

1 Article

2 Estimating the burden of serious fungal infections in 3 Uruguay

4 **Marina Macedo-Viñas** ^{1*} and **David W. Denning** ²

5 ¹ CASMU-IAMPP. Montevideo, Uruguay; mmacedov@gmail.com

6 ² The University of Manchester and the National Aspergillosis Centre, Wythenshawe Hospital, Manchester, UK in
7 association with the LIFE program at www.LIFE-worldwide.org

8 * Correspondence: mmacedov@gmail.com; Tel.: +598-98-952815

9 **Abstract:** We aimed to estimate for the first time the burden of fungal infections in Uruguay. Data on
10 population characteristics and underlying conditions were extracted from the National Statistics Institute,
11 the World Bank, national registries and published articles. When no data existed, risk populations were used
12 to estimate frequencies extrapolating from the literature. Population structure: total 3,444,006; 73% adults;
13 35% women younger than 50 years. Size of populations at risk: HIV infected 12,000; acute myeloid leukemia
14 126; hematopoietic stem cell transplantation 30; solid organ transplants 134; COPD 272,006 (19.7% of older
15 than 40); asthma in adults 223,431 (prevalence 9%); cystic fibrosis in adults 48; tuberculosis 613 (incidence
16 26.2%), lung cancer 1,400 (ASR incidence 27.4). Annual incidence estimations per 100,000: 22.4 invasive
17 aspergillosis, 16.4 candidaemia, 3.7 *Candida* peritonitis, 1.62 *Pneumocystis jirovecii* pneumonia, 0.75
18 cryptococcosis, severe asthma with fungal sensitisation 217, allergic bronchopulmonary aspergillosis 165,
19 recurrent *Candida* vaginitis 6,323, oral candidiasis 74.5 and oesophageal candidiasis 25.7. Although some
20 under and overestimations could have been made, we expect that at least 127,525 people suffer from serious
21 fungal infections each year. Sporothrichosis, histoplasmosis, paracoccidioidomycosis and dermatophytosis
22 are known to be frequent but no data are available to make accurate estimations. Given the magnitude of the
23 burden of fungal infections in Uruguay, efforts should be made to improve surveillance, strengthen
24 laboratory diagnosis and warrant access to first line antifungals.

25 **Keywords:** epidemiology of fungal infections; infection burden; Uruguay
26

27 **1. Introduction**

28 Uruguay is the second smallest country in South America and considered a high-income country by the
29 World Bank. Climate is template and humid, with average temperatures of 17°C. The Uruguayan economy is
30 dominated by agriculture and livestock production.

31 Fungal infections are caused by opportunistic and non-opportunistic fungi, including the primary
32 pathogens *Paracoccidioides brasiliensis* and *Histoplasma capsulatum*, which are endemic in the country. The
33 recognized spectrum of fungal species is not as wide as in other Latin American countries [2], although the
34 real magnitude of these infections is not well known. Notification of fungal infections is not mandatory in
35 Uruguay, so there are no comprehensive registries of such infections. Some of the opportunistic invasive
36 mycosis are probably growing as the immunocompromised population increase, due to the increase in solid
37 organ and bone marrow transplant and the use of immunosuppressive drugs [3]. No recent publications of
38 the current situation of these infections in our country are available.

39 We aimed to estimate the burden of serious infectious diseases in Uruguay, considering those that cause
40 higher mortality and morbidity in the population.

41

42 **2. Materials and Methods**

43 Population structure was extracted from the World Bank data for 2016 [4] and from the last national
44 census conducted by the National Statistics Institute in 2011 [1].

45 Incidence of invasive fungal infections, in general, and of candidemia, in particular, were obtained from
46 the National surveillance network for invasive fungal infections [5].

47 For other fungal infections, comprehensive searches of government and scientific societies
48 communications were performed (grey literature), and published literature was searched on Pubmed, Google
49 scholar and the Latin American search engines for scientific literature: Scielo and Lilacs. The following terms
50 were used, both in Spanish and English: "fungal infections/invasive fungal infections + Uruguay",
51 "cryptococcal meningitis/ cryptococcosis/ *Cryptococcus* + Uruguay", "pneumocystosis/*Pneumocystis* +
52 Uruguay", "aspergillosis/*Aspergillus* + Uruguay", "allergic bronchopulmonary aspergillosis/ABPA +
53 Uruguay", "severe asthma with fungal sensitization/SAFS + Uruguay", "candidemia/candidiasis/*Candida*
54 invasive infections + Uruguay", HIV opportunistic infections + Uruguay", "histoplasmosis/*Histoplasma* +
55 Uruguay", paracoccidioidomycosis/*Paracoccidioides* + Uruguay", "sporotrichosis/*Sporothrix schenckii* +
56 Uruguay", "zygomycosis + Uruguay", "tinea capitis/tinea corporis/tinea pedis/dermatophytosis + Uruguay".

57 Data on underlying conditions were obtained from national registries on tuberculosis [6], HIV/AIDS [7],
58 haematological malignancies [8], the national institute of highly specialized medicine (Fondo nacional de
59 recursos (FNR) which coordinates transplantation procedures in the whole country [9]. When no data existed,
60 risk populations were used to estimate frequencies of fungal infections, using the previously described
61 methodology by LIFE project [10].

62 **3. Results and discussion**

63 The Uruguayan population in 2016 was estimated in 3,444,006 inhabitants [4] of which 73% (2,522,059)
64 were older than 17 years, 40% were aged 40 or older (1,381,046) and 22% (757,681) were children younger than
65 15 [1]. Women younger than 50 represented 35% of the whole population and 67% of all women [1].

66 The estimated burden for serious fungal infections is shown in Table 1.

Table 1. Burden of fungal diseases according to the size of the population used to estimate it.

		Risk population size used for estimations												Rate/100,000	Accuracy of estimation	
		HIV	Non-treated HIV	AML	HSCT	SOT*	Lung cancer	COPD	Asthma	CF (adults)	Tuberculosis	ICU	Other	Number of cases		
Cryptococcosis	12,000												**	25	0.75	Probably underestimated
<i>Pneumocystis jirovecii</i>	12,000												**	48	1.62	Probably underestimated
Invasive aspergillosis			126	30	134	1,000	272,066							771	22.4	Fair
Chronic pulmonary aspergillosis	Annual incidence													27	0.78	Fair
	5 year prevalence													340	2.5	Fair
ABPA								223,431	48					5,682	165	Fair
SAFS								223,431						7,491	217	Fair
Candidemia												**	**	1,130	16.4	Probably overestimated
Candida peritonitis												**		127	3.69	
Oral candidiasis		5640												2,564	74.5	Probably overestimated
Oesophageal candidiasis	12,000	5640												885	25.7	Probably overestimated
Recurrent <i>Candida</i> vaginitis												1,209, 722		108,875	6,323	Probably overestimated
*Kidney, liver and heart																

69 Twelve thousand people were living with HIV in 2016 [7]. Mansilla et al reported that between
70 1983 and 1991, 6 of 107 patients (5.6%) attending the University Infectious Diseases Service (SEIC)
71 with AIDS, according to CDC criteria at the time [11], presented with *Cryptococcal* invasive infections.
72 Five of the six patients were already known to be in the AIDS stage of the infection. For the sixth
73 patient, it was the marker disease [12]. This population represented about the half of the HIV
74 diagnosed patients at the time [13], when the whole Uruguayan population was of 2,955,241
75 habitants. This means the annual incidence in the 90's was 0.41 cases of cryptococcosis/100,000
76 habitants. Later the same author analysed a series of 172 patients attending the SEIC between 1986
77 and 1995. Ten percent of them (17/162) developed cryptococcosis at some point during follow up,
78 and for 3% (5/172) this infections was the first disease indicating AIDS [13]. More recently a laboratory
79 based study reported 147 cases of cryptococcosis (including 135 from HIV patients, 1 from an
80 immunocompetent person and 1 from a non-HIV immunocompromised patient) from different
81 country regions over 6 years, between 2006 and 2012 [14]. Based on this last report, assuming that all
82 the isolates from invasive cryptococcosis were received by the author and each represents a different
83 episode, we can estimate an annual incidence of 0.71/100,000 (25 cases/year). Nevertheless, given not
84 all isolates will have been referred, the actual incidence is probably significantly higher. Considering
85 that immunocompromised patients other than HIV infected contribute to the burden of
86 cryptococcosis, we conclude that the annual incidence is at least 1/100,000. This rate is somewhat
87 higher than observed Chile [15] and Peru [16], Latin American countries with similar rate of HIV
88 infected population.

89 Forty-eight cases of *Pneumocystis jirovecii* pneumonia (PJP) were reported among HIV patients
90 in 2016 [7]. In 2015, 157 new cases of HIV were diagnosed at AIDS stage, and 28 of them were
91 diagnosed with PJP (18% of AIDS new cases) [17]. The annual incidence of PJP, considering only HIV
92 patients, is estimated at 1.62/100,000. Bienvenu et al. [18] reported that the ratio of non-HIV to HIV
93 patients diagnosed with PJP has dramatically increased (1.7 to 5.6) over the last years, with the highest
94 risk among patients with haematological and solid malignancies. This fact coupled with technical
95 difficulties in straightforward microbiological diagnosis indicates that the actual incidence of PJP is
96 higher. To date, the microbiological diagnosis in Uruguay relies on microscopic examination, which
97 requires highly experienced staff and a good management of the sample.

98 The annual incidence of invasive aspergillosis (IA) was estimated based on risk populations
99 published elsewhere. Given that in 2016 the National Leukemia Registry recorded 126 cases of acute
100 myeloid leukemia [8] and that 30 patients had allogeneic HSCT [9] and assuming a risk rate of 10%
101 for both groups [19], the annual incidence among patients with major haematological conditions
102 would be 0.82/100,000. Approximately 1,400 cases of lung cancer are reported each year in Uruguay
103 [20] (age-standardised incidence 27.4/100,000) and most of them are diagnosed at a late stage [21].
104 Yan et al estimated that 2.6% of lung cancer patients will suffer from IA [22] which extrapolates to 34
105 cases in our country. If the risk for SOT is extrapolated from Pappas, 6% of heart, 4% of lung and liver
106 and 0.5% of kidney transplants would be complicated with IA [23]. This would represent a very low
107 number of patients (2/year). The major contribution to the burden of IA is represented by hospitalized
108 patients with chronic pulmonary obstructive disease (COPD). In 2003 the prevalence of COPD was
109 estimated at 19.7% in Montevideo in those aged 40 and over [24]. Different hospitalization rates have
110 been reported for COPD patients [25-28]. We assumed the worst case scenario of 20% of COPD
111 patients admitted to the hospital each year. It has been estimated that 1.3% of COPD patients
112 admitted to the hospital will develop IA [29]. Based on these estimations 226,985 were affected with
113 COPD and 707 would have acquired IA. Summing all the risk populations described above, the total
114 annual incidence of IA in Uruguay is estimated at 22.4/100,000 inhabitants. This is the highest
115 incidence described in Latin America [15, 16, 25, 30, 31]. We believe this is due in part to the high
116 incidence of COPD, chronic respiratory disease and lung cancer affecting our population compared
117 to other countries in the region. Another reason could be that IA notification is not mandatory in
118 most countries, including Uruguay, but informal notification may be more frequent in this small
119 country.

120 Other clinical presentations of aspergillosis were estimated including chronic pulmonary
121 aspergillosis. It has been previously assumed that 22% of patients with lung cavities and 2% of those

122 without cavities following pulmonary tuberculosis (PTB) will develop chronic pulmonary
123 aspergillosis (CPA) [32]. Patients with PTB are expected to represent ~25% of the total number of
124 CPA cases annually, given that many other pulmonary conditions predispose to CPA, including
125 COPD [33]. In 2015 the Honorary Commission for fighting tuberculosis and prevalent diseases
126 (CHLAEP) reported that 613 patients were affected with pulmonary tuberculosis, giving an incidence
127 of 3.7/100,000 among HIV infected and 21/100,000 among non-HIV infected, with a total annual
128 incidence 26.2/100,000 [6]. This means that we should expect that 27 new cases of post-PTB CPA
129 occurred in 2016, representing an annual incidence of 0.78/100,000. Assuming a 15% mortality or
130 surgical resection rate, the post-TB 5 year period prevalence will be 85 cases and a total CPA
131 prevalence of 340 cases (2.5/100,000).

132 Clinical asthma has been estimated at 9% of the adult population [34]. This extrapolates in
133 223,431 inhabitants in the country. The number of patients estimated to suffer from cystic fibrosis
134 (CF) was estimated at 220, of which 48 were older than 17 [35]. Denning et al. estimated that 2.5% of
135 the adult asthmatic population and 15% of cystic fibrosis population will suffer from allergic
136 bronchopulmonary aspergillosis (ABPA) [36]. In the absence of better estimations in Uruguay, we
137 adopted these assumptions. Then, the prevalence of ABPA is about 165/100,000. Assuming that
138 severe asthma affects 10% of all asthmatics, and that, at least, 33% of those have fungal sensitization
139 [37] the prevalence of severe asthma with fungal sensitisation (SAFS) in Uruguayan population can
140 be expected to be 217/100,000. There are no Uruguayan fungal sensitisation data published. Asthma
141 mortality rate is 2.33/100,000. Eighty deaths occur annually. As most of the deaths are in adults, it is
142 likely that at least 50% had SAFS, because of the strong association between SAFS and hospitalisation.
143 Nearly 50% of the deaths might have been avoided, had antifungal therapy been used – an inference
144 that needs substantial research to clarify and validate.

145 ABPA and SAFS are expected to be unusually high due to the large asthmatic and CF adult
146 populations. Brazil reports a higher asthma but a smaller CF prevalence giving a somewhat higher
147 ABPA rate. We believe that these estimations are reasonable because the risk population is well
148 projected. There may be some duplication between the ABPA patients with severe asthma and SAFS,
149 but the both the proportion of severe asthma and fungal sensitisation rates are conservative.

150 The National IFI Surveillance Network reported that in 2011 there were 0.75-1.64 cases of
151 candidaemia/1,000 hospital admissions [5]. Using a ratio of admissions/population of 10-20/1 [38-42]
152 the annual incidence of candidaemia for 2011 is estimated at 16.4-32.8/100,000, which represents 565-
153 1,130 patients. A similar incidence is reported from Brazil [25]. We assumed that *Candida* peritonitis
154 occurs in half as many patients with candidemia in intensive care unit (estimated to be about 30% of
155 all candidaemias), as in France [43]. The estimated annual incidence is 3.69/100,000 (125 cases/year).

156 Oral candidiasis is estimated presuming that 90% of untreated later stage HIV patients will
157 develop this infection, while oesophageal candidiasis would affect 20% of untreated HIV and 5% of
158 anti-retroviral treated [44, 45]. In 2016, 47% of the 12,000 HIV patients (5,640 patients) were not under
159 treatment. According to Matee estimations 2,565 (74.5/100,000) and 885 patients (25.7/100,000) would
160 have developed oral and oesophageal candidiasis, respectively. Nevertheless, given that immediate
161 treatment following diagnosis is not still the rule in Uruguay [46], it cannot be assumed that all
162 untreated patients are at an advanced stage of immune compromise, so these figures are probably
163 overestimations. However, similar estimates were made in other Latin American countries [16, 25,
164 30, 31].

165 Different studies show that 5-9% of adult women present each year with recurrent *Candida*
166 vaginitis (rVVC) (4 or more episodes per year) [47]. In Uruguay, given a female population younger
167 than 50 of 1,209,722 in 2016, we anticipate between 3,512 and 6,323 cases/100,000 per year of rVVC.

168 Sporotrichosis was the most frequent deep mycosis in Uruguay in the 80s' when armadillo
169 hunting started to be frequent [48]. *Histoplasma capsulatum* and *Paracoccidioides brasiliensis* infections
170 are known to be endemic in Uruguay, the first all over the country and the second in specific regions
171 along the main rivers [49]. Isolated cases have been published but it is not possible to make
172 approximations on the burden of these diseases. Likewise rare cases of mycetoma and
173 chromobastomycosis have been seen, but there are no systematic data to estimate prevalence. Finally,
174 dermatophytosis are known to be frequent but no recent data is available to make estimations [50].

175 **5. Conclusions**

176 Overall 127,325 persons (3,715/100,000) in Uruguay are estimated to suffer from serious fungal
177 infections each year. Immediate life-threatening invasive fungal infections accounts for 2,135
178 cases/year (62/100,000).

179 A country registry would be advisable for better accuracy, but we think this is a fair estimation
180 of the burden of serious fungal diseases in Uruguay based on precise figures about predisposing
181 conditions registered by local institutions/associations and on published estimated risk.

182 Even though we cannot say which is the most frequent fungal infection in our population, it is
183 clear that *Candida spp.* and *Aspergillus spp.* infections in different risk populations contribute to a great
184 burden of fungal diseases in our country. While candidaemia diagnosis relies mostly on culture and
185 is relatively simple, *Aspergillus* diagnosis is particularly challenging for invasive disease especially
186 and is based not only on culture, whose interpretation could be problematic, but also on serologic
187 testing. Molecular techniques for microbiological diagnosis are becoming increasingly available in
188 the country. This will impact on the measure of different fungal infections like cryptococcal
189 meningitis, PJP, candidaemia and aspergillosis, but we should be careful to not overestimate by
190 misinterpreting the results of these very sensitive new methodologies. Improving diagnostic tools
191 and strengthening the reference laboratory would be measures that could contribute to prompt
192 identification and treatment.

193 Given the magnitude of the burden of fungal infections in Uruguay, efforts should be made to
194 warrant access to first line antifungals, some of which are not available (posaconazole, micafungin,
195 anidulafungin) or are too expensive to be provided to all in need (caspofungin, liposomal
196 amphotericin B, voriconazole).

197 Regular monitoring of the incidence of fungal infections and of those at risk may improve the
198 accuracy of these estimates in order to generate public policies to reduce their burden.

199 **Conflicts of interest:** The authors declare no conflict of interest.

200 **References**

1. Instituto Nacional de Estadística Censo 2011. <http://www.ine.gub.uy/web/guest/censos-2011> (accessed 01-17-2018).
2. Conti-Díaz, I. A., *Historia de la parasitología y micología humanas en el Uruguay*. 1st ed.; Montevideo, 2014.
3. Paramythiotou, E.; Frantzeskaki, F.; Flevari, A.; Armaganidis, A.; Dimopoulos, G., Invasive fungal infections in the ICU: how to approach, how to treat. *Molecules* **2014**, *19* (1), 1085-119.
4. World Bank The World Bank in Uruguay. Country data. <https://data.worldbank.org/country/uruguay> (accessed 01-17-2018).
5. Ministerio de Salud Pública; División de Laboratorios de Salud Pública *Red de vigilancia de infecciones fúngicas invasoras*; Ministerio de Salud Pública: Montevideo, 2013.
6. Contrera, M. *Situación de la tuberculosis en Uruguay*; Comisión honoraria para la lucha antituberculosa y enfermedades prevaleces: 2015.
7. Ministerio de Salud Pública; Departamento de Vigilancia en Salud; Área programática VIH/SIDA *Boletín epidemiológico VIH/SIDA*; 2017.
8. Sociedad de hematología del Uruguay *Registro nacional de leucemias agudas*; Sociedad de hematología del Uruguay: 2016.
9. Fondo Nacional de Recursos *Actos médicos realizados en el año 2015. Distribución por técnicas*; Fondo Nacional de Recursos: 2015.
10. Leading international fungal education. <http://www.life-worldwide.org> (accessed January 2018).
11. Centers for Disease Control (CDC), Revision of the case definition of acquired immunodeficiency syndrome for national reporting--United States. *MMWR Morb Mortal Wkly Rep* **1985**, *34* (25), 373-5.
12. Mansilla, M.; Braselli, A.; Purstcher, H.; Dutra, A.; Oliver, L.; Gezuele, E., Cirptococosis en pacientes con síndrome de inmunodeficiencia adquirida (SIDA). *Rev Med Uruguay* **1992**, *8*, 104-107.
13. Mansilla, M.; Purstcher, H.; Mirazo, I.; Lima, E.; Cardozo, A.; Braselli, A., Evolución de 172 pacientes VIH (+) fallecidos en Uruguay. *Rev Med Uruguay* **1996**, *12*, 123-134.

225 14. Carbia, M.; Perera, P.; Arteta, Z.; Cabeza, E.; Ballesté, R.; Gezuele, E., [Characterisation of Cryptococcus
226 isolates in Uruguay]. *Rev Iberoam Micol* 2017, 34 (1), 56.

227 15. Alvarez Duarte, E.; Denning, D. W., Serious fungal infections in Chile. *European Journal of Clinical
228 Microbiology & Infectious Diseases* 2017, 36 (6), 983-986.

229 16. Bustamante, B.; Denning, D. W.; Campos, P. E., Serious fungal infections in Peru. *European Journal of Clinical
230 Microbiology & Infectious Diseases* 2017, 36 (6), 943-948.

231 17. Ministerio de Salud Pública; Departamento de Vigilancia en Salud; VIH/SIDA, Á. p. *Informe de la situación
232 nacional del VIH* 2016.

233 18. Bienvenu, A.-L.; Traore, K.; Plekhanova, I.; Bouchrik, M.; Bossard, C.; Picot, S., Pneumocystis pneumonia
234 suspected cases in 604 non-HIV and HIV patients. *International Journal of Infectious Diseases* 2016, 46, 11-17.

235 19. Lortholary, O.; Gangneux, J. P.; Sitbon, K.; Lebeau, B.; de Monbrison, F.; Le Strat, Y.; Coignard, B.; Dromer,
236 F.; Bretagne, S.; Group, F. M. S., Epidemiological trends in invasive aspergillosis in France: the SAIF
237 network (2005-2007). *Clin Microbiol Infect* 2011, 17 (12), 1882-9.

238 20. Barrios, E.; Garau, M., Cáncer: magnitud del problema en el mundo y en Uruguay, aspectos
239 epidemiológicos. *Anales de la Facultad de Medicina, Universidad de la República, Uruguay* 2017, 4 (1), 9-46.

240 21. Fondo Nacional de Recursos Información cáncer de pulmón http://www.fnr.gub.uy/info_c_pulmon
241 (accessed January 2018).

242 22. Yan, X.; Li, M.; Jiang, M.; Zou, L. Q.; Luo, F.; Jiang, Y., Clinical characteristics of 45 patients with invasive
243 pulmonary aspergillosis: retrospective analysis of 1711 lung cancer cases. *Cancer* 2009, 115 (21), 5018-25.

244 23. Pappas, P. G.; Alexander, B. D.; Andes, D. R.; Hadley, S.; Kauffman, C. A.; Freifeld, A.; Anaissie, E. J.;
245 Brumble, L. M.; Herwaldt, L.; Ito, J.; Kontoyiannis, D. P.; Lyon, G. M.; Marr, K. A.; Morrison, V. A.; Park,
246 B. J.; Patterson, T. F.; Perl, T. M.; Oster, R. A.; Schuster, M. G.; Walker, R.; Walsh, T. J.; Wannemuehler, K.
247 A.; Chiller, T. M., Invasive fungal infections among organ transplant recipients: results of the Transplant-
248 Associated Infection Surveillance Network (TRANSNET). *Clin Infect Dis* 2010, 50 (8), 1101-11.

249 24. Menezes, A. M. B.; Perez-Padilla, R.; Jardim, J. B.; Muiño, A.; Lopez, M. V.; Valdivia, G.; de Oca, M. M.;
250 Talamo, C.; Hallal, P. C.; Victora, C. G., Chronic obstructive pulmonary disease in five Latin American cities
251 (the PLATINO study): a prevalence study. *The Lancet* 2005, 366 (9500), 1875-1881.

252 25. Giacomazzi, J.; Baethgen, L.; Carneiro, L. C.; Millington, M. A.; Denning, D. W.; Colombo, A. L.;
253 Pasqualotto, A. C., The burden of serious human fungal infections in Brazil. *Mycoses* 2016, 59 (3), 145-150.

254 26. Polatli, M.; Ben Kheder, A.; Wali, S.; Javed, A.; Khattab, A.; Mahboub, B.; Iraqi, G.; Nejjari, C.; Taright, S.;
255 Koniski, M. L.; Rashid, N.; El Hasnaoui, A.; Group, B. S., Chronic obstructive pulmonary disease and
256 associated healthcare resource consumption in the Middle East and North Africa: the BREATHE study.
257 *Respir Med* 2012, 106 Suppl 2, S75-85.

258 27. Lim, S.; Lam, D. C.; Muttalif, A. R.; Yunus, F.; Wongtim, S.; Lan, I. T.; Shetty, V.; Chu, R.; Zheng, J.; Perng,
259 D. W.; de Guia, T., Impact of chronic obstructive pulmonary disease (COPD) in the Asia-Pacific region: the
260 EPIC Asia population-based survey. *Asia Pac Fam Med* 2015, 14 (1), 4.

261 28. Miravittles, M.; Murio, C.; Tirado-Conde, G.; Levy, G.; Muellerova, H.; Soriano, J. B.; Ramirez-Venegas, A.;
262 Ko, F. W. S.; Canelos-Estrella, B.; Giugno, E., Geographic differences in clinical characteristics and
263 management of COPD: the EPOCA study. *International journal of chronic obstructive pulmonary disease* 2008,
264 3 (4), 803.

265 29. Guinea, J.; Torres-Narbona, M.; Gijón, P.; Muñoz, P.; Pozo, F.; Peláez, T.; De Miguel, J.; Bouza, E.,
266 Pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: incidence, risk factors,
267 and outcome. *Clinical Microbiology and Infection* 2010, 16 (7), 870-877.

268 30. Medina, N.; Samayoa, B.; Lau-Bonilla, D.; Denning, D. W.; Herrera, R.; Mercado, D.; Guzmán, B.; Pérez, J.
269 C.; Arathoon, E., Burden of serious fungal infections in Guatemala. *European Journal of Clinical Microbiology
270 & Infectious Diseases* 2017, 36 (6), 965-969.

271 31. Zurita, J.; y Miño, A. P.; Pardo, L. M. A.; Dennig, D. W., Burden of fungal infections in Ecuador.
272 *transplantation* 531 (3), 16.

273 32. Denning, D. W.; Pleuvry, A.; Cole, D. C., Global burden of chronic pulmonary aspergillosis as a sequel to
274 pulmonary tuberculosis. *Bull World Health Organ* 2011, 89 (12), 864-72.

275 33. Smith, N. L.; Denning, D. W., Underlying conditions in chronic pulmonary aspergillosis including simple
276 aspergilloma. *Eur Respir J* 2011, 37 (4), 865-72.

277 34. To, T.; Stanojevic, S.; Moores, G.; Gershon, A. S.; Bateman, E. D.; Cruz, A. A.; Boulet, L. P., Global asthma
278 prevalence in adults: findings from the cross-sectional world health survey. *BMC Public Health* 2012, 12,
279 204.

280 35. Spagna, F.; Cabeza, S. *La fibrosis quística en Uruguay. Uruguay.*; 2010.

281 36. Denning, D. W.; Pleuvry, A.; Cole, D. C., Global burden of allergic bronchopulmonary aspergillosis with
282 asthma and its complication chronic pulmonary aspergillosis in adults. *Med Mycol* 2013, 51 (4), 361-70.

283 37. Denning, D. W.; Pashley, C.; Hartl, D.; Wardlaw, A.; Godet, C.; Del Giacco, S.; Delhaes, L.; Sergejeva, S.,
284 Fungal allergy in asthma-state of the art and research needs. *Clin Transl Allergy* 2014, 4, 14.

285 38. Klingspor, L.; Törnqvist, E.; Johansson, A.; Petrini, B.; Forsum, U.; Hedin, G., A prospective epidemiological
286 survey of candidaemia in Sweden. *Scand J Infect Dis* 2004, 36 (1), 52-5.

287 39. Arendrup, M. C.; Fuursted, K.; Gahrn-Hansen, B.; Jensen, I. M.; Knudsen, J. D.; Lundgren, B.; Schønheyder,
288 H. C.; Tvede, M., Seminational surveillance of fungemia in Denmark: notably high rates of fungemia and
289 numbers of isolates with reduced azole susceptibility. *J Clin Microbiol* 2005, 43 (9), 4434-40.

290 40. Sandven, P.; Bevanger, L.; Digranes, A.; Haukland, H. H.; Mannsåker, T.; Gaustad, P.; Group, N. Y. S.,
291 Candidemia in Norway (1991 to 2003): results from a nationwide study. *J Clin Microbiol* 2006, 44 (6), 1977-
292 81.

293 41. Marchetti, O.; Bille, J.; Fluckiger, U.; Eggimann, P.; Ruef, C.; Garbino, J.; Calandra, T.; Glauser, M. P.;
294 Täuber, M. G.; Pittet, D.; Switzerland, F. I. N. o., Epidemiology of candidemia in Swiss tertiary care
295 hospitals: secular trends, 1991-2000. *Clin Infect Dis* 2004, 38 (3), 311-20.

296 42. Tortorano, A. M.; Biraghi, E.; Astolfi, A.; Ossi, C.; Tejada, M.; Farina, C.; Perin, S.; Bonaccorso, C.; Cavanna,
297 C.; Raballo, A.; Grossi, A.; Group, F. C. S., European Confederation of Medical Mycology (ECMM)
298 prospective survey of candidaemia: report from one Italian region. *J Hosp Infect* 2002, 51 (4), 297-304.

299 43. Montravers, P.; Mira, J. P.; Gangneux, J. P.; Leroy, O.; Lortholary, O., A multicentre study of antifungal
300 strategies and outcome of *Candida* spp. peritonitis in intensive-care units. *Clinical Microbiology and Infection*
301 2011, 17 (7), 1061-1067.

302 44. Matee, M. I.; Scheutz, F.; Moshy, J., Occurrence of oral lesions in relation to clinical and immunological
303 status among HIV-infected adult Tanzanians. *Oral Dis* 2000, 6 (2), 106-11.

304 45. Smith, E.; Orholm, M., Trends and patterns of opportunistic diseases in Danish AIDS patients 1980-1990.
305 *Scand J Infect Dis* 1990, 22 (6), 665-72.

306 46. Ministerio de Salud Pública; División General de la Salud; ITS-VIH/Sida, P. N., Infección por virus de la
307 inmunodeficiencia humana (VIH). Pautas para diagnóstico, monitorización y tratamiento antirretroviral.
308 2014.

309 47. Denning, D. W.; Kneale, M.; Rautemaa-Richardson, R.; Sobel, J. D., Global burden of recurrent vulvovaginal
310 candidiasis. *Lancet Infect Dis In Press*.

311 48. Conti Díaz, I., Esporotricosis. *Rev Med Uruguay* 1987, 3, 135-147.

312 49. Conti-Díaz, I., *Historia de la parasitología y micología humanas en el Uruguay*. 1st ed.; Montevideo, 2014.

313 50. Ballesté, R.; Fernández, N.; Mousqués, N.; Xavier, B.; Arteta, Z.; Mernes, M.; Gezuele, E., Dermatofitosis en
314 población asistida en el Instituto de Higiene. *Rev Med Uruguay* 2000, 16, 232-42.

315