

1 Article

2

Geoinformation Modeling of Flooded Areas in

3

Settlements in the Example of Lutsk

4 **Anna Shostak¹, Volodymyr Voloshyn¹, Oleksandr Melnyk^{1*} and Pavlo Manko¹**5 ¹ Lesya Ukrainka Eastern European National University, Voli street 13, 43000, Lutsk, Ukraine;
6 E-Mails: (shostakanna, vol.lutsk, hockins@gmail.com, pavlo_manko@ukr.net

7 * Correspondence: hockins@gmail.com; Tel.: +38-050-184-7315

8 Received: date; Accepted: date; Published: date

9 **Abstract:** Floods in Ukraine is a common natural phenomenon that repeats periodically and in some
10 cases it becomes disastrous signs. In an average year in the rivers of Volyn passes from one to three
11 floods with going beyond the limits of the floodplain. Floodplain of Styr river is located in the
12 historical center of Lutsk city, that's why issues of research and forecasting of floods are very
13 important for a given city. Using modern technologies of geodesy and remote sensing allows to
14 quickly determine and predict the floodplain area of settlements. The research results of water level
15 changes on the Styr River and flood zones within the limits of Lutsk is proposed. The mathematical
16 model of short-term forecasting of water level in flood period on the river Styr with implementation
17 of geoinformation modeling of flooded areas using remote sensing data is proposed.18 **Keywords:** geoinformation modeling, settlement territory, approximation, digital terrain models,
19 TIN-models, water level, flood process.

20

21

22

1. Introduction

23 Freshets and flooding is typical for all rivers in Ukraine, whitch watersheds are characterized by
24 irregularity of falling atmospheric precipitation.25 The power of floods is largely depends on the amount, intensity and duration atmospheric
26 precipitations or water supply in the snow cover and melt water formation intensity (Kovalchuk,
27 1997).28 Flood - phase of the hydrological regime of the river, which is characterized by fast, relatively
29 short-lived increase of water levels in the mainstream during heavy rains, prolonged rains, heavy
30 snow melt during the thaw, which is imposed on the rain. Floods in Ukraine is a common natural
31 phenomenon that repeats periodically. However, in some cases it becomes disastrous signs, entails
32 the destruction of dams and buildings, loss of life, significant financial loss.33 In an average year in the rivers of Volyn passes from one to three floods with going beyond the
34 limits of the floodplain. Frequencies of floods in many year cut is subordinate to certain laws, which
35 appear in alternating periods of high and low water level, caused by global atmospheric circulation.36 The territory of Stir river basin is characterized by flat topography, which complicates a quick
37 passage of floods and causes flooding of large areas, on average, once in 2-3 years.38 Economic activities which carried out with violation environmental regulations, significantly
39 reduced the possibility of throughput of river Styr and a number of its inflows, that increased water
40 level and the time of the floods.41 The main reasons of spring floods as natural disasters (as well as the fall) is a natural
42 (meteorological) factors that intensified by anthropogenic load of area. That is catastrophic
43 consequences to a certain extent caused by economic activity in recent decades. Enhanced of
44 negative consequences their catastrophic ostent not contributes the location of buildings in the area
45 permanent flooding and intensification of overland flow. So today there is an urgent need for

46 complex planning and implementation of immediate flood protection measures and organize
47 economic activities in watersheds in most exposed to the ravages regions by freshets and flooding.

48 Since 1995, scientists from the Lesya Ukrainka Eastern European National University performed
49 comprehensive regional monitoring study.

50 Work carried out under the following programs: "Complex regional program protecting the
51 population and territories from emergency situations of technogenic and natural character in the
52 Volyn region in 2016-2020 years", Regional Environmental Program "Environment 2016 - 2020",
53 Regional program for evaluation of state and clearing of major river Volyn beds, Regional program
54 for environmental monitoring of Volyn region, Regional ecological program "Ecology - 2015 and
55 Forecast till 2020".

56 The issue of research, forecasting and modeling of floods did not lose its relevance in national
57 and foreign scientists. Monitoring of flood processes, with the use remote sensing methods, their
58 forecasting and GIS modeling were considered in the works [1,2], and in combination with
59 mathematical prediction in the works [3-5]. Modeling using discrete Fourier series devoted several
60 articles, including [6,7].

61 The practical application of geographic information systems in general and QGIS package
62 concretely is covered in the works [8-10].

63 Questions of mathematical modeling of flood process in river Styr dedicated work [11], but
64 geoinformation forecasting of flooding areas in the city of Lutsk was not considered that's why
65 proposed research timely and relevant.

66 **2. Research area**

67 The frequency of floods in the multi-years cut formation is subject to certain laws, which appear
68 in alternating periods of high and low water level, caused by global atmospheric circulation.

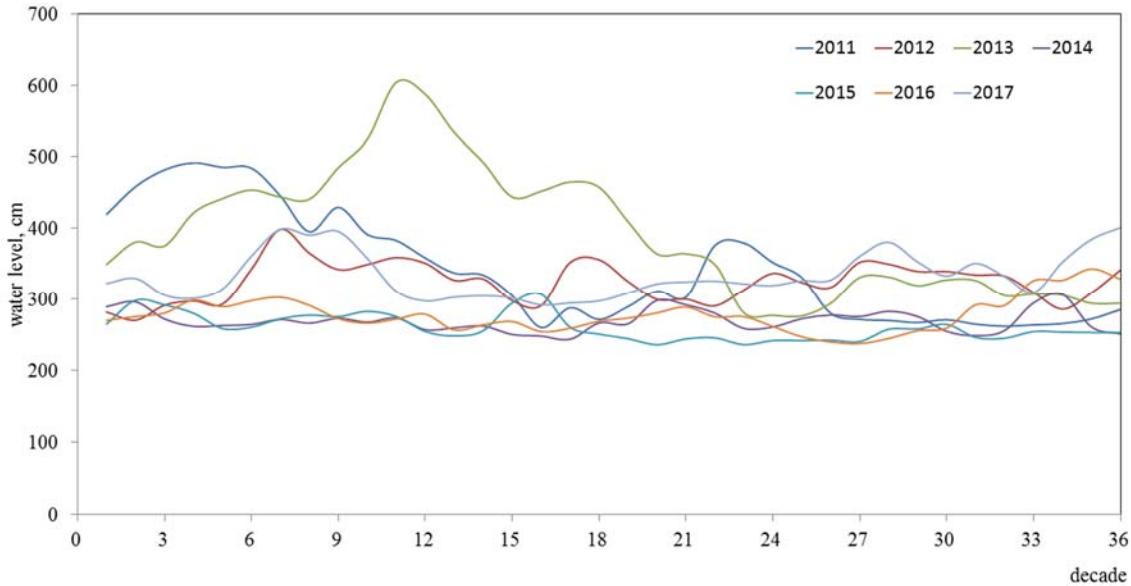
69 According to conclusions of Ukrainian Research Hydrometeorological Institute's scientists high
70 floods repeating is possible in the following years on the rivers of the entire western region of
71 Ukraine, that must be taken in mind in the performance measures to protect the population from the
72 negative effects of treatment.

73 Volyn region characterized by flat terrain, which making it difficult to rapid completion of
74 floods and leads to submergence of large territories, on average, once in 2-3 years.

75 Economic activities that are in violation of environmental regulations, significantly reduced the
76 throughput possibility of Styr river and a number of its inflows, raising the water level and the time
77 of the floods.

78 The main reasons of spring floods as natural disasters (as well as the fall) is a natural
79 (meteorological) factors that intensified by anthropogenic load of area. That is catastrophic
80 consequences to a certain extent caused by economic activity in recent decades. Enhanced of
81 negative consequences their catastrophic ostent contributes the location of buildings in the area
82 permanent flooding and intensification of overland flow.

83 Based on the statistical data of the Volyn Regional Center for Hydrometeorology over the past 7
84 years about water level in the river Styr using a every ten days values water levels (Table 1) we
85 conducted mathematical modeling of fluctuations of water levels in the period within territory of
86 Lutsk. The post of hydrological measurements of Styr river water levels in the territory of Lutsk
87 located on the Shevchenko street and complies an altitude 172.87 meters.


88 **3. Statistical analysis**

89 Analyzing the statistics, we can state that every year in the city of Lutsk observed 1-2 floods. So
90 in 2011 there was a flood in February, when the water level risen to an altitude of 177.85 and in August
91 during torrential rains when the water level has increased from 2.74 m to 3.84 m. The 2012 spring
92 flood was observed in March with the maximum water level 177.05 m, and during the September
93 rains, the water level has increased from 3.13m to 3.77 m. In 2013 on April 15 was observed a record
94 spring flood, when the water level reached 179.00 meters mark, and during September and October
95 rainy season the water level has increased from 2.69 meters to 3.48 meters. In 2014 floods was

96 registered in February and June, when over three decades the water level rising from mark 2.89 m to
 97 3.84 m and 2.77 m to 3.78m. In 2015, during the flood in the month of May, the water level risen from
 98 a mark 175.59 m to 176.27 m. In 2016 on the territory of Lutsk was observed autumn flood, when in
 99 the second week of November, the water level began to rise from the 2.81 m mark to a mark of 3.58
 100 on December 18. In 2017 there was a weak spring flood in the period from February 2 to March 2. At
 101 this time, the water level has increased from 3.01 m to 3.99 m. Autumn flood fell to the end of
 102 November and continues at the beginning of 2018. At this time, the water level has increased from
 103 3.03 m (November, 27) to 4.15 (December, 31). Fluctuations of water levels in the river Styr in the past
 104 seven years is shown in Figure 1.

105 **Table 1.** The average ten-day water level of the river Styr within the territory of Lutsk for
 106 2011-2017.

Year	Dec.	Water levels on a monthly, cm											
		I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
2011	I	419,4	491,1	444,8	391,1	336,9	260,0	289,4	375,7	330,5	269,8	264,6	265,5
	II	458,1	485,0	394,9	382,5	333,9	287,6	311,1	379,0	279,7	266,9	261,8	272,1
	III	481,5	483,8	428,9	358,0	304,8	271,4	302,8	351,6	271,4	270,8	263,6	285,2
2012	I	282,2	297,9	398,7	349,4	327,4	291,5	325,6	291,2	324,0	349,9	334,7	286,6
	II	271,1	293,6	365,4	359,2	329,3	352,3	300,4	313,7	317,3	339,7	333,3	309,7
	III	291,9	343,0	342,5	351,2	298,6	356,2	300,6	337,0	352,6	339,7	310,0	341,8
2013	I	349,7	421,7	443,8	524,2	533,5	451,9	409,3	349,2	276,6	331,5	326,6	305,8
	II	380,7	441,6	440,8	603,5	492,1	464,9	364,1	280,9	294,3	319,5	305,3	294,3
	III	375,4	453,6	484,8	586,8	443,9	457,5	364,4	277,4	330,9	327,6	307,4	294,2
2014	I	304,7	346,7	365,5	285,3	267,5	352,1	289,0	261,3	270,9	267,1	259,2	247,6
	II	300,9	365,7	331,0	286,0	283,3	360,2	295,6	262,4	265,8	273,0	261,7	243,2
	III	351,9	379,6	325,8	285,3	295,2	365,5	271,6	263,9	272,6	256,6	249,9	266,0
2015	I	264,8	279,7	272,1	282,3	248,2	306,4	244,3	245,4	241,5	257,4	246,0	253,4
	II	297,9	258,4	277,2	275,1	255,4	260,3	235,8	235,9	242,2	257,8	244,9	252,9
	III	291,6	260,4	275,1	254,3	294,2	250,7	244,0	241,6	240,3	264,2	254,2	252,8
2016	I	270,4	298,7	302,8	266,4	256,8	254,6	273,5	275,3	247,3	245,0	292,0	327,0
	II	275,7	289,5	291,3	272,1	264,0	259,3	280,8	275,6	240,1	255,8	291,3	343,0
	III	280,6	298,0	272,6	278,9	268,6	269,0	288,9	261,7	237,8	259,5	326,5	328,6
2017	I	322,3	300,9	399,3	357,9	302,6	291,5	308,6	325,6	326,4	380,9	350,9	352,8
	II	329,6	314,4	391,0	311,2	304,5	294,2	321,7	321,7	327,2	352,9	332,1	385,1
	III	305,3	361,3	396,1	297,2	301,6	297,1	324,4	319,4	361,0	332,8	309,4	401,7

107

108

Figure 1. Dynamics of water levels on the river Styr in the territory of Lutsk for 2011-2017.

109

4. Mathematical modeling

110
111
112

The mathematical model of water levels on the river Styr within the territory of Lutsk is based on the creating a partial Fourier series [6,7] for discrete values of middle-ten-day water levels values during the period 2011-2017 years.

113
114

As the model calculations have shown, the character of the fluctuation of water levels during this period is approximated by the polynomial trend component of the species:

$$H(t) = \sum_{i=0}^k a_i t^i \quad (1)$$

115
116
117

where $H(t)$ - value of the Styr river water level; a_i - coefficients of polynomial trend; t - time variable. The criterion for best approximation values every ten days water level of the river Styr served coefficient of determination between the actual values and the values of a polynomial trend:

$$R^2 = 1 - \frac{\sum_{i=1}^N \left(h_{act_i} - \sum_{j=0}^k a_j t^j \right)^2}{\sum_{i=1}^N (h_{act_i} - h_{mid})^2} \quad (2)$$

118
119
120
121

As a result of processing every ten days values of water levels fluctuations, we came to the conclusion that trend component of Styr river water levels fluctuations in the study period sufficient present as a 3 power polynom. In the process of mathematical treatment we received a trend curve type:

$$H(t) = 0.00007 t^3 - 0.02128 t^2 + 1.37259 t + 336.52133 \quad (3)$$

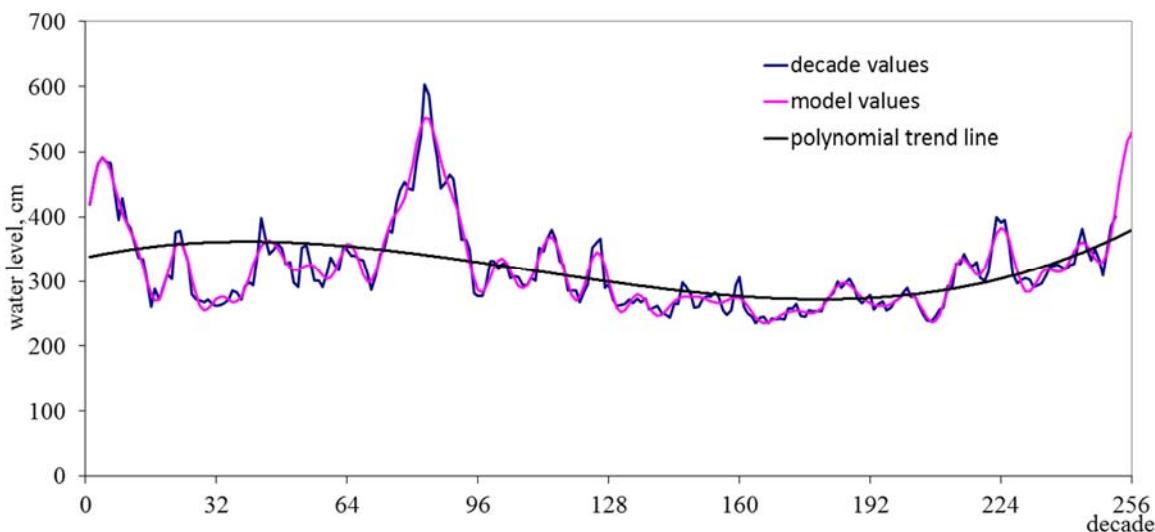
122
123

For a more detailed study of water levels fluctuations present the deviations of observations from the values which have received the trend curve (2) in a finite Fourier series:

$$\bar{h}(t) = a_0 + \sum_{k=1}^{30} [a_k \cos(kt) + b_k \sin(kt)], \quad (4)$$

$$a_0 = \frac{1}{n} \sum_{i=1}^n (h_{act_i} - h_{trend_i}),$$

$$a_j = \frac{2}{n} \sum_{i=1}^n (h_{act_i} - h_{trend_i}) \cos(jt_i),$$


$$b_j = \frac{2}{n} \sum_{i=1}^n (h_{act_i} - h_{trend_i}) \sin(jt_i),$$

124 where h_{act_i} - the actual value of water; h_{trend_i} - the value of water received from the trend component
 125 approximating function (2).

126 Within the above, the mathematical model of water levels values fluctuations in river Styr during
 127 the period from 2011 to 2017 will be as follows:

$$\bar{h}(t) = H(t) + a_0 + \sum_{k=1}^{30} [a_k \cos(kt) + b_k \sin(kt)] \quad (5)$$

128 Proposed mathematical model we used for short-term forecasting of the flood processes on Styr
 129 river in the territory of Lutsk. Graphic interpretation of modelling and forecasting at the beginning
 130 of 2018 are presented in Figure 2. As shown in Fig. 2 the spring flooding is forecast in February and
 131 March with the maximum water level 4.20 m, corresponding to an absolute mark of 177 m.

132
 133 **Figure 2.** Mathematical model for approximation of every ten days water levels of the river Styr on
 134 the Lutsk post observation

135 Further research has focused on identifying areas of flooding within the territory of Lutsk.

136 5. Geoinformation modeling

137 To build the relief of Lutsk were used files matrices of heights SRTM v.4, obtained from
 138 <http://mapgroup.com.ua> [12] and the Geological Society of the United States [13]. Data processing
 139 and visualization of the results was performed using a free open source geographic information
 140 system QGIS [14] in the current at the time of writing long-term support version 2.18.15 (LTR).

141 In the first stage data was obtained by the vector boundary of Lutsk according to City Master
 142 Plan approved by the The decision of Lutsk City Council №42 / 1 dated 24.06.2009 [15]. For flood
 143 process modeling we have made vector riverbeds of Styr, Sapalayivka and Kichkarivka by images
 144 obtained from the service Google Maps [16] valid for 20.12.2017.

145 To reduce processing time heights files were circumcised on the territory of Lutsk. According to
 146 contours SRTM has been allocated isolines in the study area in increments of 5 meters, graphically

147 relief was recorded using a single-channel pseudocolor map . For better illustrative purposes of
 148 flooding areas in territory of Lutsk was used a picture from Google Maps service [16], which was
 149 based on a background (Fig. 3). Further, we have decided to simulate the maximum level of flood
 150 water level in the Styr river as at April 15, 2013, when the water level reached 179.00 meters mark.
 151 Graphically the model shown in Fig. 4.

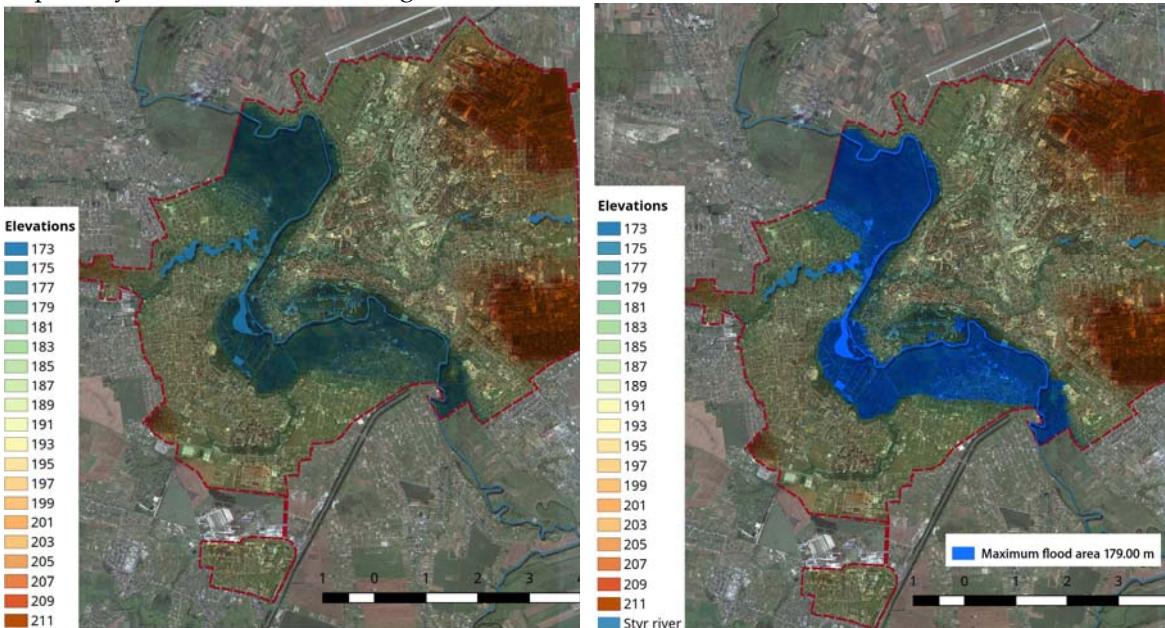


Figure 3. Output territory of Lutsk received in geographic information system QGIS.

Figure 4. Simulating of maximum flood levels as at April 15, 2013 when the water level in the river Styr 179.00 m.

152 Based on the data of short-term flood process forecasting in February and March months and
 153 relief data from the Department of Architecture and Urban Development of Volyn State
 154 Administration we conducted visualization of the results within territory of Styr river floodplain
 155 using geographic information system QGIS. Graphically, this model with OpenStreetMap [17]
 156 background is shown in Fig. 5. Output data is correspond to topographical plans with a scale of 1:500.
 157 According to these data, a TIN and raster model with a spatial resolution of 1 m was created. The
 158 terrain clearance is 0.5 m, which corresponds to a topographic scale of 1:500.

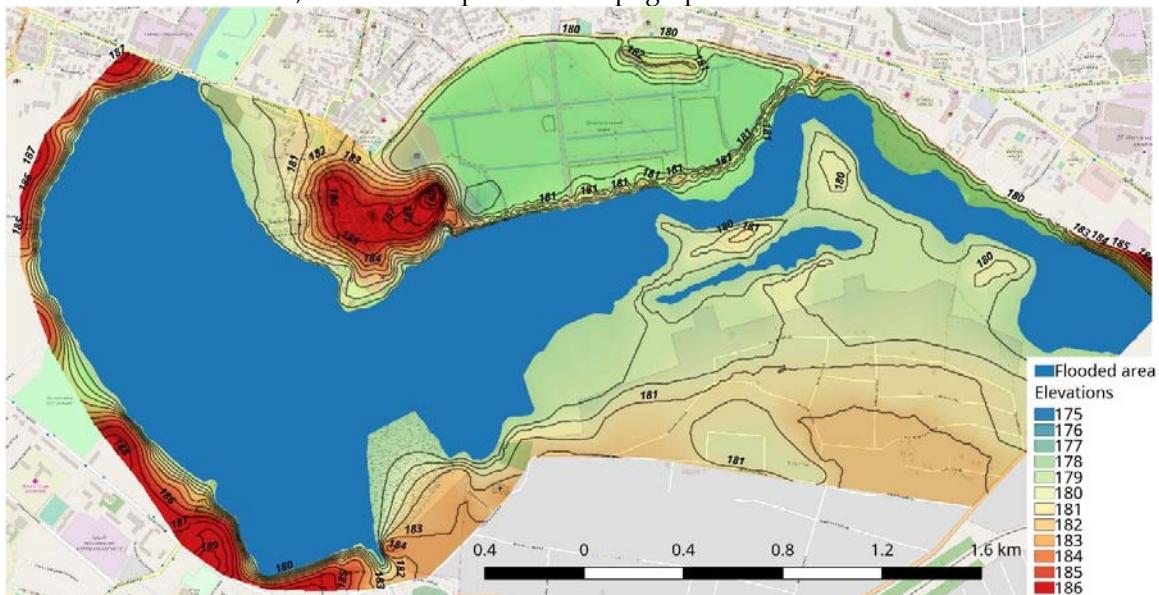


Figure 5. Simulation of flood forecast as of February-March 2018 when the water level in the river Styr 178.20 m

162 The flood encompasses historic Lutsk areas such as the Gnidava swamp, the Rovantsi lowlands
163 and the Lesya Ukrainka Central Park of Culture and Recreation. Due to the soil dam exceeding 3 m,
164 which was built in 1933, the Central Park does not relate to the flood zone, however, due to
165 groundwater and filtration properties of the dam during the flood period there is insignificant
166 flooding of the territory.

167 **6. Conclusions**

168 Based on the analysis of water levels statistical data on the river Styr by Volyn Regional Center
169 for Hydrometeorology for 2011-2017 year we proposed a mathematical model which is based on the
170 building a partial Fourier series for discrete values of the average ten-day water levels values.

171 This mathematical model is the basis of short-term flood processes forecasting whereby
172 forecasted the spring flood in February-March 2017 with the maximum water level 5.33 m,
173 corresponding to an absolute mark of 178.20 m.

174 The results of mathematical processing were the basis for geoinformation simulation of flooding
175 areas using remote sensing data that are publicly available. Used in article set of statistical and
176 geospatial data has great potential for further use in modeling the processes of natural and
177 technogenic origin.

178

179 **Author Contributions:** Anna Shostak and Volodymyr Voloshyn performed statistical analysis and mathematical
180 modelling; Oleksandr Melnyk and Pavlo Manko performed GIS simulation.

181 **Conflicts of Interest:** The authors declare no conflict of interest.

182 **References**

1. Дорожинський, О., Тукай, Р. Фотограмметричний моніторинг повеневих процесів. Зб. *Сучасні досягнення геодезичної науки та виробництва* 2011, II(22), 150-154.
2. Liu, Y.B. & De Smedt, F. Water Resour Manage 2005 19, 605-624. <https://doi.org/10.1007/s11269-005-6808-x>
3. Voloshyn, V., Melnyk, O., Melnyk, Y., Vereshko, O. Geoinformation modelling of Styr river water levels in flood period within the territory of Lutsk. *Modern achievements in geodetic science and production* 2017, I(33), 132-136.
4. Maat, W.H. Simulating discharges and forecasting floods using a conceptual rainfall-runoff model for the Bolivian Mamoré basin. Master thesis of Civil Engineering and Management. University Of Twente, 2015.
5. Aronica G. T., Brigandì G., and Morey N. Flash floods and debris flow in the city area of Messina, north-east part of Sicily, Italy in October 2009: the case of the Giampilieri catchment. *Nat. Hazards Earth Syst. Sci.* 2012, 12, 1295-1309. <https://doi.org/10.5194/nhess-12-1295-2012>
6. Voloshyn, V., Melnyk, O. Modeling of vertical deformation of soil dam reservoir Khmelnitsky NPP. *Modern achievements in geodetic science and production* 2012, I(23), 132-136.
7. Мельник, О., Мельник, Ю. Апроксимація та прогнозування переміщень контрольних точок ґрунтових гребель із використанням рядів Фур'є. *ScienceRise*, 2015, 3(2(8)), 20-24. <http://dx.doi.org/10.15587/2313-8416.2015.38832>
8. Li. Watershed modeling using arc hydro based on DEMs: a case study in Jackpine watershed. *Environmental Systems Research* 2014, 3:1. <https://doi.org/10.1186/2193-2697-3-11>
9. Knight, P. J., Prime, T., Brown, J. M., Morrissey, K., and Plater, A. J. Application of flood risk modelling in a web-based geospatial decision support tool for coastal adaptation to climate change, *Nat. Hazards Earth Syst. Sci.*, 2015 15, 1457-1471, <https://doi.org/10.5194/nhess-15-1457-2015>
10. Maiti, Saikat & Thakur, Praveen & K Gupta, Prasun. (2015). Development of Hydrological Modeling System For Flood Peak Estimation Using Open Source Geospatial Tools), Proceedings of the OSgeo-India: FOSS4G 2015 - Second National Conference "OPEN SOURCE GEOSPATIAL TOOLS IN CLIMATE CHANGE RESEARCH AND NATURAL RESOURCES MANAGEMENT" 8-10TH JUNE 2015, At Dehradun
11. Шостак, А. В., Верешко, О. В., Волошин, В. У. Моделювання і прогнозування рівнів води в паводковий період в межах м. Луцька. *Місто будування та територіальне планування*. 2011. 40(2) 562-568.

211 12. SRTM (ЦМР) Волинської області. Available online: <http://mapgroup.com.ua/services/32-dem-ukraine/87-srtm-tsmr-volynskoj-oblasti> (accessed on 14 January 2018)

212 13. U.S. Geological Survey. Available online: <https://earthexplorer.usgs.gov> (accessed on 14 January 2018).

213 14. QGIS. A Free and Open Source Geographic Information System. Available online: <http://www.qgis.org/> (accessed on 14 January 2018).

214 15. Рішення Луцької міської ради від 24.06.2009 №42/1 Про затвердження генерального плану міста
215 Луцька. Available online: <http://www.lutskrada.gov.ua/pro-zatverdzhennya-generalnogo-planu-mista-lucka> (accessed on 14 January 2018).

216 16. Google Maps, Google Maps. Available online:
217 <https://www.google.com.ua/maps/@50.7418254,25.3255185,3231m/data=!3m1!1e3> (accessed on 14 January
218 2018).

219 17. OpenStreetMap contributors. Planet dump [Data file from 20 December 2017]. Available online:
220 <https://planet.openstreetmap.org> (accessed on 20 December 2017)

221

222

223