

1 Article

2 **PAVEMENT DAMAGE CRACK RECOGNITION**
3 **METHOD BASED ON HIGH-RESOLUTION**
4 **LINEAR ARRAY CAMERAS AND ADAPTIVE**
5 **LIFTING ALGORITHM**

6 **Yi Han ^{1,*}, Shiwei Tu ¹, Yanyu Yang ¹, Ke Lei ²and Chunlei Liu ³**

7 ¹ School of Automobile, Chang'an University, Xi'an 710064, China; hany@chd.edu.cn

8 ² Shangtai Software (Shanghai) Co., Ltd., Shanghai 200020, China; 651225679@qq.com

9 ³ Department of Computer Science, Valdosta State University, Valdosta 31698, USA ; cliu@valdosta.edu

10 * Correspondence: hany@chd.edu.cn; Tel.: +86-29-82334143

11

12 **Abstract:** This paper proposes a crack recognition method based on high-resolution line array
13 cameras and adaptive lifting algorithm. By defining the crack rate, this algorithm calculates the
14 ratio of the crack area to the area of the entire collected image to characterize the damage extent of
15 the current section. The algorithm first uses image preprocessing to reduce the image noise, then
16 uses histogram equalization to enhance the feature of the crack region, divides the whole image
17 into multiple sub-blocks, and extracts region features in the sub-block. At the same time, this
18 algorithm defines related feature descriptors, and constructs weak classifiers according to each
19 feature descriptor, and converts the weak classifiers into strong classifiers by using an adaptive
20 lifting algorithm. Finally, this algorithm realizes the division of the crack regions. Experimental
21 results show that the proposed algorithm can meet the actual needs and is better than other
22 classical algorithms.

23 **Keywords:** line array cameras; pavement crack detection; feature analysis; adaptive lifting

24

25 **1. Introduction**

26 With the large-scale construction of high-grade pavement in China in recent years, the
27 detection of pavement damage has become a very important task [1-4]. Currently, semi-automated
28 testing vehicle equipment is widely adopted in the detection of pavement problems. This approach
29 requires manual processing of offline data and fails to achieve full automatic detection of pavement
30 damage [5-6]. It also has many obvious drawbacks. Firstly, the results of manual processing may be
31 affected by the subjectivity of manual detection and thus may not accurately and objectively reflect
32 the real conditions of pavement [7-8]. Secondly, the efficiency of manual detection is usually very
33 low, therefore consumes a lot of manpower. These drawbacks are extremely unfavorable to
34 highway management and maintenance. Moreover, the recognition effect of automatic
35 identification system is not satisfactory and there are still many problems [9-13]. The main causes of
36 these problems are: (1) pavement interference factors, such as shading shadows, water stains,
37 grease and so on; (2) complex road conditions, the lighting conditions of the pavement are different
38 at different time periods, which is highly detrimental to our identification; (3) pavement damage

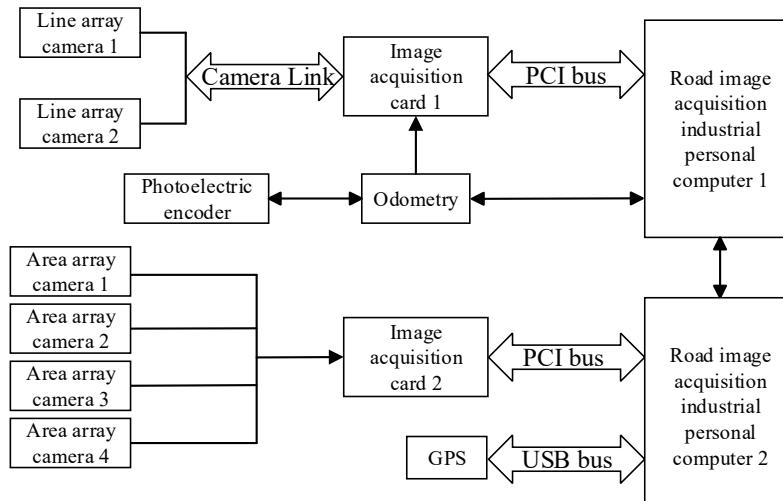
39 types, including transverse cracks, longitudinal cracks, chaps, block fractures, etc.. In view of the
 40 current testing needs and situation, this paper proposes the use of image processing technology,
 41 combined with the adaptive lifting algorithm in machine learning to automatically identify the
 42 crack area on the road image [14-18]. The algorithm has high recognition rate and fast speed, and
 43 meanwhile can basically meet the actual needs.

44 **2. Materials and Methods**

45 *2.1. Image Acquisition*

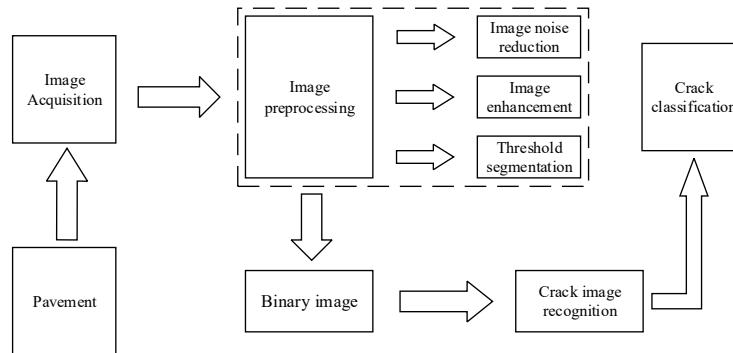
46 In this paper, high-resolution linear array cameras, image capture cards, combined with
 47 integrated LED lights, industrial personal computer(IPC), optical encoder, GPS and other auxiliary
 48 devices are used to acquire and store real-time road images, and are integrated as a whole system in
 49 a commercial vehicle [19-22]. By contrast, we use line frequency of 140kHz, a resolution of 4k, the
 50 model for the Basler sprint-spL4096-140km CMOS linear array cameras to capture road images
 51 [23-26].

52 During the driving process of the vehicle, the photoelectric encoder rotates synchronously with
 53 the wheel to generate TTL(Transistor-Transistor Logic) pulse signals, which are processed by the
 54 data acquisition card and part of peripheral circuits [27-29]. The computer counts the pulses and
 55 converts them into mileage and speed information in real time. In this process, the pulse generated
 56 by the photoelectric encoder is modulated to generate a pulse trigger signal for the linear array
 57 cameras. When the left and right linear array cameras are triggered, the image of the road surface is
 58 collected [30-31]. After the image signal is processed by the image capture card via the Camera Link
 59 interface, the image is transmitted to IPC memory to complete the acquisition and storage of
 60 information on the road.



61
 62 **Figure 1.** Image acquisition structure block diagram

63 After road images are obtained, road cracks can be identified through steps shown in Figure 2.



64

65

Figure 2. Operation flow chart66 *2.2. Image preprocessing*

67 Before cracks in the captured image are identified, the image needs to be preprocessed because
 68 acquisition hardware and the natural lighting in the actual scene may inevitably introduce some
 69 interference and noise into the captured image [32-34]. In order to facilitate subsequent image
 70 processing, these unfavorable factors must be eliminated firstly. To avoid the obvious shortcoming
 71 of blurred image of the mean filter, we use the Gauss filter to reduce the image noise [35-38]. Our
 72 Gauss filter has a size of 5×5 , and can be expressed as:

73

74

$$F_{GS} = \frac{1}{273} \begin{bmatrix} 1 & 4 & 7 & 4 & 1 \\ 4 & 16 & 26 & 16 & 4 \\ 7 & 26 & 41 & 26 & 7 \\ 4 & 16 & 26 & 16 & 4 \\ 1 & 4 & 7 & 4 & 1 \end{bmatrix} \quad (1)$$

75

76

The convolution of the Gauss filter and the original image P_o produces the noise-reduced

image P_d [39].

77

$$P_d = P_o \otimes F_{GS} \quad (2)$$

78

79

After some noise is eliminated with the Gauss filter, the image can be further processed to
 enhance regional characteristics of the cracks to be identified and to weaken background features of
 the images [40]. The purpose of this process is to reduce the impact of the background information
 on the later recognition while preserving most of the crack information. We implement the image
 enhancement with histogram equalization, which converts the input image to hold the same pixel
 value in each gray scale [41-45]. This method can significantly enhance the contrast of the image.

84

Assuming that the gray scale range of the captured image is $[0, L-1]$, the approximate probability
 of gray scale r_k can be calculated as:

86

$$p(r_k) = \frac{n_k}{N}, k = 0, 1, \dots, L-1 \quad (3)$$

87 Where n_k is for the number of pixels in the image with gray scale r_k , N is for the sum of
 88 the numbers of all the pixels, and L is for the number of gray scale r_k . Gray scale r_k and the
 89 probability of appearance of gray scale $p(r_k)$ can be expressed as the histogram of the original
 90 image [46].

91 For gray images, the method of the enhancement of histogram equalization can be expressed
 92 as [47]:

$$93 \quad \sum_{i=0}^{r_k} p(i) - \frac{f(r_k)}{L-1} \geq 0, 0 \leq r_k < L \quad (4)$$

94 Where

$$95 \quad f(r_k) = \sum_{j=0}^{r_k} u_j (0 \leq j < L) \quad (5)$$

$$96 \quad \begin{cases} u_j \geq 0 \\ \sum_{j=0}^{L-1} u_j < L \end{cases} (0 \leq j < L) \quad (6)$$

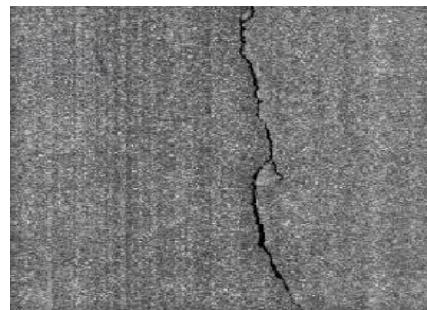
97 $f(r_k) (0 \leq r_k < L)$ stands for the mapping relationship between the pre-enhancement image gray
 98 scale r_k and the enhanced image gray scale r_k' .

99 By the following formula, the transformed gray scale allows the output histogram to be uniform
 100 over the entire output gray scale range so that the contrast of the image can be increased.

$$101 \quad T(r_k) = \text{round}((L-1) \sum_{j=0}^k p(r_j)) \quad (7)$$

102 Figure 3 is a pavement crack image. After the image preprocessing, Figure 3 turns into Figure
 103 4.

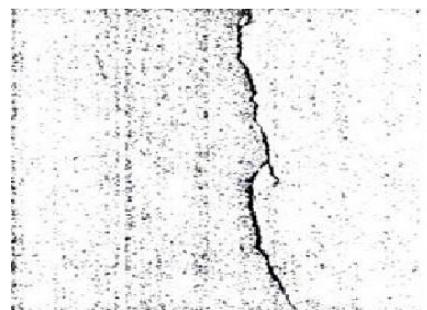
104



105

Figure 3. Original image

106



107

Figure 4. Image after preprocessing

108

Due to the complexity of the overall pavement condition, the gray value of cracks in different regions of the image varies greatly. Even if the whole image is segmented by the noise reduction with Gauss filter and the image enhancement with histogram equalization, the obtained results still can't meet the actual needs. Therefore, we divide the whole image into a plurality of sub-blocks, and the sub-block regions are separately subjected to threshold segmentation [48-49]. A collected 3024 \times 2048 pavement image is divided into 16×16 blocks, as shown in Figure 5.

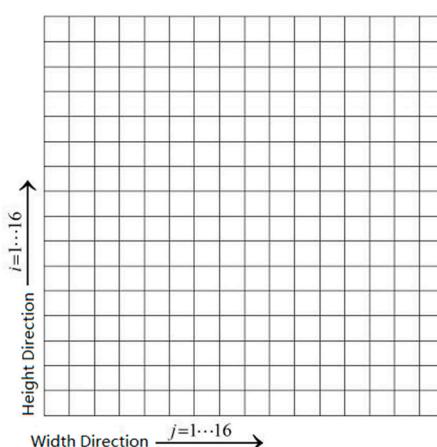
109

110

111

112

113



114

115

Figure 5. Regional block diagram

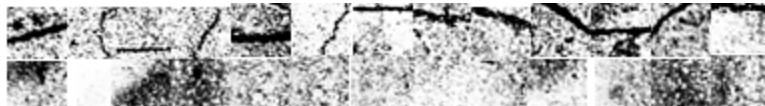
116

2.3. Feature selection

117

118

The 256 blocks fall into two categories, those containing cracks and those containing no cracks, as shown in Figure 6.



119

120

Figure 6. Image after dividing into blocks

121 Observation and analysis of a large number of image samples reveal that the target of
 122 pavement cracks has specific shape features that can be used to categorize the blocks. These shape
 123 features can be obtained by binarizing the segmented image with the maximum entropy method.
 124 The principle of maximum entropy method states that the entropy takes the maximum value when
 125 all events of the system are equally likely to occur [50-51].

126 The following is the process to use the maximum entropy method to calculate the threshold.
 127 For a gray image, assuming the range of the image gray values is $[0, L - 1]$, and the minimum and
 128 maximum gray values are V_{\min} and V_{\max} respectively. According to the entropy formula, the
 129 entropy value corresponding to the gray value t can be calculated as

$$130 \quad E(t) = \lg P_t (1 - P_t) + \frac{H_t}{P_t} + \frac{H_L - H_t}{1 - P_t} \quad (8)$$

131

Where

$$132 \quad P_t = \sum_{i=0}^t p_i \quad (9)$$

133

$$H_t = - \sum_{i=0}^t p_i \lg p_i \quad (10)$$

134

$$H_L = - \sum_{i=0}^L p_i \lg p_i \quad (11)$$

135

Here p_i is the probability that the gray value i appears, P_t is the sum of the probability of
 the gray values from 0 to t , H_t is the sum of the entropy of the gray values from 0 to t , and H_L
 is the entropy of the original image. The objective of our method is to find a proper value of t
 between V_{\min} and V_{\max} to maximizes $E(t)$. The value of t is the optimal threshold determined
 by the maximum entropy method.

140

After the image process by using the threshold, there are still some discrete small particles in
 the original picture. Therefore, four description values are designed as classification features of the
 binary image for the obtained image area that is less than the threshold.

143 (1) The rectangularity of the largest connected region: the ratio of the area of the region to the
 144 area of a rectangular region having the same first-order moment and second-order moment in this
 145 region. For the fractured segment, the largest connected region is the region where the fractures are
 146 located. And the rectangularity of the largest connected region of fractured segments is generally
 147 smaller than the non-fractured segments.

148 (2) The eccentricity of the largest connected region: the ratio of the semi-major axis to the
 149 semi-minor axis of the smallest ellipse that can cover the largest connected region. The larger the
 150 ratio, the more likely there are cracks in the pavement image.

151 (3) The area of the largest connected region

152 $MA = \max(A_i)$ (12)

153 where A_i is the area of the i th connected domain.

154 (4) The compactness of the largest connected region: the square of the length of the region
 155 outline is divided by the area of the region.

156 *2.4. Crack recognition classification*

157 The regional characteristic descriptors obtained from the previous step can be used to
 158 determine whether the current sub-block contains cracks. We utilize an adaptive lifting algorithm to
 159 train the classifier to complete the related classification work [52]. The algorithm consists of the
 160 following steps.

161 (1) Given N samples of the training data set, each sample contains the above four
 162 characteristic description values and whether it is a mark of a crack region or not. The sample set is
 163 expressed as follows:

164 $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}; y = \{-1, 1\}$ (13)

165 where $\{x_i, y_i\}_{i=1}^N$ stands for training sample set and the corresponding mark.

166 (2) Initialize weights distribution of the training data set as

167 $D_1 = (w_{1,1}, \dots, w_{1,i}, \dots, w_{1,N}), w_{1,i} = \frac{1}{N}, i = 1, 2, \dots, N$ (14)

168 (3) For $m = 1, 2, 3, 4$, uses a training dataset with weight distribution D_m for learning, and
 169 generates the basic classifier $G_m(x)$ [53]. In the meantime, calculates the error rate e_m of
 170 classification and the coefficient α_m of the basic classifier $G_m(x)$ in the training data set using the
 171 following formulas.

172

$$e_m = P(G_m(x_i) \neq y_i) = \sum_{G_m(x_i) \neq y_i} w_{m,i} \quad (15)$$

173

$$\alpha_m = \frac{1}{2} \lg \frac{1 - e_m}{e_m} \quad (16)$$

174

Where $w_{m,i}$ is the weight of the i th sample in round m ($m \in \{1, 2, 3, 4\}$), and

175

$$\sum_{i=1}^N w_{m,i} = 1 \quad (17)$$

176

(4) Update the distribution of weights of the training data set.

177

$$D_{m+1} = (w_{m+1,1}, \dots, w_{m+1,i}, \dots, w_{m+1,N}) \quad (18)$$

178

$$w_{m+1,i} = \frac{w_{m,i}}{Z_m} \exp(-\alpha_m y_i G_m(x_i)), i = 1, 2, \dots, N \quad (19)$$

179

Where Z_m is the factor of normalization.

180

$$Z_m = \sum_{i=1}^N w_{m,i} \exp(-\alpha_m y_i G_m(x_i)) \quad (20)$$

181

182

(5) Construct the linear combination of the basic classifier and obtain the strong classifier that can determine whether the current sub-block image contains cracks.

183

$$G(x) = \text{sign} \left(\sum_{m=1}^4 \alpha_m G_m(x) \right) \quad (21)$$

184

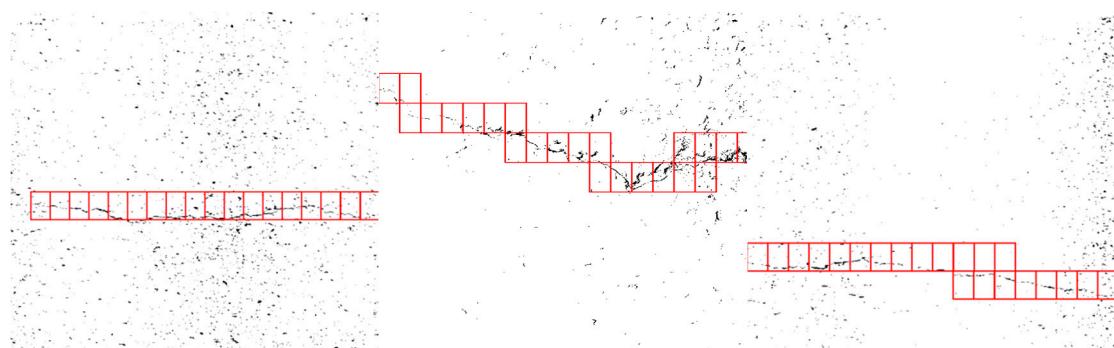
185

186

The target area containing the cracks is marked with a red range. The damage rate is calculated as the ratio of the number of marked sub-blocks to the total number of sub-blocks [54]. The recognition results are shown in Figure 7.

187

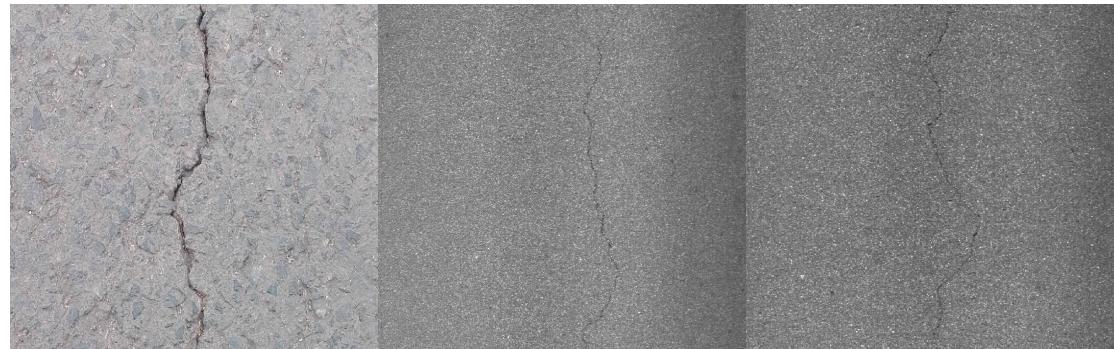
188



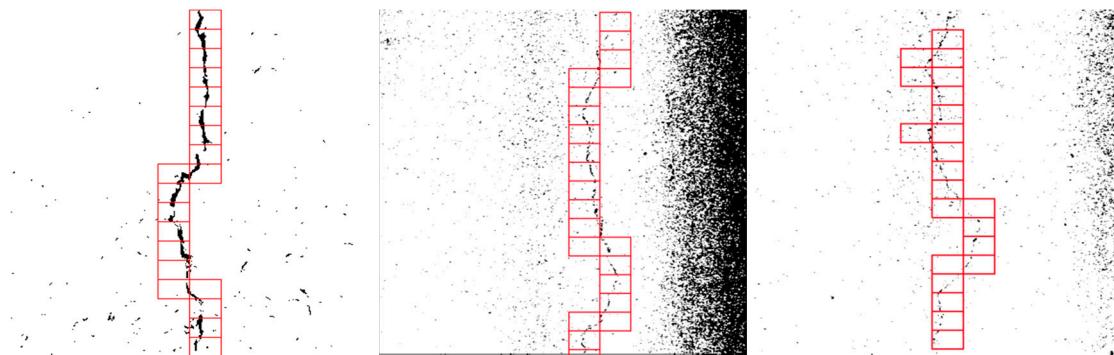
189

(a)

190



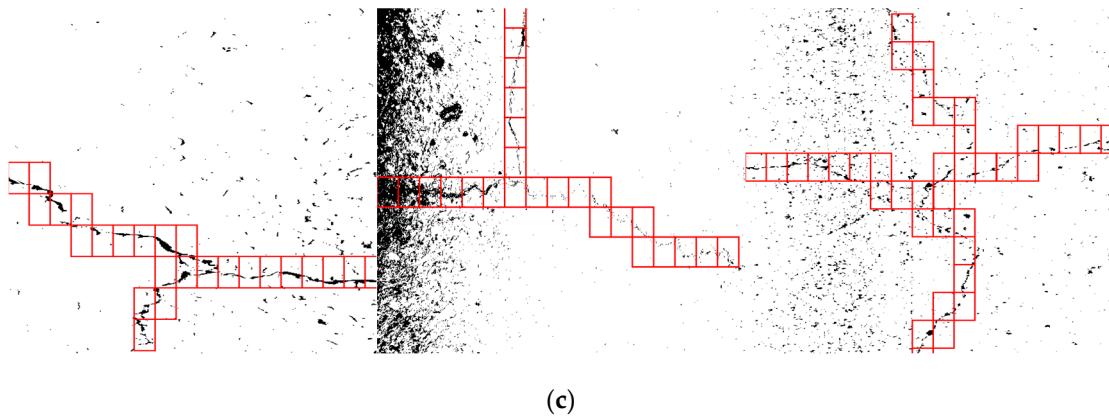
191



192

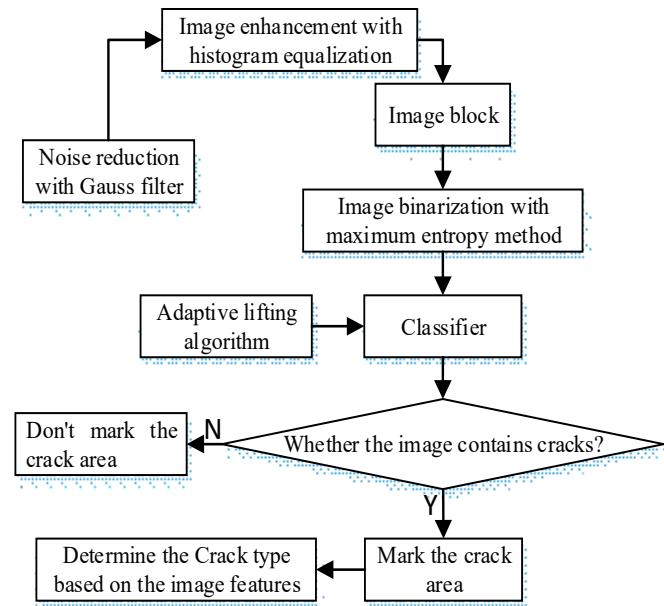
(b)

193



194 **Figure 7.** Crack recognition results. (a) Transverse cracks; (b) Longitudinal cracks; (c) Irregular cracks

195
196
197
198 The overall algorithm is shown in Figure 8.



199
200 **Figure 8.** Flow diagram of algorithm

201

202 **3. Results**

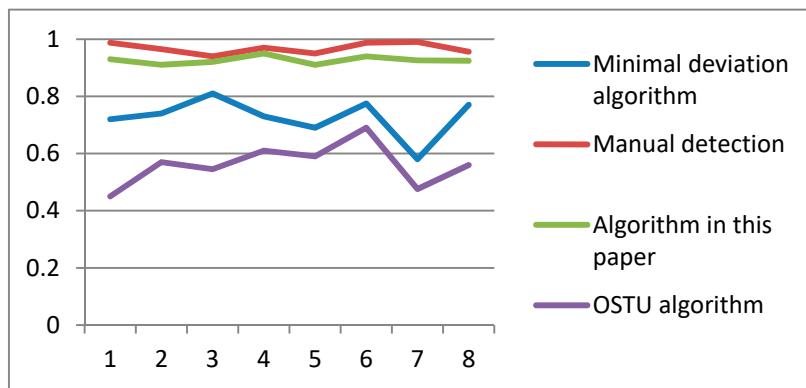
203 To verify the effectiveness of this algorithm, a set of 1000 pavement damage pictures provided
204 by a provincial highway bureau were used to perform a comparison experiment with manual
205 detection, and two other commonly used algorithms: the minimal deviation algorithm and the
206 OSTU algorithm. The experiment hardware environment is 2.40GHZ CPU, 8G memory IPC, and
207 the software environment is VC2010. The experiment was repeated eight times and the results are
208 shown below in Table 1.

209

210 **Table 1.** Average time taken to detect cracks in a single image by the four methods

	Manual detection	Algorithm in this paper	Minimal deviation algorithm	OSTU algorithm
#1	4387ms	235ms	892ms	1233ms
#2	3315ms	346ms	1123ms	1452ms
#3	5789ms	532ms	965ms	1678ms
#4	4310ms	490ms	1387ms	1783ms
#5	3520ms	456ms	732ms	1653ms
#6	5120ms	378ms	1232ms	1723ms
#7	4760ms	612ms	934ms	1974ms
#8	4239ms	563ms	1365ms	1923ms

211 It can be seen that the detection speed of the algorithm in this paper is faster than that of
 212 manual detection and the other two commonly used algorithms. We also compared the accuracy of
 213 the detection methods of the four algorithms. The results are shown in Figure 9.



214

215

Figure 9. Accuracy of crack detection of the four methods

216 4. Discussion

217 From Figure 9, we can see that the accuracy of crack detection of the proposed algorithm is
 218 slightly lower than manual detection, but far superior to the other two commonly used algorithms.
 219 The accuracy of the algorithm in this paper can meet the detection accuracy requirements of the
 220 actual pavement detection department.

221 5. Conclusions

222 Through theoretical research and actual experiments, we can draw the following conclusions:

223 (1) Currently, the detection of pavement crack is mainly conducted with manual identification.
 224 On the other hand, there are still many problems with automatic recognition, such as slow
 225 identification, poor accuracy and so on. Therefore, this paper adopts the adaptive lifting algorithm
 226 for automatic pavement crack recognition.

227 (2) Through image processing combined with adaptive lifting model in machine learning, we
228 can calculate the ratio of the number of crack sub-blocks to the total number of image sub-blocks
229 and use it to characterize the degree of crack damage in the current image. The results suggest that
230 the speed and accuracy of recognition of our proposed algorithm can meet actual requirements.

231 (3) The current research mainly focuses on pavement cracks, but it cannot automatically detect
232 other types of damage, such as bags, pits, and repair of cracks. In the future, our research goal
233 should place on other types of damage pavement to further improve the automatic pavement
234 damage recognition system.

235 **Acknowledgments:** The Project Sponsored by the International Science and Technology Cooperation and
236 Exchange Projects of Shaanxi China (2016KW-063).

237 **Author Contributions:** Y.H. and C.L.L. conceived and designed the research; K.L., S.W.T. and Y.Y.Y.
238 performed the experiments; S.W.T. and Y.Y.Y. wrote the manuscript; Y.Y.Y. and S.W.T. analyzed the data;
239 C.L.L. and K.L. helped to design the comparison algorithm; and Y.H. helped to design image processing
240 methods.

241 **Conflicts of Interest:** The authors declare no conflict of interests.

242 **References**

243

244

- 245 1. Hasni, H.; Alavi, A.H.; Jiao, P.; Lajnef, N.; Chatti, K.; Aono, K.; Chakrabarty, S. A new approach for
246 damage detection in asphalt concrete pavements using battery-free wireless sensors with non-constant
247 injection rates, *Measurement*, 2017, 110, 217-229.
- 248 2. Zhang, D.; Li, Q.; Chen, Y.; Cao, M.; He, L.; Zhang B. An efficient and reliable coarse-to-fine approach for
249 asphalt pavement crack detection. *Image and Vision Computing* 2017, 57, 130-146.
- 250 3. Ouma, Y.O.; Hahn, M. Pothole detection on asphalt pavements from 2D-colour pothole images using
251 fuzzy c-means clustering and morphological reconstruction. *Automation in Construction* 2017, 83, 196-211.
- 252 4. Xu, X.; Peng, S.; Xia, Y.; Ji, W. The development of a multi-channel GPR system for roadbed damage
253 detection. *Microelectronics Journal* 2014, 45, 1542-1555.
- 254 5. Kapela, R.; Śniatała, P.; Turkot, A.; Rybarczyk, A.; Pożarycki, A.; Rydzewski, P.; Wyczałek, M.; Błoch A.
255 Asphalt surfaced pavement cracks detection based on histograms of oriented gradients. 2015 22nd
256 International Conference Mixed Design of Integrated Circuits & Systems (MIXDES), Torun, 2015, pp.
257 579-584.
- 258 6. Li, J.; Zhang, Y.; Wang, L. Design and implementation of pavement crack detection system based on
259 FPGA. The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, 2015, pp. 5936-5941.
- 260 7. Krysiński, L.; Sudyka J. GPR abilities in investigation of the pavement transversal cracks. *Journal of*
261 *Applied Geophysics*, 2013, 97, 27-36.
- 262 8. Hadjidemetriou, G.M.; Christodoulou, S.E.; Vela, P.A. Automated detection of pavement patches utilizing
263 support vector machine classification. 2016 18th Mediterranean Electrotechnical Conference (MELECON),
264 Lemesos, 2016, pp. 1-5.
- 265 9. Sun, L.; Qian, Z. Multi-scale wavelet transform filtering of non-uniform pavement surface image
266 background for automated pavement distress identification. *Measurement*, 2016, 86, 26-40.
- 267 10. Pereira, F.C.; Pereira, C.E. Embedded Image Processing Systems for Automatic Recognition of Cracks
268 using UAVs. *IFAC-PapersOnLine*, 2015, 48, 16-21.

269 11. Cheng, H.D.; Miyojim, M. Automatic pavement distress detection system. *Information Sciences*, 1998, 108,
270 219-240,

271 12. Radopoulou, S.C.; Brilakis, I. Patch detection for pavement assessment. *Automation in Construction*, 2015,
272 53, 95-104,

273 13. María, V.G.; Mercedes, S.; Joaquín, M.S.; Arias, P. A semi-automatic processing and visualisation tool for
274 ground-penetrating radar pavement thickness data. *Automation in Construction*, 2014, 45, 42-49.

275 14. Mataei, B.; Nejad, F.M.; Zahedi, M.; Zakeri, H. Evaluation of pavement surface drainage using an
276 automated image acquisition and processing system. *Automation in Construction*, 2018, 86, 240-255.

277 15. Chen, D.L.; Lu, Y.Y. Automatic detection of tunnel lining using image processing supported by terrestrial
278 laser scanning technology. 2017 IEEE 2nd Information Technology, Networking, Electronic and
279 Automation Control Conference (ITNEC), Chengdu, China, 2017, pp. 529-533.

280 16. Pablo, Q.B.; XArgüello, F.; Heras, D.B.; Benediktsson, J.A. Wavelet-Based Classification of Hyperspectral
281 Images Using Extended Morphological Profiles on Graphics Processing Units. *IEEE Journal of Selected
282 Topics in Applied Earth Observations and Remote Sensing*, vol. 8, no. 6, pp. 2962-2970, June 2015.

283 17. Mori, S. Deep architecture neural network-based real-time image processing for image-guided
284 radiotherapy. *Physica Medica*, 2017, 40, 79-87.

285 18. Kim, H.; Lee, J.; Ahn, E.; Cho, S.; Shin, M.; Sim, S.-H. Concrete Crack Identification Using a UAV
286 Incorporating Hybrid Image Processing. *Sensors* 2017, 17, 2052.

287 19. Sheng, Q.; Wang, Q.; Xiao, H.; Wang, Q. Research on Geometric Calibration of Spaceborne Linear Array
288 Whiskbroom Camera. *Sensors* 2018, 18, 247.

289 20. Zhang, P.; Arre, T.J.; Ide-Ektessabi, A. A line scan camera-based structure from motion for high-resolution
290 3D reconstruction. *Journal of Cultural Heritage*, 2015, 16, 656-663.

291 21. Bugby, S.L.; Lees, J.E.; Bhatia, B.S.; Perkins, A.C. Characterisation of a high resolution small field of view
292 portable gamma camera. *Physica Medica*, 2014, 30, 331-339.

293 22. Schwanke, U.; Shayduk, M.; Sulanke, K.-H.; Vorobiov, S.; Wischnewski, R. A versatile digital camera
294 trigger for telescopes in the Cherenkov Telescope Array. *Nuclear Instruments and Methods in Physics
295 Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 2015, 782, 92-103.

296 23. Burri, S.; Bruschini, C.; Charbon, E. LinoSPAD: A Compact Linear SPAD Camera System with 64
297 FPGA-Based TDC Modules for Versatile 50 ps Resolution Time-Resolved Imaging. *Instruments* 2017, 1, 6.

298 24. Jennings, M.W.; Rutten, T.P.; Ottaway, D.J. Evaluation of the signal quality of an inexpensive CMOS
299 camera towards imaging a high-resolution plastic scintillation detector array. *Radiation Measurements*,
300 2017, 104, 22-31.

301 25. Jiang, B.; Pan, Z.; Qiu, Y. Study on the key technologies of a high-speed CMOS camera. *Optik -
302 International Journal for Light and Electron Optics*, 2017, 129, 100-107.

303 26. Nemeth, B.; Piechocinski, M.S.; Cumming, D.R.S. High-resolution real-time ion-camera system using a
304 CMOS-based chemical sensor array for proton imaging. *Sensors and Actuators B: Chemical*, 2017, 171-
305 172, 2012, 747-752.

306 27. Liu, R.; Liu, R. Signal acquisition technology for photoelectric encoder based on FPGA. *Optik -
307 International Journal for Light and Electron Optics*, 2016, 127, 9891-9895.

308 28. Ge, X.; Xie, Y. A TTL-controlled trigger generator with rise-time of nanosecond level. 2016 International
309 Conference on Electromagnetics in Advanced Applications (ICEAA), Cairns, QLD, 2016, pp. 872-875.

310 29. Tiemann, I.; Spaeth, C.; Wallner, G.; Metz, G.; Israel, W.; Yamaryo, Y.; Shimomura, T.; Kubo, T.; Wakasa,
311 T.; Morosawa, T.; König, R.; Flügge, J.; Bosse, H. An international length comparison using vacuum

312 comparators and a photoelectric incremental encoder as transfer standard. *Precision Engineering*, 2008,
313 32, 1-6.

314 30. Chen, D.; Ni, J. Pulse compression-based improvement on the estimation accuracy of time interval
315 between two trigger signals in light screen array. *Optik*, 2018, 158, 675-683.

316 31. Keerthana, K.; Shanmugaraja, M.; MaheshKannan, P. Comparison of conventional flip flops with pulse
317 triggered generation using signal feed through technique. 2015 International Conference on
318 Communications and Signal Processing (ICCSP), Melmaruvathur, 2015, pp. 0392-0397.

319 32. Wang, Y.; Fan, M.; Li, J.; Cui, Z. Sparse Weighted Constrained Energy Minimization for Accurate Remote
320 Sensing Image Target Detection. *Remote Sens.* 2017, 9, 1190.

321 33. Solsona, S.P.; Maeder, M.; Tauler, R.; Juan, A.D. A new matching image preprocessing for image data
322 fusion. *Chemometrics and Intelligent Laboratory Systems*, 2017, 164, 32-42.

323 34. Suhas, S.; Venugopal, C. R. MRI image preprocessing and noise removal technique using linear and
324 nonlinear filters. 2017 International Conference on Electrical, Electronics, Communication, Computer, and
325 Optimization Techniques (ICEECCOT), Mysuru, India, 2017, pp. 1-4.

326 35. Ji, X.; Yuan, P.; Shi, Z.; Li, J.; Wang, T.; Cao, S.; Gao, L. An effective self-adaptive mean filter for mixed
327 noise. 2016 International Conference on Advanced Robotics and Mechatronics (ICARM), Macau, 2016, pp.
328 484-489.

329 36. Said, A.B.; Hadjidj, R.; Melkemi, K.E.; Foufou, S. Multispectral image denoising with optimized vector
330 non-local mean filter. *Digital Signal Processing*, 2016, 58, 115-126.

331 37. Agneni, A. ON THE USE OF THE GAUSS FILTER IN MODAL PARAMETER ESTIMATION. *Mechanical
332 Systems and Signal Processing*. 2000, 14, 193-204.

333 38. Krystek, M. A fast gauss filtering algorithm for roughness measurements. *Precision Engineering*, 1996, 19,
334 198-200.

335 39. Xiang, D.; Ban, Y.; Wang, W.; Tang, T.; Su, Y. Edge Detector for Polarimetric SAR Images Using SIRV
336 Model and Gauss-Shaped Filter. *IEEE Geoscience and Remote Sensing Letters*, vol. 13, no. 11, pp.
337 1661-1665, Nov. 2016.

338 40. Wu, K.; Li, G.; Han, G.; Yang, H.; Liu, P. Color image detail enhancement based on quaternion guided
339 filter. *The Journal of China Universities of Posts and Telecommunications*, 2017, 24, 40-50.

340 41. Chiu, C.-C.; Ting, C.-C. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram
341 Equalization. *Sensors* 2016, 16, 936.

342 42. Ting, C.-C.; Wu, B.-F.; Chung, M.-L.; Chiu, C.-C.; Wu, Y.-C. Visual Contrast Enhancement Algorithm
343 Based on Histogram Equalization. *Sensors* 2015, 15, 16981-16999.

344 43. Wang, Y.; Pan, Z. Image contrast enhancement using adjacent-blocks-based modification for local
345 histogram equalization. *Infrared Physics & Technology*, 2017, 86, 59-65.

346 44. Zuo, C.; Chen, Q.; Sui, X. Range Limited Bi-Histogram Equalization for image contrast enhancement.
347 *Optik - International Journal for Light and Electron Optics*. 2013, 124, 425-431.

348 45. Rajpoot, P.S.; Chouksey, A. A Systematic Study of Well Known Histogram Equalization Based Image
349 Contrast Enhancement Methods. 2015 International Conference on Computational Intelligence and
350 Communication Networks (CICN), Jabalpur, 2015, pp. 242-245.

351 46. Qiao, X.; Bao, J.; Zhang, H.; Zeng, L.; Li, D. Underwater image quality enhancement of sea cucumbers
352 based on improved histogram equalization and wavelet transform. *Information Processing in Agriculture*.
353 2017, 4, 206-213.

354 47. Wang, X.; Chen, L. An effective histogram modification scheme for image contrast enhancement. *Signal*
355 *Processing. Image Communication*, 2017, 58, 187-198.

356 48. Bhandari, A.K.; Kumar, A.; Chaudhary, S.; Singh, G.K. A novel color image multilevel thresholding based
357 segmentation using nature inspired optimization algorithms. *Expert Systems with Applications*, 2016, 63,
358 112-133.

359 49. Duan, J.; Zhang, Y.; Zheng, B. Lane line recognition algorithm based on threshold segmentation and
360 continuity of lane line. *2016 2nd IEEE International Conference on Computer and Communications*
361 (ICCC), Chengdu, 2016, pp. 680-684.

362 50. Sun, R.; Zhao, C. Restoration of Space Object Images by Using A Maximum Entropy Method. *Chinese*
363 *Astronomy and Astrophysics*, 2015, 39, 89-99.

364 51. Gzyl, H.; Horst, E.T.; Molina, G. Application of the method of maximum entropy in the mean to
365 classification problems. *Physica A: Statistical Mechanics and its Applications*, 2015, 437, 101-108.

366 52. Liu, Y.; Cai, W.; Shao, X. Intelligent background correction using an adaptive lifting wavelet.
367 *Chemometrics and Intelligent Laboratory Systems*, 2013, 125, 11-17.

368 53. Tong, Z.; Gao, J.; Zhang, H. Recognition, location, measurement, and 3D reconstruction of concealed
369 cracks using convolutional neural networks. *Construction and Building Materials*, 2017, 146, 775-787.

370 54. Hasni, H.; Alavi, A.H.; Jiao, P.; Lajnef, N.; Chatti, K.; Aono, K.; Chakrabartty, S. A new approach for
371 damage detection in asphalt concrete pavements using battery-free wireless sensors with non-constant
372 injection rates. *Measurement*, 2017, 110, 217-229.