be used to define precision tolerance of constraints
334 for future work.
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