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12 Abstract: This paper proposes a crack recognition method based on high-resolution line array
13 cameras and adaptive lifting algorithm. By defining the crack rate, this algorithm calculates the
14 ratio of the crack area to the area of the entire collected image to characterize the damage extent of
15 the current section. The algorithm first uses image preprocessing to reduce the image noise, then
16 uses histogram equalization to enhance the feature of the crack region, divides the whole image
17 into multiple sub-blocks, and extracts region features in the sub-block. At the same time, this
18 algorithm defines related feature descriptors, and constructs weak classifiers according to each
19 feature descriptor, and converts the weak classifiers into strong classifiers by using an adaptive
20 lifting algorithm. Finally, this algorithm realizes the division of the crack regions. Experimental
21 results show that the proposed algorithm can meet the actual needs and is better than other
22 classical algorithms.

23 Keywords: line array cameras; pavement crack detection; feature analysis; adaptive lifting

24

25 1. Introduction

26 With the large-scale construction of high-grade pavement in China in recent years, the

27  detection of pavement damage has become a very important task [1-4]. Currently, semi-automated
28  testing vehicle equipment is widely adopted in the detection of pavement problems. This approach
29  requires manual processing of offline data and fails to achieve full automatic detection of pavement
30  damage [5-6].It also has many obvious drawbacks. Firstly, the results of manual processing may be
31  affected by the subjectivity of manual detection and thus may not accurately and objectively reflect
32 the real conditions of pavement [7-8]. Secondly, the efficiency of manual detection is usually very
33 low, therefore consumes a lot of manpower. These drawbacks are extremely unfavorable to

34  highway management and maintenance. Moreover, the recognition effect of automatic

35  identification system is not satisfactory and there are still many problems [9-13]. The main causes of
36  these problems are: (1) pavement interference factors, such as shading shadows, water stains,

37  grease and so on; (2) complex road conditions, the lighting conditions of the pavement are different
38  atdifferent time periods, which is highly detrimental to our identification; (3) pavement damage
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39  types, including transverse cracks, longitudinal cracks, chaps, block fractures, etc.. In view of the
40  current testing needs and situation, this paper proposes the use of image processing technology,
41  combined with the adaptive lifting algorithm in machine learning to automatically identify the
42 crack area on the road image [14-18]. The algorithm has high recognition rate and fast speed, and
43  meanwhile can basically meet the actual needs.

44 2, Materials and Methods

45 2.1. Image Acquisition

46 In this paper, high-resolution linear array cameras, image capture cards, combined with
47  integrated LED lights, industrial personal computer(IPC), optical encoder, GPS and other auxiliary
48  devices are used to acquire and store real-time road images, and are integrated as a whole system in
49  a commercial vehicle [19-22]. By contrast, we use line frequency of 140kHz, a resolution of 4k, the
50  model for the Basler sprint-spL4096-140km CMOS linear array cameras to capture road images
51 [23-26].

52 During the driving process of the vehicle, the photoelectric encoder rotates synchronously with
53 the wheel to generate TTL(Transistor-Transistor Logic) pulse signals, which are processed by the
54  data acquisition card and part of peripheral circuits [27-29]. The computer counts the pulses and
55  converts them into mileage and speed information in real time. In this process, the pulse generated
56 Dby the photoelectric encoder is modulated to generate a pulse trigger signal for the linear array
57  cameras. When the left and right linear array cameras are triggered, the image of the road surface is
58  collected [30-31]. After the image signal is processed by the image capture card via the Camera Link
59  interface, the image is transmitted to IPC memory to complete the acquisition and storage of
60  information on the road.

Line array
camera | Image
(Camera Ty scquiston Road image
Line array card 1 a.cquisit?on
camera 2 A industrial
personal
B computer 1
Photoelectric Odometry | >
encoder
Area array
camera |
Area array
camera 2 Im.a.ge. .
»{ acquisition Road image
Area array card 2 acquisition
camera 3 industrial
Area array personal
camera 4 GPS m computer 2
61
62 Figure 1. Image acquisition structure block diagram

63 After road images are obtained, road cracks can be identified through steps shown in Figure 2.
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65 Figure 2. Operation flow chart
66  2.2. Image preprocessing
67 Before cracks in the captured image are identified, the image needs to be preprocessed because

68  acquisition hardware and the natural lighting in the actual scene may inevitably introduce some
69  interference and noise into the captured image [32-34]. In order to facilitate subsequent image
70 processing, these unfavorable factors must be eliminated firstly. To avoid the obvious shortcoming
71 of blurred image of the mean filter, we use the Gauss filter to reduce the image noise [35-38]. Our
72 Gauss filter has a size of 5x5, and can be expressed as:

73

(1 4 7 4 1]
4 16 26 16 4
74 Fo=—oI|7 26 41 26 7 (1)
4 16 26 16 4
1 4 7 4 1

75 The convolution of the Gauss filter and the original image P, produces the noise-reduced
76  image P, [39].

77 P =P ®F, @)

78 After some noise is eliminated with the Gauss filter, the image can be further processed to
79 enhance regional characteristics of the cracks to be identified and to weaken background features of
80  the images [40]. The purpose of this process is to reduce the impact of the background information
81  on the later recognition while preserving most of the crack information. We implement the image
82  enhancement with histogram equalization, which converts the input image to hold the same pixel

83  value in each gray scale [41-45]. This method can significantly enhance the contrast of the image.

84  Assuming that the gray scale range of the captured image is [0, L- 1] , the approximate probability

85  of gray scale 7, can be calculated as:

n
86 p(rk):ﬁk,k:O,l,...,L—l 3)
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87 Where 7, is for the number of pixels in the image with gray scale 7#,, N is for the sum of
88  the numbers of all the pixels, and L is for the number of gray scale 7,. Gray scale 7, and the

89  probability of appearance of gray scale p(7;) can be expressed as the histogram of the original

90  image [46].

91 For gray images, the method of the enhancement of histogram equalization can be expressed
92  as[47]:
%3 Z -2 5005 <1 @
94 Where
95 fr)=>u,(0<j<L) 3)
=0
u; 20
96 “ 0<j<l) (6)
Zu ;<L
=0

97  f(n)0<r, <L) stands for the mapping relationship between the pre-enhancement image gray
98  scale 7, and the enhanced image gray scale 7, '.

99 By the following formula, the transformed gray scale allows the output histogram to be uniform

100 over the entire output gray scale range so that the contrast of the image can be increased.
k
101 T(r,)=round((L-1))_ p(r,)) %)

102 Figure 3 is a pavement crack image. After the image preprocessing, Figure 3 turns into Figure

103 4.
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104
105 Figure 3. Original image

3

i :
106 &
107 Figure 4. Image after preprocessing
108 Due to the complexity of the overall pavement condition, the gray value of cracks in different

109  regions of the image varies greatly. Even if the whole image is segmented by the noise reduction
110  with Gauss filter and the image enhancement with histogram equalization, the obtained results still
111 can't meet the actual needs. Therefore, we divide the whole image into a plurality of sub-blocks, and
112 the sub-block regions are separately subjected to threshold segmentation [48-49]. A collected 3024
113 x 2048 pavement image is divided into 16 x 16 blocks, as shown in Figure 5.

2
1
g
.‘%
E:
114 Width Direction L1165,
115 Figure 5. Regional block diagram
116  2.3. Feature selection
117 The 256 blocks fall into two categories, those containing cracks and those containing no cracks,

118  asshown in Figure 6.


http://dx.doi.org/10.20944/preprints201802.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 February 2018 d0i:10.20944/preprints201802.0102.v1

6 of 15
119
120 Figure 6.Image after dividing into blocks
121 Observation and analysis of a large number of image samples reveal that the target of

122 pavement cracks has specific shape features that can be used to categorize the blocks. These shape
123 features can be obtained by binarizing the segmented image with the maximum entropy method.
124 The principle of maximum entropy method states that the entropy takes the maximum value when

125  all events of the system are equally likely to occur [50-51].

126 The following is the process to use the maximum entropy method to calculate the threshold.

127  For a gray image, assuming the range of the image gray values is [0, L —1], and the minimum and
128  maximum gray values are V. and V_ respectively. According to the entropy formula, the

129  entropy value corresponding to the gray value  can be calculated as

H, H,-H
130 E(t)=1gP(1-P)+—++—+——=~ 8
O =IgF(1-F) PP ®)
131 Where
t
132 R=>p, 9)
i=0
t
133 H ==Y plgp, (10)
i=0
L
134 H, ==Y plgp, (11)
i=0
135 Here p, is the probability that the gray value i appears, P is the sum of the probability of

136 the gray values from 0 to ¢, H, isthe sum of the entropy of the gray values from O to ¢,and H,

137  is the entropy of the original image. The objective of our method is to find a proper value of ¢

138 between V.

and V  tomaximizes E(¢).The value of ¢ isthe optimal threshold determined
139 by the maximum entropy method.

140 After the image process by using the threshold, there are still some discrete small particles in
141  the original picture. Therefore, four description values are designed as classification features of the

142 binary image for the obtained image area that is less than the threshold.
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143 (1) The rectangularity of the largest connected region: the ratio of the area of the region to the
144 area of a rectangular region having the same first-order moment and second-order moment in this
145  region. For the fractured segment, the largest connected region is the region where the fractures are
146  located. And the rectangularity of the largest connected region of fractured segments is generally

147  smaller than the non-fractured segments.

148 (2) The eccentricity of the largest connected region: the ratio of the semi-major axis to the
149 semi-minor axis of the smallest ellipse that can cover the largest connected region. The larger the

150  ratio, the more likely there are cracks in the pavement image.

151 (3) The area of the largest connected region

152 MA =max(4,) (12)

153 where A is the area of the ith connected domain.

154 (4) The compactness of the largest connected region: the square of the length of the region
155 outline is divided by the area of the region.

156  2.4. Crack recognition classification

157 The regional characteristic descriptors obtained from the previous step can be used to
158  determine whether the current sub-block contains cracks. We utilize an adaptive lifting algorithm to
159  train the classifier to complete the related classification work [52]. The algorithm consists of the

160  following steps.

161 (1) Given N samples of the training data set, each sample contains the above four
162 characteristic description values and whether it is a mark of a crack region or not. The sample set is

163 expressed as follows:

164 T:{(Xl 9Y1)9(X23YZ)9'--9(XNaYN)};y :{_1: 1} (13)

165  where {x, yi}fil stands for training sample set and the corresponding mark.

166 (2) Initialize weights distribution of the training data set as

1 .
167 Dy = (W s W5 Wy ) W ZF,Z =1,2,.N (14)
168 (3) For m =1,2,3,4, uses a training dataset with weight distribution D, for learning, and

169  generates the basic classifier G, (x) [53]. In the meantime, calculates the error rate e, of

170  classification and the coefficient ¢, of the basic classifier G, (X)in the training data set using the

171  following formulas.


http://dx.doi.org/10.20944/preprints201802.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 February 2018 d0i:10.20944/preprints201802.0102.v1

8 of 15

172 e, =PG,(x)#y)= D, W, (15)
Gm (xi )*yi
1. 1-e
173 o, =—lg - (16)
2 e,
174 Where w, ; is the weight of the ith sample in round m(me {1,2,3,4}), and
N
175 dw,, =1 17)
i=1
176 (4) Update the distribution of weights of the training data set.
177 D, = (Wi Woitioeeos Woia v ) (18)
Wm i .
178 Wt :Z—’exp(—amyl.Gm (x)),i=12..,N (19)
179  Where Z, is the factor of normalization.
N
180 Z, =3 w,,exp(-a,y,G,(x) (20)
i=1
181 (5) Construct the linear combination of the basic classifier and obtain the strong classifier that
182  can determine whether the current sub-block image contains cracks.
4
183 G(x) =sign()_ e, G, (x)) @1)
m=1

184 The target area containing the cracks is marked with a red range. The damage rate is calculated

185 as the ratio of the number of marked sub-blocks to the total number of sub-blocks [54]. The

186  recognition results are shown in Figure 7.

187
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194
195 ()
196 Figure 7. Crack recognition results. (a) Transverse cracks; (b) Longitudinal cracks; (c) Irregular cracks
197
198 The overall algorithm is shown in Figure 8.
»| Image enhancement with |
"| histogram equalization 1
Image block
Noise reduction | * ................
with Gauss filter |
T Image binarization with
maximum entropy method
Adaptwe.: lifting —»|  Classifier
algorithm :
Don't mark the [N
crack area TR —
............ i
\ 4
Determine the Crack type | Mark the crack |
based on the image features | - area
200 Figure 8. Flow diagram of algorithm
201
202 3.Results
203 To verify the effectiveness of this algorithm, a set of 1000 pavement damage pictures provided

204 by a provincial highway bureau were used to perform a comparison experiment with manual
205  detection, and two other commonly used algorithms: the minimal deviation algorithm and the
206  OSTU algorithm. The experiment hardware environment is 2.40GHZ CPU, 8G memory IPC, and
207  the software environment is VC2010. The experiment was repeated eight times and the results are
208  shown below in Table 1.

209

210 Table 1. Average time taken to detect cracks in a single image by the four methods
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221
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223
224
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Minimal

Manual Algorithm in L. OSTU
. . deviation .
detection this paper ) algorithm

algorithm
#1 4387ms 235ms 892ms 1233ms
#2 3315ms 346ms 1123ms 1452ms
#3 5789ms 532ms 965ms 1678ms
#4 4310ms 490ms 1387ms 1783ms
#5 3520ms 456ms 732ms 1653ms
#6 5120ms 378ms 1232ms 1723ms
#7 4760ms 612ms 934ms 1974ms
#8 4239ms 563ms 1365ms 1923ms

It can be seen that the detection speed of the algorithm in this paper is faster than that of
manual detection and the other two commonly used algorithms. We also compared the accuracy of

the detection methods of the four algorithms. The results are shown in Figure 9.

I—W

== \inimal deviation

0.8 S~ algorithm
0.6 - == \lanual detection
0.4

Algorithm in this
0.2 paper
=== (OSTU algorithm

Figure 9. Accuracy of crack detection of the four methods

4. Discussion

From Figure 9, we can see that the accuracy of crack detection of the proposed algorithm is
slightly lower than manual detection, but far superior to the other two commonly used algorithms.
The accuracy of the algorithm in this paper can meet the detection accuracy requirements of the

actual pavement detection department.

5. Conclusions

Through theoretical research and actual experiments, we can draw the following conclusions:

(1) Currently, the detection of pavement crack is mainly conducted with manual identification.
On the other hand, there are still many problems with automatic recognition, such as slow
identification, poor accuracy and so on. Therefore, this paper adopts the adaptive lifting algorithm

for automatic pavement crack recognition.
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227 (2) Through image processing combined with adaptive lifting model in machine learning, we
228  can calculate the ratio of the number of crack sub-blocks to the total number of image sub-blocks
229  and use it to characterize the degree of crack damage in the current image. The results suggest that

230  the speed and accuracy of recognition of our proposed algorithm can meet actual requirements.

231 (3) The current research mainly focuses on pavement cracks, but it cannot automatically detect
232 other types of damage, such as bags, pits, and repair of cracks. In the future, our research goal
233 should place on other types of damage pavement to further improve the automatic pavement
234  damage recognition system.
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