

1 Article

2 Co-producing a Vision and Approach for the 3 Transition towards a Circular Economy: Perspectives 4 from Government Partners

5 Anne P.M. Velenturf ^{1*}, Phil Purnell ¹, Mike Tregent ², John Ferguson ³, Alan Holmes ⁴6 ¹ Resource Recovery from Waste programme, School of Civil Engineering, University of Leeds, Leeds, LS2
7 9JT, UK; P.Purnell@leeds.ac.uk8 ² Environment Agency; mike.tregent@environment-agency.gov.uk9 ³ Ecoideam Ltd, former Scottish Environmental Protection Agency; john.ferguson@ecoideam.co.uk10 ⁴ Independent, former Environment Agency; xalanholmes@talktalk.net

11 * Correspondence: A.Velenturf@leeds.ac.uk; Tel.: +44-1134-32279

12 **Abstract:** The UK economy is overly reliant on unsustainable production and consumption
13 practices, depleting finite resources at rates that will increase production costs, business risk and
14 economic instability. This over-consumption produces emissions and waste that cause climate
15 change and environmental degradation, impacting on the wellbeing of people in the UK and
16 beyond. The Resource Recovery from Waste programme (RRfW) promotes a transition towards
17 waste and resource management in a circular economy that restores the environment, creates
18 societal benefits and promotes clean growth by engaging relevant actors in the transition process.
19 RRfW collaborates with academia, government, and industry to co-produce a shared vision and
20 approach to realise such a transition. Reflecting insights from RRfW's government engagement, this
21 article presents a positive outlook for changing the UK economy and society. It envisions a long-
22 term future for waste and resource management that maximises the value of materials by circulating
23 them in the economy for as long as possible. Four themes and an approach are proposed, including
24 recommendations for regulatory instruments and a stable policy framework. It recommends further
25 collaborative research to capitalise on opportunities for economic growth, innovation and resilient
26 infrastructure whilst contributing to quality jobs and welfare in all four UK nations.

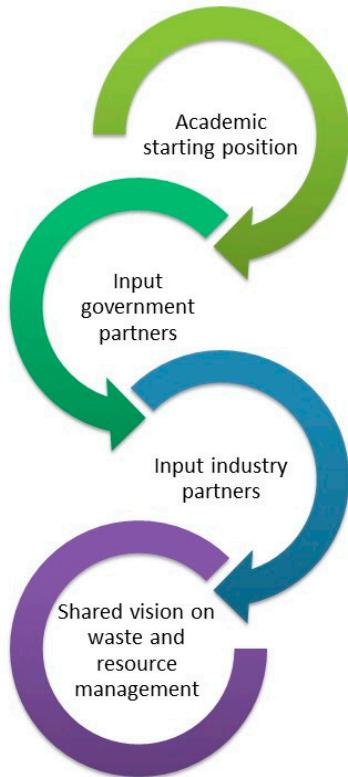
27 **Keywords:** Resource efficiency, Zero waste, Resource Recovery from Waste, Low-carbon economy,
28 Circular economy infrastructure, Clean growth, Resource productivity, Sustainable Development
29 Goals, Transdisciplinary research, Participatory action research

31 1. Introduction: Moving away from the resource scarcity and waste overload paradox

32 Current patterns of production and consumption drive the emerging environmental crises of
33 resource scarcity and waste overload [1-4]. Waste and resource management are directly related to
34 the crossing of planetary boundaries that indicate the safe operating space for our society [5, 6]. While
35 growing resource use has increased welfare of people, the resulting environmental degradation,
36 climate change and pollution violate human rights [7]. Hence, transforming management practices is
37 crucial in solving global sustainability issues; radical changes in the way that waste and resource
38 flows are organised, i.e. the resource economy, are necessary [8].

39 The Resource Recovery from Waste (RRfW) programme envisions a circular economy that
40 contributes to a resilient and healthy environment, creates benefits for people such as reduced air
41 pollution and high-quality jobs, and clean growth associated with greater resource productivity. The
42 programme aims to facilitate far-reaching change in the waste and resource management landscape
43 in the UK. While the urgency of such a transition is well-recognised, progress requires action and
44 hence strongly increased engagement from all relevant actors [8]. RRfW collaborates with actors in
45 academia, government, and industry to co-produce a more desirable future as well as an approach

46 to realise such shared vision. This article presents the outcomes of RRfW's initial government
47 engagement.


48 **2. Methods: Co-producing a shared vision and approach for a circular economy**

49 *2.1 Overview of Resource Recovery from Waste co-creation process*

50 RRfW coordinates an academic, industrial and governmental co-creation process to formulate a
51 shared vision and approach aiming to bring waste and resource management within environmental
52 and social boundaries. The process consists of four steps (Figure 1):

53 1. Formulate initial vision within academic RRfW team
54 2. Develop vision and approach to realise it with RRfW's governmental partners
55 3. Extend findings with insights from RRfW industry partners
56 4. Publish shared vision on waste and resource management

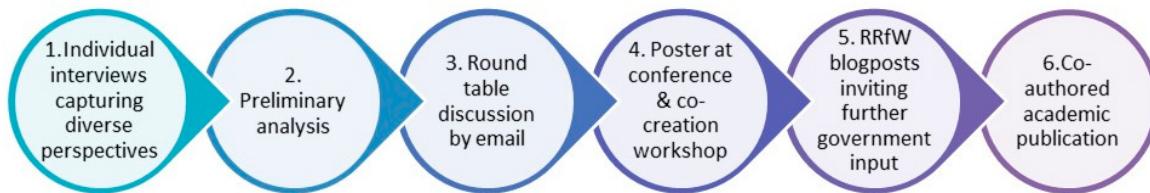
57 The first step has been completed [8]. This article is the result of the second step of the co-creation
58 process detailed further in this section.

59

60 **Figure 1: RRfW co-creation process**

61 *2.2 Engaging governmental partners*

62 Governmental partners were engaged in an iterative process of data collection and analysis
63 (Figure 2), designed following the principles of participation process management and participatory
64 action research [9-11]. The RRfW process aimed at the co-production of a vision and approach with
65 individuals active in policy-making and regulation for waste and resource management to create
66 ownership of the results and build commitment for uptake. The process design was shaped by the
67 RRfW academic team in collaboration with governmental partners including Department for food
68 and rural affairs (Defra) and the Environment Agency (EA).


69 Engagement activities were structured to capture broad perspectives, and then consolidated into
70 the coherent vision and approach presented here, to minimise any bias caused by anchoring around
71 early or particularly strongly presented perspectives. Governmental partners of RRfW were invited

72 to take part; further participants in related organisations were engaged through snowball sampling
73 (see [12]).

74 First, participants were interviewed to capture the wide diversity of individual perspectives.
75 Interviewees were asked to express their personal views; findings in this article thus do not represent
76 formal organisational views, but are informed by participants' individual expertise in policy-making
77 and regulation for resource recovery from waste. Interviewees included five participants from Defra,
78 two from Zero Waste Scotland, and further interviewees from the Department for Business, Energy
79 and Industrial Strategy (BEIS), EA, and Scottish Environmental Protection Agency (SEPA). Semi-
80 structured interviews covered four questions:

- 81 1. For which organisation(s) are you working and what is your role in waste and resource
82 management?
- 83 2. What would the resource and waste management landscape ideally look like by 2020, 2030 and
84 2050?
- 85 3. If we would like waste management to be driven by environmental and social benefits in addition
86 to economic benefits, what would be the key policy and regulatory approaches?
- 87 4. How could RRfW best engage governmental organisations to translate knowledge into practice?

88 Notes from each interview were transcribed and shared with the participant for review and to add any further points. In addition, RRfW participated in the BEIS "2050 Industrial Roadmaps and
89 Circular Economy" workshop in October 2016, with presentations from senior staff of BEIS and Defra
90 on industrial strategy and circular economy. Notes from the workshop were included in the analysis.
91 A qualitative analysis extracted key themes for a vision for waste and resource management, policy
92 and regulatory approaches, and engagement recommendations for academia.
93

94

95 **Figure 2:** Government engagement process during data collection, analysis and presentation.

96 The preliminary analysis was organised into a table including a) preliminary results, b)
97 questions to clarify similarities and differences in perspectives and c) space for comments by
98 participants. The table was shared in a 'virtual roundtable', engaging interviewees in an email
99 discussion of the preliminary results. The additional comments were included in the data analysis,
100 which resulted in two outputs. First, a poster was presented at the annual RRfW conference and
101 engagement workshop for industrial partners. Second, results were presented in a blogpost series via
102 the RRfW social media channels in January 2017, with a membership of over 300 followers including
103 key senior individuals active in governmental organisations working on waste and resource
104 management¹. Further contributions to the shared vision and approach were invited and included in
105 the final analysis presented here. Finally, this publication is co-authored by RRfW (former)
106 governmental partners. In sum, participants active in policy-making and regulating waste and
107 resource management were involved in the engagement process, from its early design in 2016 and
108 throughout data collection, analysis and presentation of first results in 2017 and publication in 2018.
109

¹ <https://www.linkedin.com/pulse/working-towards-shared-vision-waste-resource-3-key-resource>

110 **3. Results**

111 The engagement process identified key themes as well as policy and regulatory approaches to
112 realise increasingly sustainable waste and resource management; and processes through which
113 academia and governmental organisations can collaborate effectively in the transition process.

114 *3.1. Key themes for vision on waste and resource management*

115 Participants from across government generally envisioned a long-term future for waste and
116 resource management that moves away from end-of-pipe approaches towards maximising the value
117 created from materials whilst keeping them in the economy for as long as possible. End-of-pipe
118 approaches address waste management issues only by recovering valuable resources, rather than
119 integrating a focus on waste prevention and improved whole system design for resource
120 management; for example, by offering a technology to deal with plastic packaging waste without
121 other system interventions to design recoverable or reusable packaging solutions. The value of
122 materials can be maximised by adopting more proactive strategies that consider how resources are
123 transformed during each stage of the product life cycle including end-of-life options for reuse,
124 dismantling and/or recycling. All participants agreed that waste elimination was the preferred
125 prospect, but opinions differed around its feasibility, how the vision should be realised, and the
126 associated wider contextual changes that this might entail. These differences will be discussed in the
127 key themes below.

128 *3.1.1. Integrating economic with social and environmental values*

129 The first theme focussed on the ways in which economic benefits can be integrated with- and
130 bring about social and environmental values. While there appeared to be a general agreement that
131 the current growth model needs to change, perceptions differed regarding compatibility of economic
132 growth with the realisation of a circular economy. Perceptions around what constitutes growth
133 varied and, arguably, were not focussed solely on economic progress but also included social and
134 environmental improvements. Even when an economy does not grow in financial terms, it can still
135 grow in terms of environmental and social progress. For example, indicators for wellbeing, equality
136 and cultural diversity are just as relevant. However, valuing these on equal terms with economic
137 growth requires a fundamental shift in economic theory and practice, particularly in Government.

138 Integrating environmental and social values into valuation methods for economic progress
139 requires the development of new metrics. Views differed on the ways in which metrics that represent
140 environmental and social values could be integrated with economic value. Environmental and social
141 externalities can be internalised into economic costs and benefits. This implies monetising currently
142 externalised impacts, such as carbon pricing, landfill and extraction taxes, etc. but such approach can
143 be prone to manipulation (see for example [13]). As a more transparent alternative, environmental,
144 social and economic values could be assessed in an integrated manner without being collapsed onto
145 financial value alone [14] but only few modelling approaches are available. Despite recognising the
146 limitations of focusing on money only², many government departments still appear to keep sole focus
147 on economic metrics. One way forward would be including social and environmental metrics in
148 models used by the Treasury.

149 Decoupling of consumption rates from economic growth, as well as resource use from waste
150 production, could be supported by such altered set of metrics to help internalising currently
151 externalised benefits and impacts. Decoupling is partly about dematerialisation i.e. making better
152 material choices and using less materials in products, and partly about extending life cycles through
153 improved design, reuse, repair and remanufacturing. In current economic models this would appear
154 as a reduced consumption rate; such systemic failures demonstrate that metrics need to be adapted

² See for example Guidance to the Green Book on valuing infrastructure <https://www.gov.uk/government/publications/green-book-supplementary-guidance-valuing-infrastructure-spend>

155 to support maximising the economic, social and environmental values created and destructed
156 throughout the life cycles of products, materials and components.

157 3.1.2 Supporting secondary resource markets

158 The second theme revolved around the ways in which secondary resource markets could be
159 supported. Participants agreed that markets for wastes and by-products need to emerge to close
160 resource loops in our economy. In addition to transformation discussed in 3.1.1, a range of additional
161 potential market and cultural changes were proposed.

162 Transaction costs for secondary resources tend to be higher than the use of primary materials
163 [15, 16]. This is particularly the case for construction and demolition waste (e.g. glass, timber). Such
164 barriers need to be removed. For example, some participants suggested the use of secondary
165 resources could be supported by a ban/restriction on primary materials, currently mainly in place to
166 reduce pollution, when secondary resources are available; and incentivise the use of recyclates
167 further with levies, such as strived for through the Aggregates Levy³, combined with green
168 procurement government policies. Information and control on recyclate quality must be improved to
169 support uptake of secondary materials. Upstream in the supply chain a level playing field could be
170 created by internalising the real environmental and social costs into the extraction or production of
171 primary resources.

172 Cultural changes were closely associated with market evolution. While some participants
173 believed far-reaching changes would occur before 2050, others did not foresee radical shifts in
174 behaviour patterns at all; this uncertainty will have major implications for installing the physical and
175 economic infrastructure required for the processing of secondary resources. Moving from the current
176 supplier-led markets to demand-led markets would arguably reduce waste arisings. Rather than
177 producers driving up demand, consumers could indicate what they really need e.g. through 'on
178 demand' business models [17]. Digitisation could help build the required connections between
179 suppliers and consumers, but also poses challenges through increased opportunities for business to
180 generate demand using targeted marketing (further discussed in the next paragraph). Behaviour
181 change requires a clear, strong regulatory framework in support of positive behaviours. However,
182 not everyone was convinced far-reaching changes in consumption patterns are feasible (although
183 governmental bodies have been proven wrong before in industry appetite for change, for example in
184 the case of electric vehicles uptake). If one accepts that consumerism will keep centre stage in our
185 society, then infrastructure and markets need to have sufficient capacity to provide demanded
186 products *and* recycle them as well. In such scenarios, companies rely more heavily on innovative
187 business models to close resource loops post consumption, such as products as services, product life
188 extension through e.g. reuse, and collaborative consumption i.e. product sharing [17, 18]. Moreover,
189 there would be more demand for improved recycling technology to process all waste arisings.

190 3.1.3 Enabling innovations

191 The third theme referred to enabling innovations: digitisation, material and product design, and
192 business model innovation. Digitisation offers opportunities in terms of enabling recycling, especially
193 in combination with the internet, for example through data collection and sharing on waste flows,
194 Raw Materials Information Systems, and sharing scientific results via online databases. Conversely,
195 digitisation is associated with increasingly complex e-wastes. Material and product design can enable
196 recycling by designing in end-of-life options for products including electronics, packaging, etc. Such
197 improved design of materials, components and products requires both regulatory support to prevent
198 designed obsolescence and, instead, build-in reparability and recyclability, for example
199 disincentivising rapid turnover products that generate large quantities of difficult to recycle wastes.
200 Co-polymer designs of bottles with different plastic tops and bodies were widely cited as an example
201 (for an overview of resource recovery from plastics see [19]). The general consensus was that

³ <https://www.gov.uk/topic/business-tax/aggregates-levy>

202 improved recycling technologies and product designs would need to be combined with innovative
203 business models to enable the circular economy (as discussed above).

204 **3.1.4 Whole system approach identifying key intervention points**

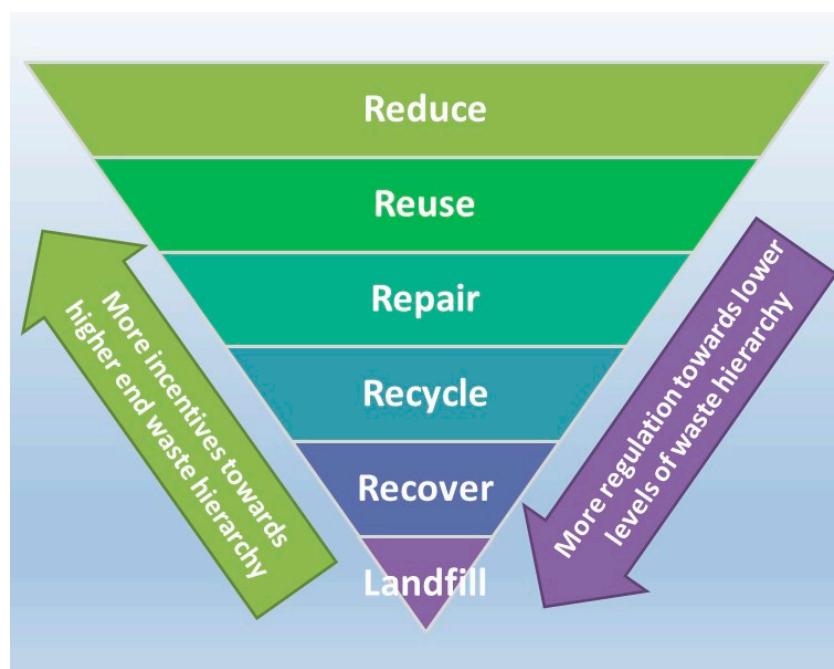
205 The fourth theme focused on the need for whole system approaches that identify key
206 intervention points. One way to identify such points is a sectoral approach, focusing attention on
207 priority sectors such as food waste, plastics, construction and demolition, etc. Sectors or materials
208 could be prioritised by value and environmental impact. Further intervention points could be defined
209 by assessing risks along whole (circular) value chains to identify hotspots.

210 Alternatively, three cross-sectoral areas for intervention were suggested, focusing on:

- 211 1. Higher end of the waste hierarchy: All participants were coherent in suggesting a move away
212 from end-of-pipe approaches towards an accelerated focus on the top of the waste hierarchy i.e.
213 more waste reduction, reuse and recycling. However, the ways in which this needs to be realised
214 varied between regulating/ charging and incentivising (further discussed in next section).
- 215 2. Carbon benefits of improved waste and resource management: Carbon emissions were
216 associated with waste and resource management [8]. With regard to the embodied carbon in
217 materials, components and products, i.e. the energy used to extract/grow and process the
218 resources into its current functional form, recycling/reuse may deliver carbon savings when
219 compared to processing virgin materials. In energy intensive industries, waste and resource
220 management are increasingly important for decarbonisation now that savings through energy
221 efficiency measures are reaching thermodynamic limits. Waste infrastructure such as biogas and
222 energy-from-waste also play a direct role in decarbonisation of the energy sector. Finally, the
223 ways in which carbon emissions have climbed government and industry agendas could serve as
224 an example for waste management.
- 225 3. Waste/ circular economy infrastructure: Enabling the circular economy requires a better
226 understanding of existing waste infrastructure including location and capacity [20]. Arguably, a
227 decentralised waste infrastructure would benefit the circular economy, allowing segregation of
228 waste streams to realise resources and value as close to the point of discard as possible, whilst
229 offering the best opportunity to stimulate regional economies. However, the feasibility of
230 regional waste treatment will depend on the materials concerned (also see [21]); increasingly
231 complex materials are expected to pose new technological challenges for the waste industry.
232 Nevertheless, exporting wastes as RDF/SRF was generally perceived as a missed opportunity to
233 generate value from material recovery for the UK economy. Re-imagined waste infrastructure
234 and procurement systems in the UK could improve these outcomes.

235 **3.2 Policy and regulatory approaches**

236 **3.2.1 Key policy directions**


237 To realise the vision and work on the key themes outlined above, interviewees discussed various
238 policy and regulatory approaches. Five focal areas for policy development were indicated:

- 239 1. Longer term policies that are stable and predictable. Such policies would enable investment and
240 business model innovation.
- 241 2. The vision focusing on the higher levels of the waste hierarchy was reflected in the suggestion
242 to focus policies on resources and resource efficiency rather than waste and waste reduction.
- 243 3. Build on the EU Circular Economy Strategy to maintain integrity with EU resource, waste and
244 circular economy policies.
- 245 4. Prioritise reduction of single use and superfluous products/packaging as well as the use of
246 hazardous materials in products when it poses barriers to recycling.
- 247 5. Develop circular economy infrastructure in support of decarbonisation agenda.

248 Overall, policies should strive to make the concept of waste redundant⁴. Whilst recognising that
 249 there may always be wastes currently considered as “unavoidable”, it should still remain the ultimate
 250 objective of all policy efforts.

251 3.2.2 Regulation and incentives

252 Turning to regulatory approaches, a combination of incentives and regulations were suggested
 253 to focus efforts on the higher levels of the waste hierarchy. The overriding idea is that each level of
 254 the waste hierarchy needs its own mix of incentives and regulations, with more ‘carrot’ or ‘save as
 255 you recycle’ approaches towards the higher levels and more use of regulatory ‘sticks’ or taxation to
 256 prevent resources moving down the hierarchy (Figure 3). However, across government there were
 257 pertinent differences as to whether incentives should be preferred over regulation, although evidence
 258 suggests that regulating i.e. legal obligations motivate more change than incentives [22]. Further
 259 diversification of regulatory approaches may be required for different sectors, as sectors are subject
 260 to varying sets of technological and market constraints and opportunities.

261

262 **Figure 3:** The transition towards a circular economy can be motivated through a combination of
 263 regulation and incentives.

264 Six groups of regulatory instruments were discussed:

265 1. **Taxation and tax breaks** – To promote reuse and repair in addition to recycling. Taxation could
 266 motivate technological change, potentially further mechanisation, and a transition from labour-
 267 focussed to resource-focussed processes. Taxation could also play a role in internalising
 268 elements of resource value that are currently largely externalised, such as the end-of-life impacts.
 269 Such tax approaches would enable prioritising resource use by value of the products,
 270 components and materials being produced; however, it requires new frameworks and tools to
 271 measure, categorise and prioritise resource use by application.

⁴ This could also help combatting waste crime which poses an expensive issue for businesses and local authorities alike in the UK. If wastes are perceived as a resource, then higher value applications will be more attractive than dumping wastes illegally. The government could fund more industry initiatives to drive such change in perception, such as previously the National Industrial Symbiosis Programme <http://www.nispnetwork.com/>.

272 2. Reporting – It is necessary to identify and understand resource flows especially at higher levels
273 of the waste hierarchy such as reuse [23]. Reporting could be incentivised by tax breaks in reuse
274 and repair. Nevertheless, motivating reuse and repair should not create perverse incentives that
275 make waste prevention and reducing resource use relatively less attractive. In this respect
276 extended producer and consumer responsibility can play an important role.

277 3. Extended producer and consumer responsibility – Extended producer responsibility (EPR) can
278 help targeting specific waste/ resource streams, supporting schemes to make polluters pay and
279 motivate designing wastes out of the system. EPR should be combined with increasing emphasis
280 on consumer responsibility, to improve the quality and quantity of wastes feeding into the waste
281 management industry, for example through deposit refund schemes on items that are difficult
282 to recycle (low energy light bulbs, batteries, etc.). The value of EPR would be greatly enhanced
283 by better understanding the roles and responsibilities of consumers.

284 4. Product bans or product standards – Connected to EPR, product bans could offer a strong
285 instrument to intervene. However, such bans were contentious and, alternatively, products
286 standards and inclusion of externalities in economic value were proposed.

287 5. Mandatory recycling regimes – In support of extended producer and consumer responsibility,
288 markets could be further directed by mandating recycling regimes. Such mandates are expected
289 to improve the quality of recycled resources, which is an essential requirement to realise the
290 circular economy.

291 6. Waste Prevention Act – Waste and resource management can play an important role in carbon
292 reductions as supported by the Climate Change Act. Waste prevention was perceived of such
293 importance that it should not be voluntary and, instead, should be embedded in a Waste
294 Prevention Act.

295 3.2.3 Reviewing the policy and regulatory framework

296 When introducing the newly proposed regulatory approaches above, participants considered
297 that reconsideration of the existing policy and regulatory framework would also be necessary. First,
298 regulatory barriers to closing resource loops need to be addressed – for example, the end-of-waste⁵
299 pathway needs to be more transparent and easier to achieve. The regulatory system should become
300 less centred on waste and focus more on valuing resources and prioritising risks within the whole
301 cycle of production and consumption. Second, it is necessary to realign support for competing
302 incentivised supply chains. Linked to realigning incentives, regulatory efforts should focus on those
303 who can actually (pay for) change in waste and resource management. For example, local councils
304 carry responsibility for recycling but austerity measures cause difficulty in achieving obligations [24,
305 25]. Similarly, various energy intensive industries are reaching their boundaries for resource and
306 energy efficiency; hence sectoral differentiation in policy and regulation may be required to only
307 target sectors where significant improvements are feasible.

308 3.2.4 Education for circular economy transition

309 Building on the argument that regulatory approaches should focus on those who can change
310 practices, education and support play an important role. Local councils play a key role in realising
311 waste infrastructure and cultural change. The Local Government Association (LGA) is well
312 positioned to provide information to local councils about circular economy and best practice. Such
313 knowledge is also crucial for government in general but especially those in power to lead on waste
314 and resource management. Other than government actors, it is also important to educate households
315 and businesses. Business needs to be enabled to understand what the circular economy is and what
316 opportunities exist for example in terms of reducing costs, increasing profits and/or long-term
317 business viability, and reducing risks around material supplies [26] (further developed in the next
318 step of the RRfW co-creation process explained in Section 2). Education, tied into the sectoral
319 differentiations introduced above, should focus on general concepts, business planning, support to

⁵ <https://www.gov.uk/guidance/turn-your-waste-into-a-new-non-waste-product-or-material>

320 adopt circular economy approaches and championing successful cases, and disseminating good
321 practices between local authorities and businesses. Academia is well placed to provide consistent,
322 credible and impartial materials for all areas of education and behaviour change.

323 *3.3 Effective collaboration between academia and government*

324 In what ways could academics best collaborate with governmental partners developing the
325 policies and regulations discussed above? This section presents recommendations from
326 governmental partners for academics on potential engagement methods, organisations, government
327 processes, and positioning and generation of research outcomes.

328 Participants felt that academics should engage governmental organisations from the start of
329 research projects. This early engagement should be followed up by regular contact throughout the
330 project. Such regular contact also helps to stay up-to-date with relevant policy processes (further
331 discussed below), offering opportunities for participation and uptake. Participation of government
332 partners at multiple levels was seen as crucial in the transition process towards more sustainable
333 waste and resource management. Far-reaching changes are needed at all levels of government, and
334 throughout society, hence to bring about such systemic change “taking everyone with us” is
335 important. Only with such broad engagement approach can academics capture and integrate all
336 relevant perspectives, educate key actors, and present a shared pathway towards a sustainable
337 circular economy.

338 Government partners at all levels need to be engaged, from politicians to departmental policy
339 and technical teams, and parliamentary groups and committees. Involvement of politicians such as
340 MPs, MSPs, AMs and MLAs⁶ is important in order to build up credibility in the political arena.
341 Important departments to engage about waste and resource management are DEFRA, BEIS and the
342 Treasury in England, and equivalent departments in the devolved administrations, which are in
343 crucial positions for waste and resource management policy and regulation, industrial strategy and
344 waste infrastructure. MHCLG and the equivalent departments in the devolved administrations are
345 also of key importance as they regulate the budgets available for local councils responsible for
346 municipal solid waste. Engagement should include both technical officers as well as policy makers.
347 Membership of various parliamentary groups and committees is another way of channelling
348 engagement and impact. The All-Party Parliamentary Sustainable Resource Group is a good conduit
349 for influencing in England, as is the Environmental Audit Committee. Additionally, timely
350 engagement of regulators and regional governments is crucial for the implementation of sustainable
351 waste and resource management strategies and measures [25].

352 It is important to engage the governmental actors mentioned above, because they are closely
353 involved themselves or indeed coordinating various relevant activities to which academics could
354 contribute. For example, in departments such as DEFRA, BEIS and the Treasury, engagement could
355 take the form of direct and regular meetings to exchange knowledge or through contributions to
356 consultations such as for the industrial strategy, bioeconomy strategy and approaches to support the
357 circular economy. Contributions to standards, for example BREFs (BAT, Best available techniques,
358 REference documents) and the recycling protocol for demolition and construction waste, are another
359 option. To make results more accessible for government partners, academics could also contribute to
360 POST (Parliamentary Office of Science and Technology) notes and the Raw Materials Information
361 System. Furthermore, organising research results and data in existing, or newly launched, online
362 databases would make research results on waste and resource management more accessible. Finally,
363 organising events in Westminster and the devolved parliaments/assemblies offer another platform
364 to engage politicians and other government actors.

365 Two interlinked approaches to position research outcomes were brought forward. The first
366 pertains to whole system approaches. The ability of maintaining the bigger picture of whole systems
367 is a core strength of academia. However, government changes holistic systems through key
368 intervention points. Moreover, they only have limited resources to intervene and hence need to

⁶ <https://www.parliament.uk/about/mps-and-lords/members/>

369 maximise the effects with minimum resources. Therefore it is recommended that academics provide
370 specific measures targeted at sectors and materials, within the context of the whole system. In other
371 words, academics should present whole system models but with more practical recommendations.

372 Another key approach in presenting research outcomes revolves around integration. Building
373 on the observation above that actors throughout society need to change, at all levels of government
374 as well as industry and general public; academic work should integrate the diverse stakeholder
375 perspectives. Priority should be given to integration of strategies for the circular economy with the
376 wider agenda for economic development and protection of the environment. Practical advice to
377 support such integrated, cross-government, approach is in demand. Recommendations in the form
378 of new metrics to integrate into economic development models would be valuable, for example
379 circular economy metrics or sets of metrics that include environmental and social indicators of
380 progress in addition to economic metrics. Data associated with such new as well as existing metrics
381 to understand whole systems, in addition to data covering gaps in models used by the government,
382 would also help governmental partners better understand whole systems. Academia should support
383 a more integrated understanding of promoting sustainable waste and resource management by
384 joining up the elements of the circular economy. While government interventions tend to focus on
385 sectors and materials, and academics should translate recommendations into such terms, academia
386 should also clarify how resources can circulate through the economy through interconnected sectors.
387 In other words, academics should identify where joined up interventions for two or more sectors are
388 necessary to support the emerging circular economy. Finally, it is strategically important to integrate
389 perspectives within academia. Too widely differing academic perspectives are open to misuse by
390 transition sceptics looking for reasons not to use the provided evidence and change any practices.

391 Turning towards the research activities supporting effective collaboration with government
392 partners, three activities are suggested – but many more are possible:

- 393 1. Identify policies and regulations linked to the research project.
- 394 2. Carry out a situational analysis to understand if, and in what way, a new approach or technology
395 could be realised within the policy and regulatory context.
- 396 3. Connect solutions and recommendations explicitly to policies and regulations in a specific
397 region.

398 4. Discussion: Reflections on RRfW vision and existing government strategies

399 4.1 Comparing the academic and governmental narratives

400 Comparison of the “governmental” narrative outlined above to the opening narrative of the
401 Resource Recovery from Waste programme [8] shows that both perspectives largely align.
402 Importantly, government and academic perspectives agree on the necessity to transition towards a
403 circular economy, moving away from end-of-pipe solutions and increasingly focusing on upstream
404 supply chain changes to bring materials, components and products to market that can easily be
405 reused, dismantled and recycled. This is especially the case for new complex materials and e-wastes.
406 The need for new economic theory and practice was recognised, including the ability to assess the
407 true costs of processes in terms of economic, social and environmental values throughout whole
408 supply chains – note that technical value was not discussed by government partners. The circular
409 economy, and associated increased need for innovation, was perceived as an opportunity for the
410 British economy. However, reaping the benefits will depend on understanding and realising the
411 required waste and resource management infrastructure in support of a CE.

412 The government and academic narrative agreed on the necessity for more action supporting
413 sustainable waste and resource management from actors throughout society. Everyone needs to be
414 involved in the transition process. Academia is particularly well-placed to keep an overview of the
415 bigger picture, suggesting alternative economic development pathways and identifying key
416 intervention points. The need for continuous engagement of non-academic stakeholders in academic
417 research and formulating practical recommendations were a shared concern.

418 Differences between the academic and governmental narrative were relatively diffuse. The
419 discussion with partners in governmental organisations did not reach as widely as the academic
420 narrative – for example the dependency of economy on society and environment was less
421 pronounced. However, such dependencies were not directly questioned either by governmental
422 contacts engaged for the narrative presented herein. Similarly, linkages between waste management,
423 overexploitation of resources and quality of life *in the UK* were less clear. Governmental and academic
424 narratives diverged on the questions whether changing consumer behaviour is a necessity before
425 marketing products that are more amenable to recycling, and whether internalising environmental
426 and social values into financial cost-benefit analysis will really support a transition towards a circular
427 economy. Finally, while clear agreement emerged on the issue of data deficiencies, the governmental
428 response was centred on increasing efforts for data acquisition and digitisation opportunities while
429 academia may focus more on developing tools to deal with imperfect data and/or data that is difficult
430 to combine. These two approaches could be complementary if correctly designed.

431 4.2 *Reflecting upon government strategies in England, Scotland, Wales and Northern Ireland*

432 This article has presented the personal views of those working in governmental organisations
433 and this section complements those perspectives with the formal government positions. As waste is
434 a devolved matter in the UK, the key themes identified in this article are compared to the aspirations
435 presented in visions, strategies and plans for the promotion of a CE, resource recovery and waste
436 management (as far as they are available) in England, Wales, Northern Ireland and Scotland.

437 4.2.1 Wales

438 In Wales the circular economy is promoted through the national waste strategy "Towards Zero
439 Waste" [27] under the leadership of the Cabinet Secretary for Environment and Rural Affairs. The
440 strategy was introduced in 2010 and is due for an update in 2018, for which consultation is currently
441 on-going. It integrates waste management with other policy areas, including the Well-being of Future
442 Generations (Wales) Act 2015 and Environment (Wales) Act 2016, striving to achieve the One Wales:
443 One Planet goal sustainable development scheme [28]. The national waste strategy is implemented
444 through a series of sector plans and a programme of government initiatives including e.g. the
445 statutory recycling targets and investment in WRAP Cymru⁷ and, more recently, a Circular Economy
446 Investment Fund for SMEs⁸.

447 Recently the Welsh government published the Natural Resource Policy [29]. This policy
448 recognises natural resources as the backbone of the economy and society, adopting an ecosystem
449 stewardship approach (such as discussed in the Resource Recovery from Waste vision in [8]). Clearly,
450 this policy takes a next step in Wales' transition towards an economy that is sustainable by design,
451 putting the environment and human well-being up-front whilst promoting sustainable growth
452 through renewable energy, resource efficiency and the circular economy as expressed in this quote:
453 *"The evidence shows that the inefficient use of natural resources is affecting the availability of primary resources
454 and materials now and in the future. In addition the use of these resources places significant pressures on our
455 natural resources and ecosystems in the form of damaging pollution and climate change. To reduce these
456 pressures, we need to increase waste prevention and promote reuse, recycling and recovery."* [29] (p11).

457 Similar to the zero waste strategy, the natural resource policy is integrated with the Well-being
458 of Future Generations⁹ and Environment Act¹⁰, while strongly linking to the international
459 agreements in the UNFCCC, CBD, and UN SDGs. Finally, the national strategy "Prosperity for All"

⁷ Written statement - Achieving a more circular economy for Wales
<http://gov.wales/about/cabinet/cabinetstatements/previous-administration/2016/circulareconomy/?lang=en>

⁸ <http://gov.wales/newsroom/environmentandcountryside/2017/170310-cabinet-secretary-confirms-6m-circular-economy-fund/?lang=en>

⁹ <http://gov.wales/topics/people-and-communities/people/future-generations-act/?skip=1&lang=en>

¹⁰ <http://gov.wales/topics/environmentcountryside/consmanagement/natural-resources-management/environment-act/?lang=en>

460 links into this framework of strategies, policies and agreements too [30]. However, realising these
461 plans will require considerable regulatory reform and this appears to be still in its early stages.

462 When comparing the Towards Zero Waste strategy and the Natural Resources Policy to the
463 themes identified in this research, it is clear that they not only already have integrated all aspects
464 (Table 1) but also added further themes such as:

465 • Ecosystem stewardship and biodiversity
466 • Integrated governance
467 • Investment support for CE and resource efficient public procurement

468 4.2.2 Scotland

469 Scotland has a longer history of working towards a CE, stemming from the Zero Waste Plan [31].
470 The focus on waste minimisation has grown to include resource efficiency and CE, connected to the
471 decarbonisation of the economy. The EU CE Package¹¹ is seen as leading the uptake of circular
472 practices, providing a strong basis for the detailed strategy "Making Things Last" for the Scottish CE
473 [32]. The CE strategy integrates objectives of the Zero Waste Plan [31] and waste prevention strategy
474 "Safeguarding Scotland's Resources" [33], and is linked to "A Manufacturing Future for Scotland"
475 strategy [34] in which CE takes centre stage in the first key action to "*Deliver concrete initiatives to boost
476 productivity including leadership, employee engagement and skills, energy efficiency and the adoption of
477 circular economy approaches across the manufacturing sector*". In Scotland, CE is explicitly linked to zero
478 waste and resource efficiency; resource efficiency in its turn has been integrated with decarbonisation
479 and preservation of natural capital as part of investment priorities set out in the economic strategy
480 [35].

481 The Scottish CE strategy strongly embraces the waste hierarchy, with plans and priorities to
482 promote circularity via every level of the hierarchy. It envisions the decoupling of economic growth
483 from resource use, through increased resource productivity [36], as formulated in this quote: "*All of
484 the priorities in chapters covering loops of the circular economy (design, reuse, repair and remanufacture) will
485 also contribute to waste prevention, helping to decouple resource use from economic growth.*" [32](p11).

486 Despite the clear plans for decoupling, compared to the themes identified in this research the
487 overall strategy seems less radical and integrative in terms of social changes and reforming
488 perceptions of economic progress and associated values (Table 1). While environmental and
489 economic objectives are well-integrated, the social interests appear to be more in the background.
490 This is for example reflected in the way that progress is defined with social factors such as skills, jobs
491 and social enterprises, but less about the bigger picture of welfare and viable communities; while the
492 proposed metrics framework, which appears to be in its early stages of development, entirely focuses
493 on 'classic' indicators such as reducing carbon emissions and wastes. Moreover, the strategy aims for
494 lower costs and economic growth for Scotland. Environmental limits, and particularly resource
495 scarcity, appear to be the key driver for Scotland, as framed in "Safeguarding Scotland's Resources"
496 [33] (p6): "*The overall aim of this programme is to prevent waste, increase resource efficiency and enable a shift
497 towards a more circular economy.*" This confirms the predominantly environmental and economic basis
498 for the Scottish CE, from a materials' management perspective. Overall, focus does not seem to be as
499 much on reduction of consumption and promotion of 'sufficiency' such as in Wales, indicating
500 perhaps a less radical view on societal change. That said, the resource management blueprint does
501 include ideas for a culture change regarding resource efficiency [33]. While the envisioned changes
502 for Scotland may be less radical in nature, the strategies and plans are coherent and are
503 operationalised with detailed actions.

504 4.2.3 Northern Ireland

505 Northern Ireland does not have a CE strategy yet [37]. Circular economy does get mentioned in
506 the waste management strategy for Northern Ireland "Delivering Resource Efficiency" [38]; linking

¹¹ http://ec.europa.eu/environment/circular-economy/index_en.htm

507 waste management and resource efficiency to the low-carbon and circular economy. The strategy
508 defines resource efficiency as “*using resources in the most efficient way while minimising the impact of their*
509 *use on the environment*” (p6). While it recognises that waste should be treated as a resource with a
510 value, it remains viewed mostly as a risk to environment and people rather than recognising it as an
511 opportunity to transform the economy. Recycling targets are integrated to deliver objectives on
512 protecting people, environment and creating safer communities. Nevertheless, waste management is
513 recognised as part of the green economy, and relations are established to sustainable development
514 too.

515 The Northern Irish sustainable development strategy “Everyone’s involved” [39] presents
516 ambitious plans around four key themes: economic prosperity, social cohesion, environmental
517 protection and meeting national and international responsibilities. The strategy strongly centres on
518 climate change, reducing carbon emission, and energy generation. While the strategic objectives do
519 mention resource efficiency, the translation into actions is limited to increasing resource efficiency of
520 businesses and reducing landfill. No specific investments into waste, resource recovery or circular
521 economy infrastructure are included. Looking into the details of investment in infrastructure, the
522 Strategic Waste Infrastructure Programme launched in 2008 was designed to deliver landfill
523 reduction targets¹². Initially, the programme was designed to be delivered through three projects,
524 striving to deliver waste infrastructure including Mechanical- and Biological Treatment- and Energy-
525 from-Waste facilities¹³. However, delivery was protracted and eventually two of the three projects
526 were abandoned due to procurement challenges and the success of the waste prevention measures,
527 driving down demand for this type of facilities.

528 Waste prevention was supported by the EU Waste Framework Directive, obliging all member
529 states to prepare a waste prevention plan. In Northern Ireland, the introduction of the new waste
530 management strategy (discussed above) and the Waste Prevention Programme increase efforts to
531 “*drive waste up the waste hierarchy; to deliver resource efficiency*” [40] (p6). The waste prevention strategy
532 strives to continuously reduce waste arisings in Northern Ireland, delivering objectives on
533 decoupling, encouraging people to increase resource efficiency and produce less waste, and
534 integrating resource efficiency and waste prevention into business management and project
535 planning.

536 Comparing the Northern Irish context to the key themes in Table 1, it is recognised that progress
537 should be redefined to include environmental and social- in addition to economic factors. However,
538 for waste and resource management this has not translated yet into values and metrics to progress in
539 such integrated manner, transforming the economy to become more circular. Old perspectives on
540 waste management appear to prevail in government, with a bias towards environmental- and health
541 risks and EfW and little action beyond achieving landfill reduction targets. It can be concluded that
542 a good start has been made in preparing the government strategic context for waste and resource
543 management integrated into sustainable development and set for radical economic and societal
544 change, however, this has not crystallised yet into substantial, concrete progress in line with this
545 framework.

546 4.2.4 England

547 Similar to Northern Ireland, England does not have a CE strategy. The waste review 2011,
548 initiated by the previous coalition government, set out a comprehensive view to move towards a
549 green, zero waste economy delivering economic and environmental benefits [41]. However, the waste
550 management plan [42] and associated post-adoption statement [43] indicate a step backwards from
551 the radical economic and societal reforms required for sustainable waste and resource management.
552 The plans voice the ambition to achieve zero waste as part of the transition towards a sustainable
553 economy, however, also accept waste as unavoidable. Framed according to the waste hierarchy, it
554 delivers the minimum requirement for the revised Waste Framework Directive aim “*to protect the*

¹² <https://www.daera-ni.gov.uk/articles/waste-infrastructure-and-secretariat-office#toc-0>

¹³ <http://www.agendani.com/waste-infrastructure/>

555 *environment and human health by preventing or reducing the adverse impacts of the generation and*
556 *management of waste and by reducing overall impacts of resource use and improving the efficiency of such use”*
557 *(p34).*

558 The waste management plan is complemented by the waste prevention programme for England
559 [44] and a quality action plan [45]; both making positive statements about the environmental and
560 economic values that can be created by driving waste management higher up the waste hierarchy.
561 However, the overall picture of waste strategies and plans appears somewhat ambivalent, with
562 contradictory statements such as a indicated above around zero waste yet readily accepting
563 unavoidability, willingness to support secondary resource markets in the UK yet justifying large-
564 scale exports, incorporating the waste hierarchy including the requirement for a diverse waste and
565 reprocessing infrastructure yet directing public investment nearly solely to energy recovery (also see
566 [20]), and setting out collective responsibilities yet delegating responsibility to deliver to local
567 authorities and the EA with diminishing budgets. Hence in the comparison with the key themes in
568 Table 1, England appears the least green in terms of waste and resource management.

569 Perhaps the picture in England is constrained by the political complexity and available capacity
570 in ministries who are, unlike their devolved counterparts, not only responsible for England but the
571 whole UK. For the UK as a whole there is no CE strategy. However, the CE has been incorporated
572 into the new industrial strategy “Building a Britain fit for the future” [46]. Circular economy, resource
573 efficiency and resource productivity are recognised in achieving clean growth i.e. increased economic
574 growth while decreasing carbon emissions [47]. These strategies are supported by the 25 year
575 Environmental Plan [48] and forthcoming Resource and Waste Strategy aiming to make the UK a
576 world leader in competitiveness, resource productivity and resource efficiency.

577 Government action now needs to follow this positive curve. While the benefits and feasibility of
578 measures increasing resource efficiency are long known (e.g. [49]), in practice government action
579 focuses on energy efficiency rather than material efficiency which is perceived as more of a future
580 challenge [47]. Similarly, the National Infrastructure Delivery Plan 2016-2021 [50] shows a relatively
581 limited investment in waste management, justified with the fact that capacity is sufficient to meet EU
582 landfill diversion targets. Investments that are scheduled are for ca. 80% in EfW. The government
583 should invest in diversifying waste infrastructure to include material reuse, recycling and recovery
584 in line with its ambition to have the infrastructure in place and move towards a high-value CE in the
585 UK [20].

586 Comparing the analysis from the four nations in Table 1 confirms that changing practices
587 presents the most challenges. While governments generally recognised that progress includes
588 environmental and economic factors, social benefits and impacts tend to be underrepresented across
589 the UK. Moreover, the translation of these new visions around progress into actual values and metrics
590 lags behind and this is where governments can strengthen their strategies and plans. Personal- and
591 formal government perspectives were relatively aligned regarding the promotion of secondary
592 resource markets and enabling innovation (Table 1). Within the theme of “whole system approaches
593 identifying key intervention points” contrasts were particularly stark around the enabling of a CE
594 through (decentralised) infrastructure. Overall comparison of themes in Table 1 reveals that there are
595 strong regional differences within the UK. This raises the question to what extent context-specific
596 approaches are required and how this could be balanced within strategies and plans for the whole
597 UK to move all nations forward to a more CE.

598

599
600
601
602

Table 1: Comparative analysis of key themes distilled from government specialists' personal views and formal government visions, strategies and plans for CE, resource recovery and/or waste management for as far as these documents were published by the devolved administrations within the UK.

Themes	Country			
	Wales	Northern Ireland	Scotland	England
INTEGRATING ECONOMIC WITH SOCIAL AND ENVIRONMENTAL VALUES				
<i>Radical change in economic theory and practice</i>	Yes	Partly	Partly	No
<i>Progress redefined to include social and environmental factors</i>	Yes	Yes	Partly	Partly
<i>Maximise environmental, social and economic value created from resources</i>	Yes	No	Partly	No
<i>Internalise or integrate environmental, social and economic metrics</i>	Partly	No	Partly	No
SUPPORTING SECONDARY RESOURCE MARKETS				
<i>Decoupling: consumption from economic growth; environmental, social and economic metrics</i>	Yes	Yes	Yes	No
<i>Keep materials in economy as long as possible</i>	Yes	Partly	Yes	Partly
<i>Incentivise/ regulate emerging secondary resource markets</i>	Yes	Yes	Yes	Yes
<i>From supplier-led to demand-led markets</i>	Yes	Partly	No	No
ENABLING INNOVATIONS				
<i>Business model innovation vs. business as usual with improved recycling technology</i>	Yes	Partly	Yes	Partly
<i>Material and product design including end-of-life options</i>	Yes	Yes	Yes	Yes
<i>Digitisation enabling recycling, but growing e-waste</i>	Partly	No	Yes	Partly
WHOLE SYSTEM APPROACH IDENTIFYING KEY INTERVENTION POINTS				
<i>Move away from end-of-pipe approaches and higher up the waste hierarchy</i>	Yes	Partly	Yes	Partly
<i>Decarbonisation+ has to include waste and resource management</i>	Yes	Partly	Yes	Partly
<i>Enable CE through (decentralised) waste infrastructure</i>	Yes	No	Yes	No
<i>Whole system approach but identify key intervention points for targeted action</i>	Yes	Yes	Yes	Partly
REALISE RADICAL CHANGE THROUGH ENGAGEMENT OF GOVERNMENT, INDUSTRY, ACADEMIA AND GENERAL PUBLIC				
	Yes	Partly	Partly	Partly

603

5. Conclusions and Recommendations

604
605
606
607
608
609
610

This article shed light on the undercurrent of perspectives within governmental organisations that drive resource recovery and CE. Experts in waste and resource management in British governmental organisations broadly agreed on a vision of a circular economy that focuses on maximizing the value created from materials whilst keeping them in the economy for as long as possible. They also agreed that a move away from end-of-pipe approaches and instead designing durability and recyclability into the economy was necessary. A practical circular economy strategy was seen to require:

611
612
613
614
615
616
617
618

1. Integration of economic with social and environmental values, metrics and models; this applied to all government departments and especially the Treasury;
2. Support for secondary resource markets, for example under the guidance of the Department for Business, Energy and Industrial Strategy and the Department for Environment, Food and Rural Affairs and their devolved counterparts;
3. Policy interventions that enable innovation not just in waste processing technology but also in business models, product design, and data collection and analysis through the work of UK Research and Innovation; many of which will rely on increased exploitation of digital and data

619 technologies analogous to those in construction (e.g. CAD, BIM) or financial technology (e.g.
620 blockchain);
621 4. Adoption of a whole-systems approach to analysis (aided by academics) but a recognition that
622 Government operates in departments, and thus translation of whole-system recommendations
623 into specific actions that can be steered through key intervention points, under the leadership of
624 the Cabinet and their devolved counterparts supported by a new Office for Resource
625 Stewardship [20, 25].

626 To deliver such a circular economy, government needs to collaborate with partners from across
627 society to integrate scientific research, policies and regulations. The government must adopt a long-
628 term and predictable policy framework focused on resource efficiency and building on the EU
629 circular economy package in line with the decarbonisation agenda. This should be allied to a clear
630 pipeline of forthcoming projects and interventions similar to that adopted by the National
631 Infrastructure Plan to reduce uncertainty and investment risk, unlocking new finance and business
632 models. A mix of supporting regulatory approaches needs to be developed, including a) taxation, b)
633 reporting, c) extended producer- and consumer responsibility, d) product bans or standards, e)
634 mandatory recycling regimes, and f) a new Waste Prevention Act.

635 Comparison of the personal expert views to the formal government positions shows that a part
636 of the proposed vision and approach has already perpetuated into strategies and plans. However,
637 differences in policy and regulation across the four nations in the UK are large and any existing
638 coherence appears to be driven by a desire to comply with EU directives. Clearly the UK's current
639 intention to drastically change its relationship with the EU, and thus the degree to which the UK as
640 a whole and individual nations continue to implement e.g. the EU Circular Economy Package, will
641 disrupt this coherence unless concerted policy action is taken soon. Comparing the government views
642 to RRfW's perspective (see [8]), attention for the social impacts (such as air quality) and benefits (for
643 example high quality jobs) is generally lower in government; we note that relations between waste
644 and resource management and "social" aspects, well-being and human rights in the UK needs more
645 research and communication and this could in part be delivered via academic research. Moreover,
646 further action is needed to maintain the technical qualities of materials (and thus their ability to
647 contribute to industrial productivity i.e. the status as resources, not wastes) rather than losing them
648 through for example disproportionate reliance on energy-from-waste and export; this will require a
649 change in investment profile of the Infrastructure and Projects Authority.

650 The promising and increasingly coherent strategies of the British government now need to be
651 translated into practice. This will require inclusion of more diverse values and metrics in government
652 plans and models that measure technical, social and environmental costs and benefits as well as
653 economic; it is likely to require a step-change in the way resource and waste flow data is collected
654 and analysed. It will also require alignment of public investment with the ambitions for a growing,
655 low-carbon and zero avoidable waste economy that increases resource productivity and creates jobs
656 in all regions of the UK as the Government envisions.

657 Academia should contribute to government processes by keeping a watchful eye on the 'bigger
658 picture' whole-systems research but also translate this into communications to government
659 departments that explain how their various, specific decisions interact with- and impact on the
660 growing circular economy. Academics should recommend to government how greater coherency in
661 governance as well as policies and regulations can be achieved. Regular contact with governmental
662 organisations enables the provision of the timely and concrete recommendations needed in the
663 governance process. Research programmes such as those funded via UK Research and Innovation
664 must be designed to enable such collaboration with government and other relevant organisations [8].
665 RRfW will continue to collaborate with governmental organisations and translate project outcomes
666 into concrete recommendations for specific government bodies. Moreover, the programme will
667 continue to bring together the relevant actors in government, industry and academia with the aim to
668 actively contribute to the transition to a circular economy.

669

670 **Acknowledgments:** The authors are grateful for the engagement of all (former) government participants in the
671 preparation of this manuscript including Lee Davies, Andrew Dickson, Arjan Geveke, Alan Holmes, Helen
672 Jamieson, Louise McGregor, Kenneth O'Callaghan, Caroline Spencer and Andrew Woodend. The insightful
673 contributions from Andy Rees and Ann Humble are also much appreciated. Resource Recovery from Waste is
674 convened with funding from the Natural Environment Research Council, Economic and Social Research Council
675 and DEFRA via the Complex Value Optimisation for Resource Recovery grant NE/L014149/1.

676 **Author Contributions:** Anne Velenturf conceived and designed the study with contributions from Phil Purnell
677 and Alan Holmes; Anne Velenturf collected and analysed the data and wrote the paper with contributions from
678 Phil Purnell, Mike Tregent, John Ferguson and Alan Holmes.

679 **Conflicts of Interest:** The authors declare no conflict of interest. While the founding sponsors did task the RRfW
680 Programme Coordination Team with the formulation of a shared vision with relevant organisations working on
681 resource recovery in the UK, they had no role in the design of the study; in the collection, analyses, or
682 interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

683 References

- 684 1. Dobbs, R., et al., Resource Revolution: Meeting The World's Energy, Materials, Food, and Water
685 Needs. 2011, McKinsey Quarterly and Company.
- 686 2. UNEP, Decoupling: natural resource use and environmental impacts from economic growth. A
687 Report of the Working Group on Decoupling to the International Resource Panel: Fischer-Kowalski,
688 M., Swilling, M., von Weizsäcker, E.U., Ren, Y., Moriguchi, Y., Crane, W., Krausmann, F.,
689 Eisenmenger, N., Giljum, S. 2011.
- 690 3. Morgan, J., The Great Resource Price Shock. 2014, Green Alliance: London.
- 691 4. UNEP and ISWA, Global Waste Management Outlook. 2015.
- 692 5. Assessment), M.M.E., Ecosystems and Human Well-Being: Synthesis. 2005.
- 693 6. Rockström, J., et al., Planetary Boundaries: Exploring the Safe Operating Space for Humanity.
694 Ecology and Society, 2009. **14**(2): p. 32.
- 695 7. OHCHR and UNEP, Human Rights and the Environment. 2012.
- 696 8. Velenturf, A.P.M. and P. Purnell, Resource Recovery from Waste: Restoring the Balance between
697 Resource Scarcity and Waste Overload. Sustainability, 2017. **9**(9): p. 1603.
- 698 9. Breman, B., et al., Participation in water management (Participatie in waterbeheer). 2008,
699 Wageningen: Alterra Wageningen UR.
- 700 10. Bacon, C., V.E. Mendez, and M. Brown, Participatory Action Research and Support for
701 Community Development and Conservation: Examples from Shade Coffee Landscapes in Nicaragua
702 and El Salvador. 2005, Center for Agroecology and Sustainable Food Systems, University of
703 California: Santa Cruz, CA, USA. .
- 704 11. Defoer, T., et al., Participatory action research and quantitative analysis for nutrient management
705 in southern Mali: A fruitful marriage? Agric. Ecosyst. Environ. 1998. **71**: p. 215-228.
- 706 12. Bryman, A., Social research methods, fourth edition. 2012, Oxford: Oxford University Press.
- 707 13. Interpol, Guide to Carbon Trading Crime. 2013, Interpol Environmental Crime Programme. .
- 708 14. Millward-Hopkins, J., et al., Fully integrated modelling for sustainability assessment of resource
709 recovery from waste. Science of the Total Environment, 2018. **612**: p. 613-624.
- 710 15. OECD, Improving Recycling Markets. 2007.
- 711 16. WRAP, Materials Pricing Report. 2017.
- 712 17. Bocken, N.M.P., et al., A literature and practice review to develop sustainable business model
713 archetypes. Journal of Cleaner Production, 2014. **65**: p. 42-56.
- 714 18. Accenture, Circular Advantage: Innovative Business Models and Technologies to Create Value
715 in a World without Limits to Growth. . 2014.
- 716 19. Hahladakis, J.N., et al., An overview of chemical additives present in plastics: Migration, release,
717 fate and environmental impact during their use, disposal and recycling. Journal of Hazardous
718 Materials, 2018. **344**: p. 179-199.
- 719 20. Purnell, P., On a voyage of recovery: a review of the UK's resource recovery from waste
720 infrastructure. Sustainable and Resilient Infrastructure., 2017.

721 21. Jensen, P.D., The Role of Geospatial Industrial Diversity in the Facilitation of Regional Industrial
722 Symbiosis. *Resources, Conservation and Recycling.*, 2016.

723 22. BuroHappold, Help or Hindrance? Environmental regulations and competitiveness. 2017.

724 23. CIWM, 2016.

725 24. Office), N.N.A., The impact of funding reductions on local authorities. 2014: London.

726 25. Velenturf, A.P.M., Analysing the governance system for the promotion of industrial symbiosis
727 in the Humber region, UK. *People, Place and Policy*, 2016. **10**(2): p. 146-173.

728 26. Velenturf, A.P.M., Promoting industrial symbiosis: empirical observations of low-carbon
729 innovations in the Humber region, UK. *Journal of Cleaner Production*, 2016. **128**: p. 116-130.

730 27. Government, W.A., Towards Zero Waste, the overarching waste strategy. 2010.

731 28. Government, W.A., One Wales: One Planet, the sustainable development scheme of the Welsh
732 Assembly Government. 2009.

733 29. Government, W., Natural Resources Policy. 2017.

734 30. Government, W., Prosperity for All: the national strategy. 2017.

735 31. Scotland, N., Zero Waste Plan. 2010.

736 32. Scotland, N., Making Things Last. 2016.

737 33. Scotland, N., Zero Waste. Safeguarding Scotland's Resources: Blueprint for a more resource
738 efficient and circular economy. . 2013.

739 34. Government, S., A Manufacturing Future for Scotland. 2016.

740 35. Government, S., Scotland's economic strategy. 2015.

741 36. Science, G.O.f., From waste to resource productivity: main report. 2017.

742 37. Cave, S., Background paper on Waste Management in Northern Ireland. 2016, Northern Ireland
743 Assembly Research and Information Service.

744 38. Environment, D.o., Delivering Resource Efficiency: Northern Ireland Waste Management
745 Strategy. 2013.

746 39. Executive, N.I., Everyone's involved: Sustainable Development Strategy. 2010.

747 40. Environment, D.o.t., The Waste Prevention Programme for Northern Ireland: The Road to Zero
748 Waste. 2014.

749 41. DEFRA (Department for Environment, F.a.R.A., Government Review of Waste Policy in
750 England. 2011.

751 42. DEFRA (Department for Environment, F.a.R.A., Waste Management Plan for England. 2013a.

752 43. DEFRA (Department for Environment, F.a.R.A., Waste Management Plan for England – post
753 adoption statement. 2013.

754 44. Government, H., Prevention is better than cure: The role of waste prevention in moving to a
755 more resource efficient economy. 2013.

756 45. DEFRA (Department for Environment, F.a.R.A., Quality Action Plan: Proposals to promote high
757 quality recycling of dry recyclates. 2013.

758 46. Government, H., Industrial Strategy: Building a Britain fit for the future. . 2017.

759 47. Government, H., The Clean Growth Strategy: Leading the way to a low carbon future. . 2017.

760 48. Government, H., A Green Future: Our 25 Year Plan to Improve the Environment. 2018.

761 49. WRAP, Securing the future – The role of resource efficiency. 2010.

762 50. IPA, National Infrastructure Delivery Plan 2016–2021. 2016.