

1 Article

2

A Soft Curtailment of Wide-area Central Air 3 Conditioning Load

4 Leehter Yao ^{1,*}, Lei Yao ¹ and Wei Hong Lim ²5 ¹ Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan;
6 t105319401@ntut.edu.tw7 ² Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Maylaysia;
8 limweihong87@gmail.com

9 * Correspondence: ltyao@ntut.edu.tw; Tel.: +886-2-77365827

10 **Abstract:** A real-time two-way direct load control (TWDLC) of central air-conditioning chillers in
11 wide area is proposed to provide demand response. The proposed TWDLC scheme is designed to
12 optimize the load shedding ratio of every customer under control to ensure the target load to be
13 shed is met at every scheduling period. In order to overcome the load reduction uncertainties of
14 TWDLC, an innovative solution is proposed by applying a certain degree of loosening on the
15 constraint of the actual shed load. Fuzzy linear programming is utilized to solve the optimization
16 problem with fuzzy constraints. The proposed fuzzy linear programming problem is solved by
17 delicately transforming it into a regular liner programming problem. A selection scheme used to
18 obtain the feasible candidates set for load shedding at every sampling interval of TWDLC is also
19 designed along with the fuzzy linear programming.20 **Keywords:** fuzzy linear programming, direct load control, scheduling optimization, chillers, air
21 condition, demand response.

22

23

1. Introduction

24 The rapid development of smart grid [1-3] integrated with advanced metering infrastructure
25 (AMI) and two-way communication capability offers a new opportunity for utility company to
26 revolutionize the existing electrical systems. The emergence of these cyber-infrastructures allows
27 utility to exploit demand side capability of electricity users in order to achieve certain grid-level
28 operation objectives such as the reduction of peak demand and forced outage [4]. Utilities tend to
29 deploy different demand response (DR) programs to fully realize the benefits of smart grid. Existing
30 DR programs are categorized into two types, namely the price-based and incentive-based schemes
31 [5-6]. For latter schemes, electricity users are incentivized by utility or curtail service provider (CSP)
32 for being able to reduce their energy consumption for a certain periods of time upon request.33 Direct load control (DLC) is one common incentive-based DR programs used by utility or CSP
34 to reshape load profile by scheduling the operation cycles of customer's high-power appliances.
35 Central air conditioning chillers of industrial and commercial customers are the excellent candidates
36 to achieve a cost effective DLC because the potential load reduction capacity delivered can reach up
37 to several hundred kilowatts. Given the impressive strides made in metering and intelligent control
38 technologies in facilitating a continuous bidirectional communication between the utility or CSP and
39 its customers [7-8], a two-way direct load control (TWDLC) scheme for central chillers can further be
40 envisioned as an emergency DR program to deliver the real-time load shedding effect. In particular,
41 the utility or CSP can transmit the load shedding signals to its controlled customers while
42 monitoring the load shedding results continuously via the Internet. The TWDLC of central chillers
43 can even serve as an ancillary service if a huge amount of air-conditioning loads can be aggregated,
44 monitored and managed in smart grid [9-10].

45 Computational intelligence approach has gained popularity in recent years to solve complex
46 DLC scheduling problems. An iterative deepening search strategy was incorporated into genetic
47 algorithm [11] and genetic programming [12] to produce a DLC schedule of air conditioning load
48 capable of meeting the target load shed profile with minimum cost. A DLC scheduling problem with
49 multiobjective framework was solved from different perspectives using an interactive evolutionary
50 algorithm [13], [14]. An optimal DLC dispatch of air-conditioning loads was proposed in [15] using
51 an imperialist competitive algorithm to minimize the total deviation between the actual and target
52 load shed profiles. A new DLC model for air-conditioning loads was coordinated along with unit
53 commitment in [16] using distributed imperialist competitive algorithm to minimize system
54 operational cost. Differential evolution was used in [17] to solve a DLC model aiming to minimize
55 the operational cost of a microgrid with high penetration of solar power and air conditioning loads.
56 A hierarchical DLC framework for large-scale air conditioning load dispatch was proposed in [18]
57 using differential evolution algorithm to minimize the operational cost. With a two-way
58 communication platform, a real-time load shedding of central air conditioning chillers was
59 optimized with linear programming [19]. By considering the uncertainties of electricity prices and
60 ambient temperature change, a DLC of air-conditioning loads was solved in [20] by mixed-integer
61 linear programming to enhance wind power utilization level and minimize system operational cost.
62 By considering the transmission system reliability, an optimal DLC schedule of air conditioning
63 loads was obtained in [21] by a fuzzy DR to attain a tradeoff between peak load and system
64 operation cost reduction. In [22], a nonlinear programming approach was formulated by considering
65 DLC as a part of integrated resource planning to minimize the investment cost of microgrid. A DLC
66 union was formed for the retailer and residential users in [23] using cooperative game to minimize
67 the regulation cost of retailer by providing users an indirect access into balance market to improve
68 market efficiency. A model estimator controller was designed in [24] using Markov chain model to
69 coordinate aggregation of air-conditioning loads in order to address energy imbalance issue in
70 power systems. Both of the distributed load shedding and micro-generator dispatching was
71 coordinated in [25] using a probabilistic method to provide an emergency DR. A novel DLC scheme
72 was proposed using queuing system model to control the air-conditioning loads without comprising
73 users' cooling comfort [26].

74 Most existing DLC scheduling strategies have not, to the authors' best knowledge, considered
75 the uncertainties of demand reduction provided by air-conditioning loads. The previous works
76 assumed the target load shed to be met are fixed and crisp optimization constraints were formulated
77 to guarantee the actual load shed is not less than the predefined target. In practical scenarios, the
78 load reduction of air-conditioners in wide area vary with time of day, ambient temperature, number
79 of people in the cooling environment, communication network signal strength, etc. [27]. The
80 optimality of DLC schedules produced without taking these uncertainties into account is hence
81 questionable. The main contribution of this paper is to propose an innovative approach based on
82 fuzzy linear programming [30] allowing more flexibility in solving the optimization of TWDLC for
83 central air conditioning systems. Particularly, a fuzzy inference system is designed to model the
84 uncertainties of load reduction by allowing a certain degree of constraint loosening to obtain an
85 optimal TWDLC schedule of central air conditioning systems. With these optimization flexibilities, a
86 soft curtailment for the TWDLC of central air conditioning systems is achieved. With the proposed
87 approach, a tolerance range of load reduction uncertainty is provided to the aggregators as they
88 negotiate DR capacity and purchase prices with CSPs [28-29].

89 This paper is structured as follows. The problem to be solved for TWDLC of central air
90 conditioning chillers is mathematically defined in Section 2. Section 3 describes the optimization
91 approach determining the best set of candidates for control in every sampling interval. The
92 implementation of fuzzy linear programming for TWDLC is described in Section 4. Computer
93 simulations verifying the performance of the proposed scheduling optimization approach are shown
94 in Section 5. Conclusions are made in Section 6.

95 **2. Two-way Direct Load Control of Central Chiller**

96 Assume that N customers are recruited by utility company or CSP to participate the TWDLC
 97 program and C_i chillers at every i -th customers are under control, $i = 1 \dots N$. An optimal scheduling
 98 scheme for real time TWDLC is designed in this paper. Denote $\lambda_{ij}(t)$ as the running status of the j -th
 99 central chiller unit at the i -th customer's building at time t , where $\lambda_{ij}(t) = 1$ if the j -th central chiller
 100 belonging to the i -th customer is turned on at t , and $\lambda_{ij}(t) = 0$, otherwise, $j = 1 \dots C_i$, $i = 1 \dots N$. The
 101 load shedding for a centrifugal compressor in the chiller is technically achieved by partially reducing
 102 the load instead of turning it off. Chiller energy efficiency is measured using the coefficient of
 103 performance (COP), which varies with chiller's load ratio. The COP drops drastically if load ratio is
 104 less than 50% for most chillers. As chiller's load is partially reduced for DLC, it needs to be
 105 assigned a lower bound of load ratio preventing chiller from having low COP. Denote W_{ij}^f and
 106 $W_{ij}^c(t)$ as chiller's capacity and the load measured at time t , respectively, and v_{ij} as the lower bound of
 107 the load ratio for the j -th chiller of the i -th customer. The controllable load for the i -th customer,
 108 denoted as $W_a^i(\cdot)$, is then defined as the total controllable load among all chillers belonging to that
 109 customer, i.e.,

$$W_a^i(t) = \sum_{j=1}^{C_i} \lambda_{ij}(t) W_{ij}^c(t). \quad (1)$$

110 where the controllable load for the j -th chiller of the i -th customer $W_{ij}^a(t)$ is defined as:

$$W_{ij}^a(t) = \begin{cases} W_{ij}^c(t) - v_{ij} W_{ij}^f, & \text{if } W_{ij}^c(t) \geq v_{ij} W_{ij}^f; \\ 0, & \text{otherwise.} \end{cases} \quad (2)$$

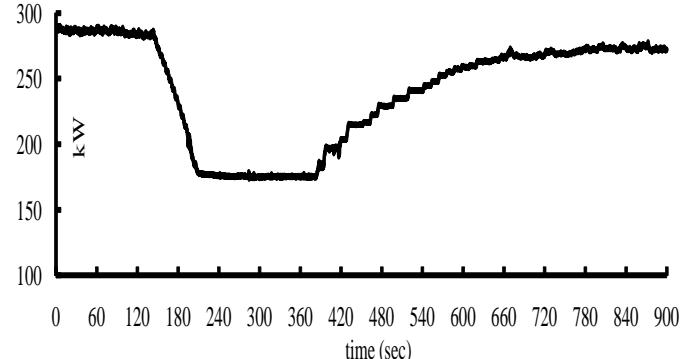
111 The utility company or CSP installs the gateway and chiller control network inside the building
 112 of customers willing to participate in the curtailed service program or similar demand response
 113 programs. Once the gateway receives the shedding command through the Internet over the
 114 broadband network from the control center at time t , it calculates the required load reduction for
 115 every central chiller and activates the load shedding through the chiller control network. Let the
 116 control interval for the entire TWDLC be T_c . If the sampling interval for the control center to
 117 conduct TWDLC is defined as T_s , the number of evaluations for TWDLC through an entire control
 118 interval is defined as $M = T_c / T_s$.

119 The main computer in control center reviews available customers for load control at the k -th
 120 sampling interval kT_s , $k = 1 \dots M$. As long as the customer is available for control, the average
 121 controllable load is measured at every sampling interval. Denote $\bar{W}_a^i(kT_s)$ as the average
 122 controllable load for the i -th available customer at kT_s and T_m as the averaging interval for calculating
 123 $\bar{W}_a(kT_s)$. Then,

$$\bar{W}_a^i(kT_s) = \frac{1}{T_m} \int_{kT_s - T_m}^{kT_s} W_a^i(t) dt. \quad (3)$$

124 As soon as reviewing all the available customers for control, the main computer in control center
 125 selects certain number of available customers for load shedding by sending out load shedding
 126 commands through internet to the gateway at customer site. Figure 1 shows the load variation of a
 127 typical chiller starts shedding load to a certain ratio, maintains the load ratio for certain period of
 128 time and restores the load back to the original load before shedding. It is shown in Figure 1 that a
 129 period of time is required for a chiller to conduct load shedding and load restoration. If the
 130 customer is selected for load shedding, the load that a chiller actually shed is measured by the
 131 gateway and sent back to control center through internet. Denote $\bar{W}_b^i(kT_s)$ as the average load after
 132 load shedding for the i -th available customer and T_w as the time interval to wait until the chiller
 133 finishes load shedding. Then,

$$\bar{W}_b^i(kT_s) = \frac{1}{T_m} \int_{kT_s + T_w}^{kT_s + T_w + T_m} W_a^i(t) dt. \quad (4)$$



134

135

136

137

Figure 1. Load variation as a typical chiller conducts load shedding and load restoration.

With the average loads defined in (3) and (4), the average shed load $\bar{W}_d^i(kT_s)$ is defined as

$$\bar{W}_d^i(kT_s) = \max((\bar{W}_a^i(kT_s) - \bar{W}_b^i(kT_s)), 0). \quad (5)$$

138

139

140

141

142

143

144

145

146

147

148

149

At every time step, the average controllable load for every customer under control, $\bar{W}_a^i(\cdot)$, $i = 1 \dots N$, is measured and sent to control center through the Internet by the gateway installed at customer's site. This paper proposes a real-time optimization approach for determining the combination of load shedding ratios for all customers at every time step through the entire control interval T_c based on the received average controllable load $\bar{W}_a^i(\cdot)$, $i = 1 \dots N$. Denote $\eta_i(\cdot)$ as the expected load shedding ratio calculated by the main computer in the control center for the i -th customer. The calculated load shedding ratio $\eta_i(\cdot)$ is the ratio of the expected shed load with respect to the average controllable load. The proposed optimization approach aims to find the best combination of load shedding ratio of every central air-conditioning chiller in real time so that the overall target shed load is individually achieved at every time step. The overall target shed load is the total amount of load required to shed by the direct control of entire set of central air-conditioning chillers.

150

151

152

153

154

155

156

157

158

159

Denote the overall target shed load based on the load forecast as $P(\cdot)$ and the set containing all available customers for TWDLC as $J(\cdot)$. The utility aims to minimize the shed load by TWDLC in order to minimize utility's electricity sale loss while satisfy overall and regional target shed load. Since the required shed load is based on the load forecast, it allows a certain degree of precision tolerance in response to weather, temperature, control timing, customer conditions, etc. In other words, the constraint for the calculated shed load being greater than the overall target shed load allows a certain degree of loosening. With this constraint loosening, more calculation flexibility is given to the optimization. Fuzzy linear programming is utilized to solve the optimization problem. The fuzzy linear programming categorized as linear programming with fuzzy resources is designed as follows.

$$\min_{\eta_i(kT_s) \in [0,1], i \in J(kT_s)} \left(\sum_{\eta_i(kT_s), i \in J(kT_s)} \eta_i(kT_s) \bar{W}_a^i(kT_s) \right). \quad (6)$$

160

subject to

$$0.1 \leq \eta_i(kT_s) \leq 1 \quad \text{if } \eta_i(kT_s) > 0, i \in J(kT_s); \quad (7)$$

161

and

$$\sum_{\eta_i(kT_s), i \in J(kT_s)} \eta_i(kT_s) \bar{W}_a^i(kT_s) \leq P(kT_s). \quad (8)$$

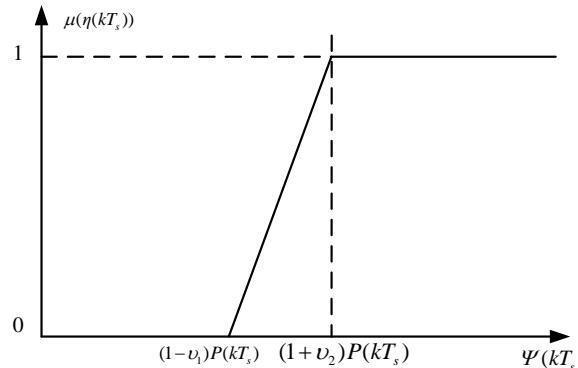
162

163 The expected shedding ratios $\eta_i(\cdot)$ range between 0 and 1. However, if the calculated $\eta_i(\cdot)$ is too
 164 small, the required shed load at the corresponding customer might be barely greater than the
 165 disturbance, leading to insignificant shedding contribution to the entire load reduction. Even
 166 though some of the calculated shedding ratios are insignificantly small, the control center still needs
 167 to send these ratios one by one to the corresponding gateways at customer sites, leading to
 168 inefficient communication efforts. To avoid obtaining insignificantly small values, a lower bound is
 169 assigned to the shedding ratio. Therefore, the calculated shedding ratio in the optimization is
 170 constrained between 0.1 and 1 as in (7). The sign “ \leq ” in (8) symbolizes that the inequality is in
 171 essence with fuzziness. The load curtailment due to TWDLC in (8) could be considered as a soft
 172 curtailment because the load shed quantity is allowed to vary within a soft range. The fuzzy
 173 constraint in (8) is characterized by the membership function $\mu(\cdot)$ defined in Figure 2, where the
 174 tolerance for the fuzzy constraint is characterized using two coefficients $\nu_1, \nu_2 \in [0, 1]$. Denote
 175 $\Psi(kT_s)$ as the calculated shed load, i.e.,

$$\Psi(kT_s) = \sum_{\eta_i(kT_s), i \in J(kT_s)} \eta_i(kT_s) \bar{W}_a^i(kT_s). \quad (9)$$

176 The fuzzy constraint characterized by the membership function $\mu(\cdot)$ in Figure 2 is defined as:

$$\mu(\eta(kT_s)) = \begin{cases} 1, & \text{if } \Psi(kT_s) > (1+\nu_2)P(kT_s) \\ \frac{\Psi(kT_s) - (1-\nu_1)P(kT_s)}{(\nu_1 + \nu_2)P(kT_s)}, & \text{if } (1-\nu_1)P(kT_s) \leq \Psi(kT_s) \leq (1+\nu_2)P(kT_s) \\ 0, & \text{if } \Psi(kT_s) < (1-\nu_1)P(kT_s) \end{cases} \quad (10)$$



177
 178 **Figure 2.** Membership function characterizing the fuzzy constraint in (8).

179 3. Determination of Candidates for TWDLC

180 The monitoring and control of every chiller for the main computer is through the gateway
 181 installed at every customer's location. To ease the computational and communication effort, the main
 182 computer determines the load to be shed and sends the shedding control commands customer by
 183 customer rather than chiller by chiller. The customer determination for shedding at every time step is
 184 to fulfill the target shedding capacity $P(\cdot)$ and level off the contribution to the entire load shedding for
 185 every customer. To measure the shedding contribution of the i -th customer, a coefficient called
 186 shedding contribution ratio, denoted as $\hat{\eta}_i(\cdot)$, is defined as a ratio of the average load actually shed
 187 with respect to the average controllable load:

$$\hat{\eta}_i(kT_s) = \frac{\bar{W}_d^i(kT_s)}{\bar{W}_a^i(kT_s)}. \quad (11)$$

188 The main computer records the accumulated time under control for every customer and this
 189 accumulated times is used as one of the reference indices when determining customers for shedding
 190 at each time step. For the i -th customer, denote the effective accumulated time under control and off
 191 control up to the k -th time step as $\tau_i^{uc}(kT_s)$ and $\tau_i^{oc}(kT_s)$, respectively. The effective accumulated
 192 times $\tau_i^{uc}(kT_s)$ and $\tau_i^{oc}(kT_s)$ are calculated by practically adding up the time intervals under control
 193 and off control for the i -th customer. The shedding contribution ratios are also taken into account. For
 194 instance, the customers with lower shedding contribution ratios lose cooling comfort less than those
 195 with high shedding contribution ratios. The effective increments of the accumulated times under
 196 control are considered to be shorter than the ones for the customer with high shedding contribution
 197 ratios. An adjustment scheme for the accumulated time under control and off control is proposed
 198 according to the load shedding control experience and customers' response. Customers with $\hat{\eta}_i(\cdot)$
 199 > 0.75 require no adjustment. But for customers with $\hat{\eta}_i(\cdot) \leq 0.15$, their equivalent shedding intervals
 200 are discounted to 1/3 since less cooling comfort loss was brought by TWDLC during this shedding
 201 control period. For customers with $0.15 < \hat{\eta}_i(\cdot) \leq 0.75$, their equivalent shedding intervals are
 202 linearly adjusted between 1 and 1/3. Let the adjustment coefficient for the i -th customer be $\xi_i(\cdot)$,
 203 $\xi_i(\cdot)$ is defined as:

$$\xi_i(\cdot) = \begin{cases} \frac{1}{3}, & \text{if } 0 < \hat{\eta}(\cdot) \leq 0.15; \\ \frac{1}{3} + \frac{10}{9}(\hat{\eta}(\cdot) - 0.15), & \text{if } 0.15 < \hat{\eta}(\cdot) \leq 0.75; \\ 1, & \text{if } \hat{\eta}(\cdot) > 0.75 \text{ or } \hat{\eta}(\cdot) = 0. \end{cases} \quad (12)$$

204 Let $s_i(kT_s) \in \{0,1\}$ be the control status of the i -th customer at the k -th sampling interval. $s_i(kT_s) = 1$ if
 205 the i -th customer is under control while $s_i(kT_s) = 0$ if the i -th customer is uncontrolled or restored
 206 from being controlled. $\tau_i^{uc}(\cdot)$ and $\tau_i^{oc}(\cdot)$ are effectively adjusted with reference to $\xi_i(\cdot)$ as follows:

$$\tau_i^{uc}(kT_s) = (\tau_i^{uc}((k-1)T_s) + s_i(kT_s) \times \xi_i(kT_s - T_s) \times T_s); \quad (13)$$

$$\tau_i^{oc}(kT_s) = (\tau_i^{oc}((k-1)T_s) + \bar{s}_i(kT_s) \times (1 - \xi_i(kT_s - T_s) + 1/3) \times T_s) \times \bar{s}_i(kT_s); \quad (14)$$

207 $\forall i = 1 \dots N$ and $k = 1 \dots M$, where $\tau_i^{uc}(0) = 0$ and $\tau_i^{oc}(0) = 0$.

208 Note that $\bar{s}_i(\cdot)$ in both (13) and (14) denotes the complement of $s_i(\cdot)$. $\tau_i^{uc}(\cdot)$ and $\tau_i^{oc}(\cdot)$ are reset
 209 to zero as the control status changes. As shown in (13) and (14), customers with larger shedding
 210 contribution ratios in the previous time step have effectively more accumulated $\tau_i^{uc}(\cdot)$ and vice
 211 versa. The accumulated time under control needs an upper limit in order not to affect too much
 212 cooling comfort due to load shedding. For the i -th customer, let T_i^{uc} be the maximum time allowed
 213 for continuous shedding control, then

$$\tau_i^{uc}(kT_s) \leq T_i^{uc}, \forall i = 1 \dots N, k = 1 \dots M. \quad (15)$$

214 If the customer is off control, it means that the customer is restored from the previous shedding
 215 control. It takes time for the building to regain cooling comfort before it is controlled again. Let T_i^{oc}
 216 be the least time the i -th customer needs to remain in off-control status, then

$$\tau_i^{oc}(kT_s) \geq T_i^{oc} \quad \forall i = 1 \dots N, k = 1 \dots M. \quad (16)$$

217 Every i -th customer becomes a candidate for load shedding if both constraints in (15) and (16)
 218 are satisfied. On the contrary, if the constraint in either (15) or (16) is violated, the i -th customer is
 219 removed from the candidate list for load shedding in the next time step. Therefore,

$$s_i((k+1)T_s) = 0, \text{ if } \tau_i^{uc}(kT_s) > T_i^{uc} \text{ or } \tau_i^{oc}(kT_s) < T_i^{oc}. \quad (17)$$

220 Every customer's shedding contribution ratio is accumulated and recorded in the main computer
 221 at the control center. Denote $\Omega_i(kT_s)$ and $\bar{\Omega}(kT_s)$ as the accumulated shedding contribution ratio
 222 and its average value, respectively, for the i -th customer building at the k -th time step, then

$$\Omega_i(kT_s) = \Omega_i(kT_s - T_s) + \hat{\eta}_i(kT_s); \quad (18)$$

$$\bar{\Omega}(kT_s) = \frac{1}{N} \sum_{i=1}^N \Omega_i(kT_s); \quad (19)$$

223 where the initial value $\Omega_i(0) = 0$. As the TWDLC is conducted day by day, the load shedding
 224 control fairness needs to be watched because it is a long-term change in cooling comforts for
 225 customers. To prevent some of the customers from being controlled too often and too long and thus
 226 biasing the fairness, every customer's accumulated shedding contribution compared to the average
 227 value among customers is monitored at the main computer. For the i -th customer, if
 228 $\Omega_i(kT_s) \geq \bar{\Omega}_i(kT_s)$, the customer can be removed from the candidate list for load shedding control in
 229 the next time step. Therefore,

$$s_i((k+1)T_s) = 0, \text{ if } \Omega_i(kT_s) > \bar{\Omega}(kT_s). \quad (20)$$

230 Conversely, if $\Omega_i(kT_s) < \bar{\Omega}_i(kT_s)$, it is expected that more contribution to the TWDLC is required and
 231 the customer is taken as a candidate for load shedding. Let $J((k+1)T_s)$ be the set of candidates available
 232 for load shedding at the $(k+1)$ -th time step based on the records calculated up to the k -th time step.
 233 Referring to (15), (16) and (20), $J((k+1)T_s)$ is defined as:

$$J((k+1)T_s) = \{i | i \in \{1 \dots N\}, \tau_i^{uc}(kT_s) \leq T_i^{uc}, \tau_i^{oc}(kT_s) \geq T_i^{oc}, \Omega_i(kT_s) \leq \bar{\Omega}_i(kT_s), k = 1 \dots (M-1)\}. \quad (21)$$

234 Referring to (6), the set of decision variables for the optimization, $J(\cdot)$, is defined as in (21).

235 4. Fuzzy Linear Programming

236 The optimization in (6) with the crisp constraint (7) and the fuzzy constraint (8) that is
 237 characterized by the membership function in (10), can be solved by first solving the following two
 238 standard linear programming problems:

$$\left\{ \begin{array}{l} \min_{\eta_i(kT_s) \in [0,1], i \in J(kT_s)} \sum_{\eta_i(kT_s), i \in J(kT_s)} \eta_i(kT_s) \bar{W}_a^i(kT_s) \\ \text{subject to} \quad 0.1 \leq \eta_i(kT_s) \leq 1, \text{ if } \eta_i(kT_s) > 0, i \in J(kT_s) \\ \sum_{\eta_i(kT_s), i \in J(kT_s)} \eta_i(kT_s) \bar{W}_a^i(kT_s) \geq (1 + \nu_2) P(kT_s) \end{array} \right. \quad (22)$$

$$\left\{ \begin{array}{l} \min_{\eta_i(kT_s) \in [0,1], i \in J(kT_s)} \sum_{\eta_i(kT_s), i \in J(kT_s)} \eta_i(kT_s) \bar{W}_a^i(kT_s) \\ \text{subject to} \quad 0.1 \leq \eta_i(kT_s) \leq 1, \text{ if } \eta_i(kT_s) > 0, i \in J(kT_s) \\ \sum_{\eta_i(kT_s), i \in J(kT_s)} \eta_i(kT_s) \bar{W}_a^i(kT_s) \geq (1 - \nu_1) P(kT_s) \end{array} \right. \quad (23)$$

239 where ν_1 and ν_2 are defined in the membership function in (8). Assume that the optimal solution of
 240 (19) and (20) are $\eta_i^0(kT_s)$ and $\eta_i^1(kT_s)$, respectively. Denote the shed load corresponding to $\eta_i^0(kT_s)$
 241 and $\eta_i^1(kT_s)$ as $\Psi^0(kT_s)$ and $\Psi^1(kT_s)$, respectively, i.e.,

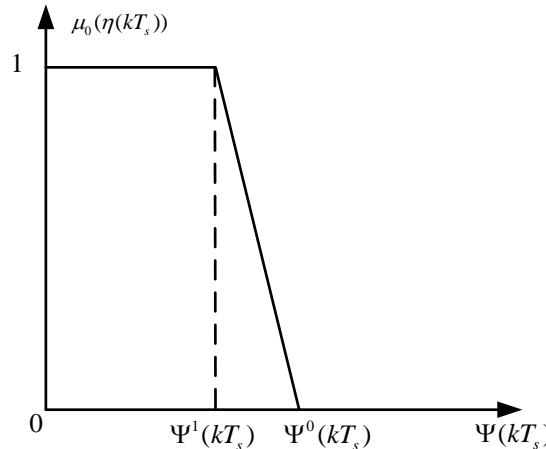
$$\Psi^0(kT_s) = \sum_{\eta_i^0(kT_s), i \in J(kT_s)} \eta_i^0(kT_s) \bar{W}_a^i(kT_s); \quad (24)$$

$$\Psi^1(kT_s) = \sum_{\eta_i^1(kT_s), i \in J(kT_s)} \eta_i^1(kT_s) \bar{W}_a^i(kT_s). \quad (25)$$

242 The degree of optimality is characterized by the following membership function $\mu_0(\cdot)$ shown in
 243 Figure 3 based on $\Psi^0(kT_s)$ and $\Psi^1(kT_s)$ as following :

$$\mu_0(\eta(kT_s)) = \begin{cases} 1, & \text{if } \Psi(kT_s) < \Psi^1(kT_s); \\ \frac{\Psi^0(kT_s) - \Psi(kT_s)}{\Psi^0(kT_s) - \Psi^1(kT_s)}, & \text{if } \Psi^1(kT_s) \leq \Psi(kT_s) \leq \Psi^0(kT_s); \\ 0, & \text{if } \Psi(kT_s) > \Psi^0(kT_s); \end{cases} \quad (26)$$

244 With the fuzzy constraint being transformed into the membership function μ in (10) and the
 245 objective function associated with the fuzzy constraint being transformed into the membership
 246 function μ_0 in (26), the optimization in (6)-(8) is solved using a max-min approach as follows:



247
 248
 249

Figure 3. Membership function characterizing the degree of optimality.

$$\begin{cases} \max_{\eta_i(kT_s) \in [0,1], i \in J(kT_s)} \min(\mu_0(\eta(kT_s)), \mu(\eta(kT_s))) \\ \text{subject to } 0.1 \leq \eta_i(kT_s) \leq 1, \text{ if } \eta_i(kT_s) > 0, i \in J(kT_s). \end{cases} \quad (27)$$

250 The constrained max-min optimization problem in (27) can be implemented as a standard linear
 251 programming problem:

$$\max_{\alpha \in [0,1], \eta_i(kT_s) \in [0,1], i \in J(kT_s)} \alpha \quad (28)$$

$$\text{subject to } 0.1 \leq \eta_i(kT_s) \leq 1, \text{ if } \eta_i(kT_s) > 0; \quad (29)$$

$$\mu_0(\eta(kT_s)) \geq \alpha; \quad (30)$$

$$\mu(\eta(kT_s)) \geq \alpha \quad (31)$$

252 where $\eta_i(kT_s) \in [0,1]$, $i \in J(kT_s)$.

253 Substituting (26) into (30), the constraint in (30) is equivalent to:

$$\sum_{\eta_i(kT_s) \in [0,1], i \in J(kT_s)} \eta_i(kT_s) \bar{W}_a^i(kT_s) \leq (1-\alpha) \Psi^0(kT_s) + \alpha \Psi^1(kT_s) \quad (32)$$

254 Similarly, substituting (10) into (31), the constraint in (31) is equivalent to:

$$\sum_{\eta_i(kT_s) \in [0,1], i \in J(kT_s)} \eta_i(kT_s) \bar{W}_a^i(kT_s) \geq (1-\nu_1) P(kT_s) + \alpha(\nu_1 + \nu_2) P(kT_s). \quad (33)$$

255 Note that the constraint in (29) is not in a typical form of constraint for linear programming.
 256 Define the surplus decision variables $\gamma_i(kT_s) \in \{0, 1\}$ $i \in J(kT_s)$ and denote Q as a large constant, i.e., $Q \gg 1$. The constraint in (29) can be restated as the constraints as follows:
 257

$$\eta_i(kT_s) \leq \gamma_i(kT_s) \times Q, \quad (34)$$

$$0.1 \times \gamma_i(kT_s) \leq \eta_i(kT_s), \quad \gamma_i(kT_s) \in \{0, 1\}, \quad i \in J(kT_s). \quad (35)$$

258 Therefore, the fuzzy linear programming in (6)-(8) is solved based on the equivalent linear
 259 programming problem in (28) with constraints in (32)-(35).

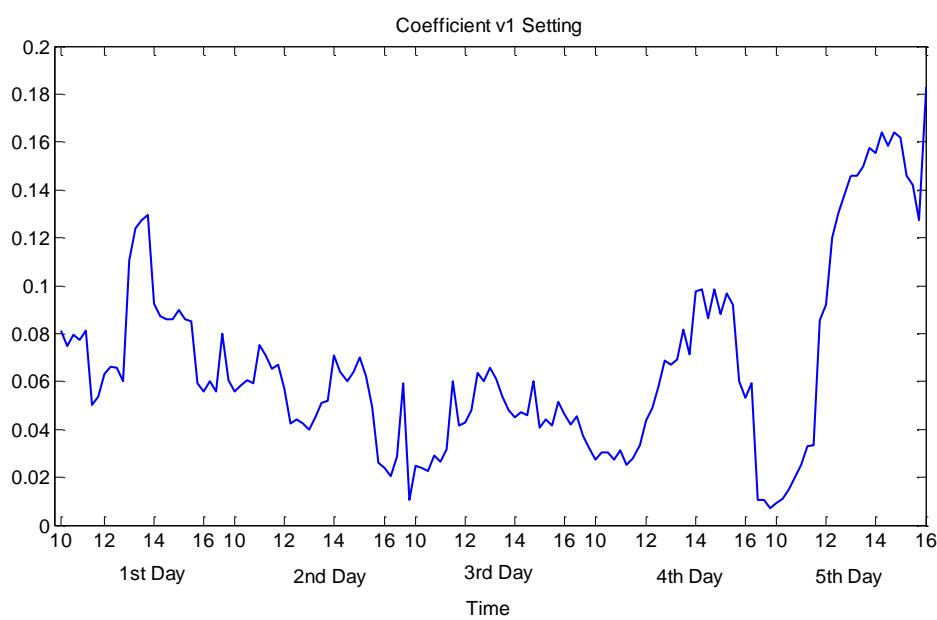
260 5. Computer Simulation

261 A set of 30 customers are selected to test the effectiveness and efficiency of the load aggregation
 262 and the proposed TWDLC algorithm using fuzzy linear programming. The control interval was set
 263 as a period of 5 consecutive days, 10:00 to 17:00 every day. The sampling interval T_s for the main
 264 computer retrieving every customer's controllable load and conducting load shedding through the
 265 gateway is set as 15 minutes. The sampling time for the gateway measuring the controllable load of
 266 every chiller was as 1 minute. The averaging interval T_m in (3) and the waiting interval T_w in (4) for
 267 the gateway to calculate the average controllable load before and after every sampling time are both
 268 set as 3 minutes. The capacity, time constraints and the maximum controllable load during the 5 day
 269 control period are listed in Table 1.
 270

271
 272 TABLE 1.
 List of capacity, maximum load within control interval and time constraints of customers under control

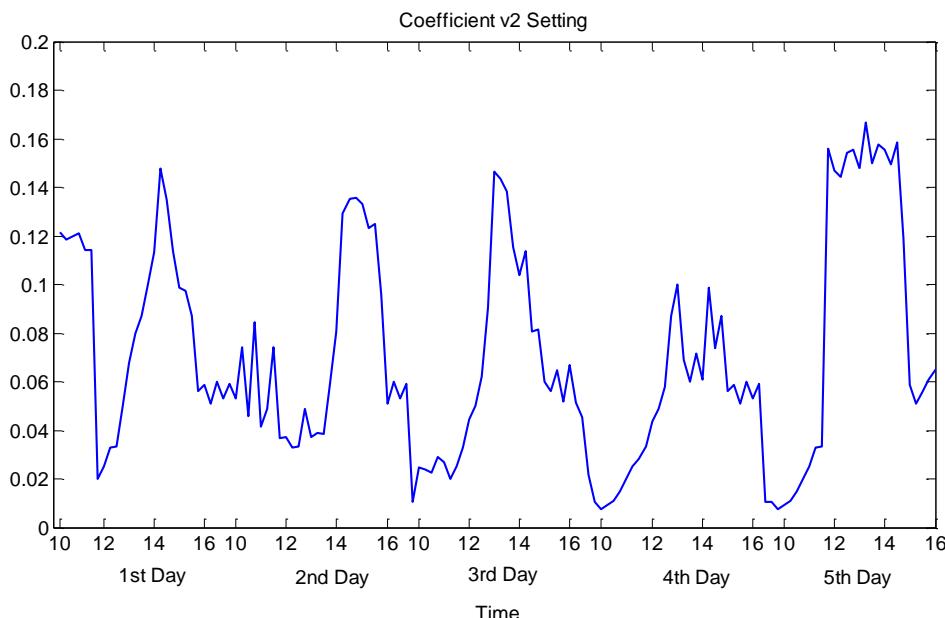
i	Capacity (kW)	$Max(W_d^i(kT_s))$ (kW)	T_j^{uc} (min)	T_j^{oc} (min)	i	Capacity (kW)	$Max(W_d^i(kT_s))$ (kW)	T_j^{uc} (min)	T_j^{oc} (min)
1	250	109	15	30	16	1300	727	15	16
2	350	219	30	15	17	1380	846	30	17
3	750	296	30	15	18	1550	1018	30	18
4	800	466	30	15	19	2000	1083	15	19
5	1000	585	30	15	20	2400	1198	30	20
6	1150	727	30	15	21	320	193	15	21
7	1350	772	30	15	22	530	253	30	22
8	1430	930	30	15	23	800	461	30	23
9	1800	1093	30	30	24	930	510	30	24
10	2100	1194	30	15	25	1100	669	30	25
11	250	140	30	15	26	1320	740	30	26
12	500	237	15	30	27	1400	905	30	27
13	800	347	15	30	28	1720	1045	30	28
14	800	494	30	30	29	2100	1131	30	29
15	1100	698	30	15	30	2400	1427	30	30

274 Recall that v_1 and v_2 in association with the membership function $\mu(\cdot)$ in (10) characterize
 275 the fuzzy constraint in (8) that the calculated load shed greater than or equal to the target load $P(\cdot)$ to
 276 a certain degree of precision tolerance. Both coefficients v_1 and v_2 could be either constants or
 277 time-varying functions since the degree of precision tolerance for the fuzzy constraint in (8) can vary
 278 with the temperature, load in regional power system, or time of a day, etc. In this paper, the
 279 variations of v_1 and v_2 are both set as time-varying functions, as shown in Figures 4 and 5,
 280 respectively. Using the proposed optimal real-time scheduling approach based on fuzzy linear
 281 programming, the calculated load shed, $\Psi(kT_s)$, is shown in Figure 6. The upper and lower limits
 282 for the fuzzy constraints in (8), i.e., $(1-v_1)P(kT_s)$ and $(1+v_2)P(kT_s)$, as well as the target load
 283 expected to shed $P(kT_s)$ are also compared with $\Psi(kT_s)$ in Figure 6. It is shown in Figure 6 that
 284 the calculated load shed $\Psi(kT_s)$ matches the target load $P(kT_s)$ well in response to the variations
 285 in target load tolerance. The calculated shedding ratios and the corresponding controllable load of
 286 the customer with the largest capacity are shown in Figures 7(a) and 7(b), respectively.



287
288

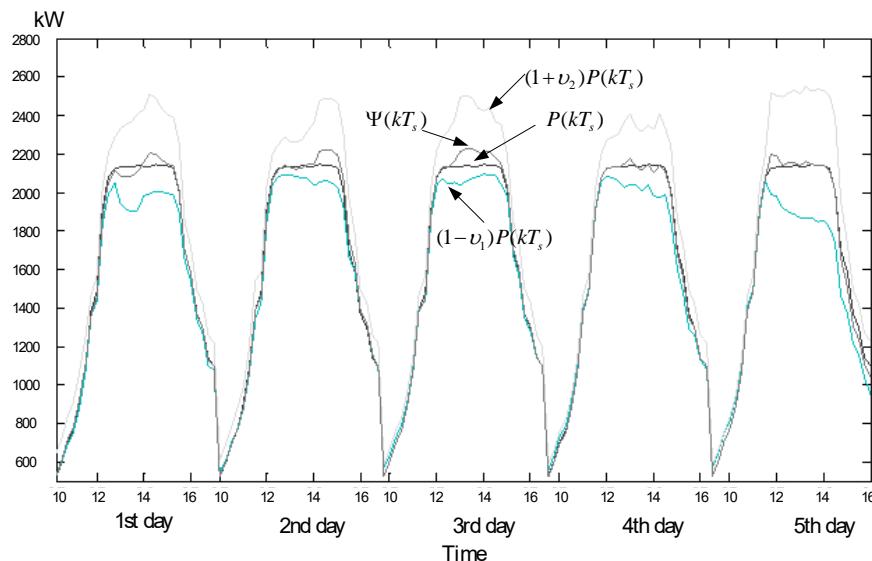
Figure 4. The variation of coefficient v_1 .



289
290

Figure 5. The variation of coefficient v_2 .

291



292

293

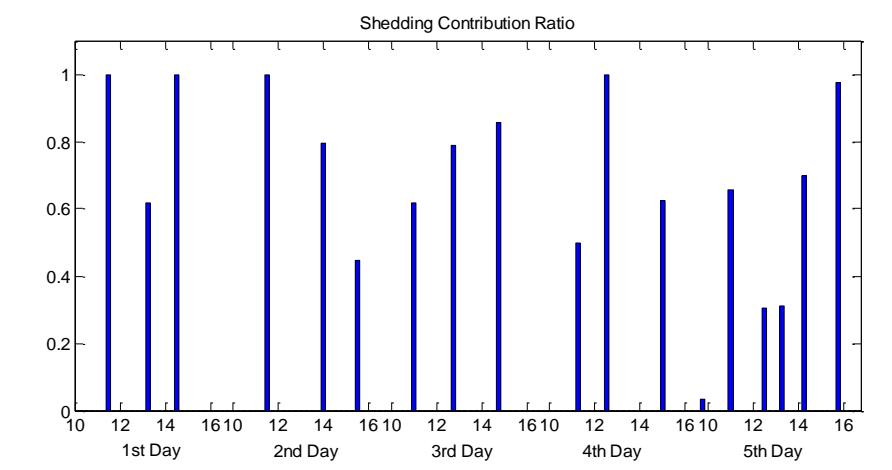
294

295

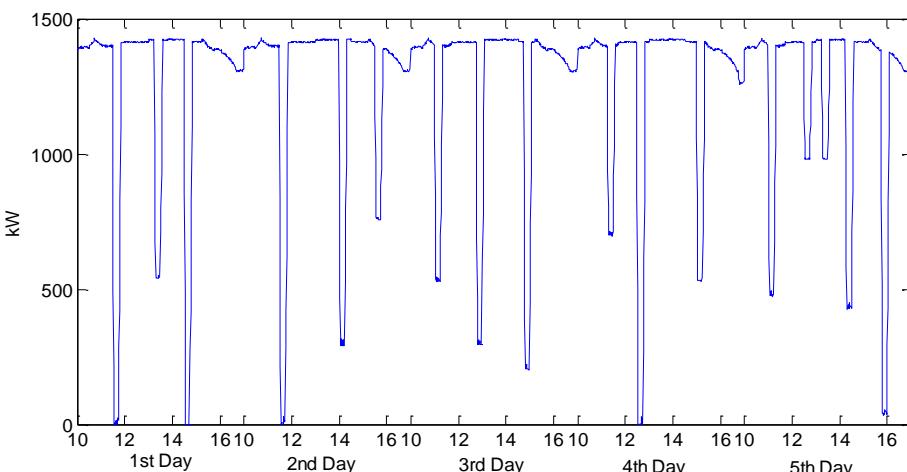
Figure 6. Comparison of calculated load shed $\Psi(kT_s)$, the target load required to shed $P(kT_s)$, the upper and lower bound of target $(1-v_1)P(kT_s)$ and $(1+v_2)P(kT_s)$.

296

297



(a)



(b)

298

299

300

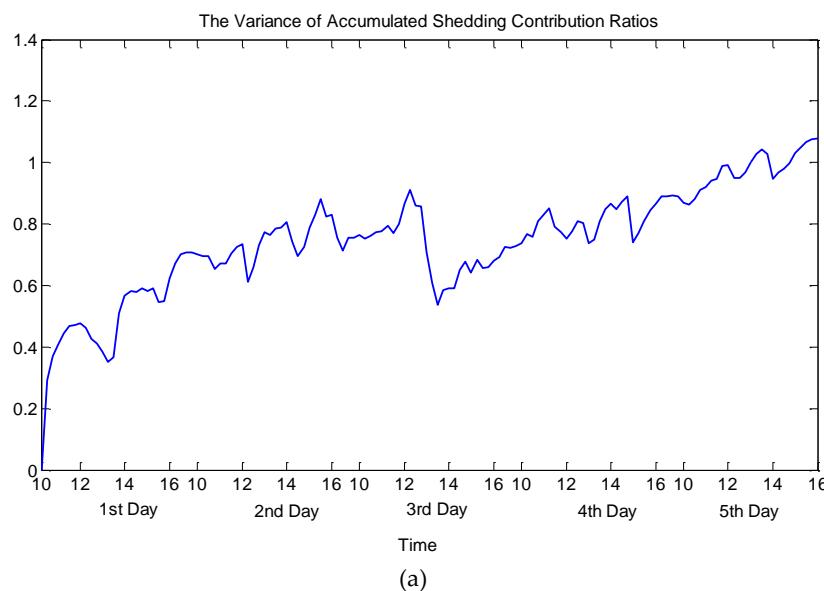
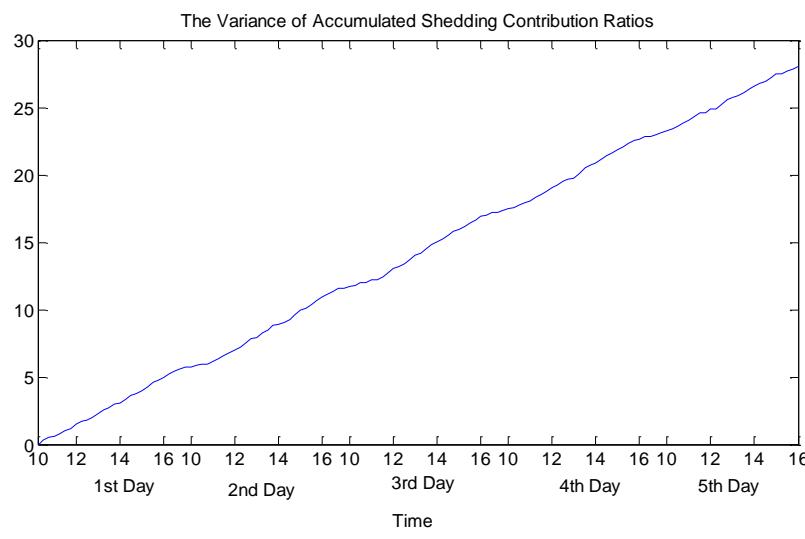
301

Figure 7. (a) Variation of expected shedding contribution ratios for the customer with the largest capacity. (b) Profile of controllable load for the customer with the largest capacity.

302 Both the number of shedding times and shedding ratio distributions vary among customers. In
 303 order to show the effectiveness of the filtering scheme defined in (20), define the standard deviation
 304 of the accumulated shedding contribution ratios at the k -th time step defined as:

$$\sigma(kT_s) = \sqrt{\frac{1}{N} \sum_{i=1}^N (\Omega_i(kT_s) - \bar{\Omega}(kT_s))^2} \quad (33)$$

305 where the accumulated shedding contribution ratio of the i -th customer $\Omega_i(\cdot)$ and the average
 306 accumulated shedding contribution ratio $\bar{\Omega}(\cdot)$ are shown in (18) and (19), respectively. The variation
 307 profiles of $\sigma(\cdot)$ with and without the filtering scheme in (20) are both shown in Figures 8(a) and
 308 8(b), respectively. Figure 8(a) shows that the standard deviation of accumulated shedding
 309 contribution ratios varies within a limited range as time goes on if the filtering scheme in (20) is
 310 applied. This shows that the filtering scheme levels off every customer's contribution to the load
 311 shedding and achieves load shedding fairness. Conversely, if the filtering scheme in (20) is removed
 312 from the customer selection process, the standard deviation of the accumulated shedding
 313 contribution ratios increased drastically with time.



314
 315

316
 317
 318
 319
 320

Figure 8. Variation of standard deviation of shedding contribution ratios (a) with (b) without filtering scheme in (20).

321 **6. Conclusion**

322 A real-time TWDLC optimization scheme is proposed as an effective demand response
323 approach by scheduling the direct load control of the central air-conditioning chillers in wide area.
324 The proposed TWDLC works well through the broadband network with gateway installed at the site
325 of every customer under control. Fuzzy linear programming is utilized for optimization providing
326 more optimization flexibility by allowing a precision tolerance for the shed load constraints. It is
327 shown in simulation that the proposed TWDLC scheme is computationally efficient and effective,
328 hence feasible for real-time optimization and time-varying precision tolerance in response to
329 variable target load profile.

330 For future work, the degree of precision tolerance for the fuzzy constraints can be linked with
331 weather condition, regional load, time of a day, etc., depending on the application scenario. Delicate
332 modeling can be designed to automatically adjust the precision tolerance in response to environment
333 changes. Type-2 membership functions can also be used to define precision tolerance of constraints
334 for future work.

335

336 **Author Contributions:** Leehter Yao conceived and designed the main ideas proposed in the paper. He also
337 wrote the paper. Lei Yao designed and performed the experiments. Wei Hong Lim designed the fuzzy linear
338 programming model and analyzed the data.

339 **Conflicts of Interest:** The authors declare no conflict of interest.

340 **References**

1. F. Rahimi and A. Ipakchi, "Demand response as a market resource under the smart grid paradigm," *IEEE Trans. Smart Grid*, vol. 1, no. 1, pp. 82-88, Jun. 2010.
2. J. Medina, N. Muller, and I. Roytelman, "Demand response and distribution grid operations: opportunities and challenges," *IEEE Trans. Smart Grid*, vol. 1, no. 2, pp. 193-198, Sep. 2010.
3. P. P. Varaiya, F. F. Wu, and J. W. Bialek, "Smart operation of smart grid: risk-limiting dispatch," *IEEE Proc.*, vol. 99, no. 1, pp. 40-57, Jan. 2011.
4. S. Pullins and J. Westerman, San Diego Smart Grid Study Final Report, Science Applications Int. Corp., Oct. 2006.
5. M. H. Albadi and E. F. El-Saadany, "Demand response in electricity markets: an overview," in Proc. IEEE PES General Meeting, June 2007, pp. 1-5.
6. U.S. Department of Energy, "Benefits of demand response in electricity markets and recommendations for achieving them," Report to the United State Congress, Feb. 2006. Available online: <http://eetd.lbl.gov>
7. P. Reusens, D. V. Bruyssel, J. Sevenhuijsen, S. V. D. Bergh, B. V. Nimmen, and P. Spruyt, "A practical ADSL technology following a decade of effort," *IEEE Commun. Mag.*, pp. 145-151, Oct. 2001.
8. F. Ouyang, P. Duvaut, O. Moreno, and L. Pierrugues, "The first step of long-reach ADSL: smart DSL technology, READSL," *IEEE Commun. Mag.*, pp. 124-131, Sep. 2003.
9. M. Parvania and M. Fotuhi-Firuzabad, "Demand response scheduling by stochastic SCUC," *IEEE Trans. Smart Grid*, vol. 1, no. 1, pp. 89-98, Jun. 2010.
10. A. Brooks, E. Lu, D. Reicher, C. Spirakis, and B. Weihl, "Demand dispatch," *IEEE Power Energy Mag.*, vol. 8, no. 3, pp. 20-29, May-Jun. 2010.
11. L. Yao, W.-C. Chang, and R.-L. Yen, "An iterative deepening genetic algorithm for scheduling of direct load control," *IEEE Trans. Power Syst.*, vol. 20, no. 3, pp. 1414-1421, Aug. 2005.
12. L. Yao, Y.-C. Chou, and C.-C. Lin, "Scheduling of direct load control using genetic programming," *Int. J. Innov. Comput. I.*, vol. 7, no. 5, pp. 2515-2528, May 2011.
13. A. Gomes, C. H. Antunes, and A. G. Martins, "A multiple objective approach to direct load control using an interactive evolutionary algorithm," *IEEE Trans. Power Syst.*, vol. 22, no. 3, pp. 1004-1011, Aug. 2007.
14. A. Gomes, C. Antunes, and E. Oliveira, "Direct load control in the perspective of an electricity retailer - a multi-objective evolutionary approach," in *Soft Comput. Ind. Appl.*, ed: Springer Berlin Heidelberg, Apr. 2011, pp. 13-26.
15. F. Luo, J. Zhao, Z. Y. Dong, X. Tong, Y. Chen, H. Yang, et al., "Optimal dispatch of air conditioner loads in southern china region by direct load control," *IEEE Trans. Smart Grid*, vol. 7, no. 1, pp. 439-450, Jan. 2016.

372 16. F. Luo, J. Zhao, H. Wang, X. Tong, Y. Chen, and Z. Y. Dong, "Direct load control by distributed imperialist
373 competitive algorithm," *J. Mod. Power Syst. Clean Energy*, vol. 2, no. 4, pp. 385-395, Dec. 2014.

374 17. F. Luo, Z. Xu, K. Meng, and Z. Y. Dong, "Optimal operation scheduling for microgrid with high
375 penetrations of solar power and thermostatically controlled loads," *Sci. Technol. Build Environ.*, vol. 22,
376 no. 6, pp. 666-673, Jul. 2016.

377 18. F. Luo, Z. Y. Dong, K. Meng, J. Wen, H. Wang, and J. Zhao, "An operational planning framework for
378 large-scale thermostatically controlled load dispatch," *IEEE Trans. Ind. Informat.*, vol. 13, no. 1, pp.
379 217-227, Feb. 2017.

380 19. L. Yao and H.-R. Lu, "A two-way direct control of central air-conditioning load via Internet," *IEEE Trans.*
381 *Power Del.*, vol. 24, no. 1, pp. 240-248, Jan. 2009.

382 20. D. Wang, K. Meng, X. Gao, C. Coates, and Z. Dong, "Optimal air-conditioning load control in distribution
383 network with intermittent renewables," *J. Mod. Power Syst. Clean Energy*, vol. 5, no. 1, pp. 55-65, Jan.
384 2017.

385 21. L. Goel, Q. Wu, and P. Wang, "Fuzzy logic-based direct load control of air conditioning loads considering
386 nodal reliability characteristics in restructured power system," *Electr. Pow. Syst. Res.*, vol. 80, no. 1, pp.
387 98-107, Jan. 2010.

388 22. L. Zhu, Z. Yan, W.-J. Lee, X. Yang, Y. Fu, and W. Cao, "Direct load control in microgrids to enhance the
389 performance of integrated resources planning," *IEEE Trans. Ind. Appl.*, vol. 51, no. 5, pp. 3553-3560,
390 Sep.-Oct. 2015.

391 23. Q. Cui, X. Wang, X. Wang, and Y. Zhang, "Residential appliances direct load control in real-time using
392 cooperative game," *IEEE Trans. Power Syst.*, vol. 31, no. 1, pp. 226-233, Jan. 2016.

393 24. J. L. Mathieu, S. Koch, and D. S. Callaway, "State estimation and control of electric loads to manage
394 real-time energy imbalance," *IEEE Trans. Power Syst.*, vol. 28, no. 1, pp. 430-440, Feb. 2013.

395 25. R. Argiento, R. Faranda, A. Pievatolo, and E. Tironi, "Distributed interruptible load shedding and
396 micro-generator dispatching to benefit system operations," *IEEE Trans. Power Syst.*, vol. 27, no. 2, pp.
397 840-848, May 2012.

398 26. S. C. Lee, S. J. Kim, and S. H. Kim, "Demand side management with air conditioner loads based on the
399 queuing system model," *IEEE Trans. Power Syst.*, vol. 26, no. 2, pp. 661-668, May 2011.

400 27. M. Sullivan, J. Bode, B. Kellow, S. Woehleke, and J. Eto, "Using residential AC load control in grid
401 operations: PG&E's ancillary service pilot," *IEEE Trans. Smart Grid*, vol. 4, no. 2, pp. 1162-1170, Jun. 2013.

402 28. D. T. Nguyen, M. Negnevitsky, and M. d. Groot, "Walrasian market clearing for demand response
403 exchange," *IEEE Trans. Power Syst.*, vol. 27, no. 1, pp. 535-544, Feb. 2012.

404 29. L. Gkatzikis, I. Koutsopoulos, and T. Salondis, "The role of aggregators in smart grid demand response
405 markets," *IEEE J. Sel. Areas Commun.*, vol. 31, no. 7, pp. 1247-1257, Jul. 2013.

406 30. L.-X. Wang, *A Course in Fuzzy Systems and Control*, Pearson Education Taiwan, 2005.