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 11 

Abstract: This paper proposes a crack recognition method based on high-resolution line array 12 
cameras and adaptive lifting algorithm. By defining the crack rate, this algorithm calculates the 13 
ratio of the crack area to the area of the entire collected image to characterize the damage extent of 14 
the current section. The algorithm first uses image preprocessing to reduce the image noise, then 15 
uses histogram equalization to enhance the feature of the crack region, divides the whole image 16 
into multiple sub-blocks, and extracts region features in the sub-block. At the same time, this 17 
algorithm defines related feature descriptors, and constructs weak classifiers according to each 18 
feature descriptor, and converts the weak classifiers into strong classifiers by using an adaptive 19 
lifting algorithm. Finally, this algorithm realizes the division of the crack regions. Experimental 20 
results show that the proposed algorithm can meet the actual needs and is better than other 21 
classical algorithms. 22 

Keywords: line array cameras; pavement crack detection; feature analysis; adaptive lifting  23 

 24 

1. Introduction 25 
With the large-scale construction of high-grade pavement in China in recent years, the 26 

detection of pavement damage has become a very important task [1-4]. Currently, semi-automated 27 
testing vehicle equipment is widely adopted in the detection of pavement problems. This approach 28 
requires manual processing of offline data and fails to achieve full automatic detection of pavement 29 
damage [5-6].It also has many obvious drawbacks. Firstly, the results of manual processing may be 30 
affected by the subjectivity of manual detection and thus may not accurately and objectively reflect 31 
the real conditions of pavement [7-8]. Secondly, the efficiency of manual detection is usually very 32 
low, therefore consumes a lot of manpower. These drawbacks are extremely unfavorable to 33 
highway management and maintenance. Moreover, the recognition effect of automatic 34 
identification system is not satisfactory and there are still many problems [9-13]. The main causes of 35 
these problems are: (1) pavement interference factors, such as shading shadows, water stains, 36 
grease and so on; (2) complex road conditions, the lighting conditions of the pavement are different 37 
at different time periods, which is highly detrimental to our identification; (3) pavement damage 38 
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types, including transverse cracks, longitudinal cracks, chaps, block fractures, etc.. In view of the 39 
current testing needs and situation, this paper proposes the use of image processing technology, 40 
combined with the adaptive lifting algorithm in machine learning to automatically identify the 41 
crack area on the road image [14-18]. The algorithm has high recognition rate and fast speed, and 42 
meanwhile can basically meet the actual needs. 43 

2. Materials and Methods 44 

2.1. Image Acquisition 45 
In this paper, high-resolution linear array cameras, image capture cards, combined with 46 

integrated LED lights, industrial personal computer(IPC), optical encoder, GPS and other auxiliary 47 
devices are used to acquire and store real-time road images, and are integrated as a whole system in 48 
a commercial vehicle [19-22]. By contrast, we use line frequency of 140kHz, a resolution of 4k, the 49 
model for the Basler sprint-spL4096-140km CMOS linear array cameras to capture road images 50 
[23-26]. 51 

During the driving process of the vehicle, the photoelectric encoder rotates synchronously with 52 
the wheel to generate TTL(Transistor-Transistor Logic) pulse signals, which are processed by the 53 
data acquisition card and part of peripheral circuits [27-29]. The computer counts the pulses and 54 
converts them into mileage and speed information in real time. In this process, the pulse generated 55 
by the photoelectric encoder is modulated to generate a pulse trigger signal for the linear array 56 
cameras. When the left and right linear array cameras are triggered, the image of the road surface is 57 
collected [30-31]. After the image signal is processed by the image capture card via the Camera Link 58 
interface, the image is transmitted to IPC memory to complete the acquisition and storage of 59 
information on the road.  60 
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Figure 1. Image acquisition structure block diagram 62 

After road images are obtained, road cracks can be identified through steps shown in Figure 2. 63 
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 64 

Figure 2. Operation flow chart 65 

2.2. Image preprocessing 66 
Before cracks in the captured image are identified, the image needs to be preprocessed because 67 

acquisition hardware and the natural lighting in the actual scene may inevitably introduce some 68 
interference and noise into the captured image [32-34]. In order to facilitate subsequent image 69 
processing, these unfavorable factors must be eliminated firstly. To avoid the obvious shortcoming 70 
of blurred image of the mean filter, we use the Gauss filter to reduce the image noise [35-38]. Our 71 
Gauss filter has a size of 5×5, and can be expressed as: 72 

 73 
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The convolution of the Gauss filter and the original image oP  produces the noise-reduced 75 

image dP  [39]. 76 

  d o GSP P F= ⊗                          (2) 77 

After some noise is eliminated with the Gauss filter, the image can be further processed to 78 
enhance regional characteristics of the cracks to be identified and to weaken background features of 79 
the images [40]. The purpose of this process is to reduce the impact of the background information 80 
on the later recognition while preserving most of the crack information. We implement the image 81 
enhancement with histogram equalization, which converts the input image to hold the same pixel 82 
value in each gray scale [41-45]. This method can significantly enhance the contrast of the image. 83 

Assuming that the gray scale range of the captured image is [ ]0, 1L − , the approximate probability 84 

of gray scale kr  can be calculated as: 85 

( ) , 0,1,..., 1k
k

np r k L
N

= = −
                     

(3) 86 
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Where kn  is for the number of pixels in the image with gray scale kr , N  is for the sum of 87 

the numbers of all the pixels, and L  is for the number of gray scale kr . Gray scale kr  and the 88 

probability of appearance of gray scale ( )kp r  can be expressed as the histogram of the original 89 

image [46].  90 

For gray images, the method of the enhancement of histogram equalization can be expressed 91 
as [47]: 92 

  0
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( )(0 )≤ <k kf r r L  stands for the mapping relationship between the pre-enhancement image gray 97 

scale kr  and the enhanced image gray scale 'kr . 98 

By the following formula, the transformed gray scale allows the output histogram to be uniform 99 
over the entire output gray scale range so that the contrast of the image can be increased. 100 

 0
( ) (( 1) ( ))

k

k j
j

T r round L p r
=

= − 
                    

(7) 101 

Figure 3 is a pavement crack image. After the image preprocessing, Figure 3 turns into Figure 102 
4. 103 
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 104 

Figure 3. Original image 105 

 106 

Figure 4. Image after preprocessing 107 

Due to the complexity of the overall pavement condition, the gray value of cracks in different 108 
regions of the image varies greatly. Even if the whole image is segmented by the noise reduction 109 
with Gauss filter and the image enhancement with histogram equalization, the obtained results still 110 
can't meet the actual needs. Therefore, we divide the whole image into a plurality of sub-blocks, and 111 
the sub-block regions are separately subjected to threshold segmentation [48-49]. A collected 3024 112 
× 2048 pavement image is divided into 16 × 16 blocks, as shown in Figure 5.  113 

 114 

Figure 5. Regional block diagram 115 

2.3. Feature selection  116 

The 256 blocks fall into two categories, those containing cracks and those containing no cracks, 117 
as shown in Figure 6. 118 
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 119 

Figure 6. Image after dividing into blocks 120 

Observation and analysis of a large number of image samples reveal that the target of 121 
pavement cracks has specific shape features that can be used to categorize the blocks. These shape 122 
features can be obtained by binarizing the segmented image with the maximum entropy method. 123 
The principle of maximum entropy method states that the entropy takes the maximum value when 124 
all events of the system are equally likely to occur [50-51]. 125 

The following is the process to use the maximum entropy method to calculate the threshold. 126 
For a gray image, assuming the range of the image gray values is [0, 1]L − , and the minimum and 127 

maximum gray values are minV and maxV respectively. According to the entropy formula, the 128 

entropy value corresponding to the gray value t can be calculated as 129 

  
( ) lg (1 )

1
t L t

t t
t t

H H HE t P P
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−= − + +
−
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(11) 134 

Here ip  is the probability that the gray value i  appears, tP  is the sum of the probability of 135 

the gray values from 0 to t , tH  is the sum of the entropy of the gray values from 0 to t , and LH  136 

is the entropy of the original image. The objective of our method is to find a proper value of t  137 

between minV  and maxV  to maximizes ( )E t . The value of t  is the optimal threshold determined 138 

by the maximum entropy method. 139 

After the image process by using the threshold, there are still some discrete small particles in 140 
the original picture. Therefore, four description values are designed as classification features of the 141 
binary image for the obtained image area that is less than the threshold. 142 
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(1) The rectangularity of the largest connected region: the ratio of the area of the region to the 143 
area of a rectangular region having the same first-order moment and second-order moment in this 144 
region. For the fractured segment, the largest connected region is the region where the fractures are 145 
located. And the rectangularity of the largest connected region of fractured segments is generally 146 
smaller than the non-fractured segments. 147 

(2) The eccentricity of the largest connected region: the ratio of the semi-major axis to the 148 
semi-minor axis of the smallest ellipse that can cover the largest connected region. The larger the 149 
ratio, the more likely there are cracks in the pavement image. 150 

(3) The area of the largest connected region 151 

max( )= iMA A                        (12) 152 

where iA  is the area of the ith connected domain. 153 

(4) The compactness of the largest connected region: the square of the length of the region 154 
outline is divided by the area of the region. 155 

2.4. Crack recognition classification 156 

The regional characteristic descriptors obtained from the previous step can be used to 157 
determine whether the current sub-block contains cracks. We utilize an adaptive lifting algorithm to 158 
train the classifier to complete the related classification work [52]. The algorithm consists of the 159 
following steps. 160 

(1) Given N  samples of the training data set, each sample contains the above four 161 
characteristic description values and whether it is a mark of a crack region or not. The sample set is 162 
expressed as follows: 163 

{ }1 1 2 2={(x ,y ),(x ,y ),...,(x ,y )}; 1,1N NT y = −
               

(13)
 

164 

where 1{ , }N
i i ix y =  stands for training sample set and the corresponding mark. 165 

(2) Initialize weights distribution of the training data set as 166 

  
1 1,1 1, 1, 1,

1( ,..., ,... ), , 1, 2,...i N iD w w w w i N
N

= = =
            

(14) 167 

(3) For 1, 2,3, 4=m , uses a training dataset with weight distribution mD  for learning, and 168 

generates the basic classifier ( )mG x [53]. In the meantime, calculates the error rate me  of 169 

classification and the coefficient mα  of the basic classifier ( )mG x in the training data set using the 170 

following formulas. 171 
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Where ,m iw  is the weight of the ith sample in round ( {1, 2,3, 4})m m ∈ , and  174 
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175 

(4) Update the distribution of weights of the training data set. 176 

 1 1,1 1, 1,( ,..., ,..., )m m m i m ND w w w+ + + +=
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178 

Where mZ  is the factor of normalization. 179 

 
,

1
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N

m m i m i m i
i
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180 

(5) Construct the linear combination of the basic classifier and obtain the strong classifier that 181 
can determine whether the current sub-block image contains cracks. 182 

   

4

1
( ) ( ( ))m m

m
G x sign G xα

=

= 
                    

(21)
 

183 

The target area containing the cracks is marked with a red range. The damage rate is calculated 184 
as the ratio of the number of marked sub-blocks to the total number of sub-blocks [54]. The 185 
recognition results are shown in Figure 7. 186 

 187 
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(a)  189 

 190 

 191 

(b) 192 
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 194 

(c) 195 

Figure 7. Crack recognition results. (a) Transverse cracks; (b) Longitudinal cracks; (c) Irregular cracks 196 

 197 

The overall algorithm is shown in Figure 8. 198 
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Figure 8. Flow diagram of algorithm 200 

 201 

3. Results 202 

To verify the effectiveness of this algorithm, a set of 1000 pavement damage pictures provided 203 
by a provincial highway bureau were used to perform a comparison experiment with manual 204 
detection, and two other commonly used algorithms: the minimal deviation algorithm and the 205 
OSTU algorithm. The experiment hardware environment is 2.40GHZ CPU, 8G memory IPC, and 206 
the software environment is VC2010. The experiment was repeated eight times and the results are 207 
shown below in Table 1.  208 

 209 

Table 1. Average time taken to detect cracks in a single image by the four methods 210 
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Manual 

detection 
Algorithm in 

this paper 

Minimal 
deviation 
algorithm 

OSTU 
algorithm 

#1 4387ms 235ms 892ms 1233ms 

#2 3315ms 346ms 1123ms 1452ms 

#3 5789ms 532ms 965ms 1678ms 

#4 4310ms 490ms 1387ms 1783ms 

#5 3520ms 456ms 732ms 1653ms 

#6 5120ms 378ms 1232ms 1723ms 

#7 4760ms 612ms 934ms 1974ms 

#8 4239ms 563ms 1365ms 1923ms 

It can be seen that the detection speed of the algorithm in this paper is faster than that of 211 
manual detection and the other two commonly used algorithms. We also compared the accuracy of 212 
the detection methods of the four algorithms. The results are shown in Figure 9. 213 

 214 
Figure 9. Accuracy of crack detection of the four methods 215 

4. Discussion 216 

From Figure 9, we can see that the accuracy of crack detection of the proposed algorithm is 217 
slightly lower than manual detection, but far superior to the other two commonly used algorithms. 218 
The accuracy of the algorithm in this paper can meet the detection accuracy requirements of the 219 
actual pavement detection department. 220 

5. Conclusions 221 

Through theoretical research and actual experiments, we can draw the following conclusions: 222 

(1) Currently, the detection of pavement crack is mainly conducted with manual identification. 223 
On the other hand, there are still many problems with automatic recognition, such as slow 224 
identification, poor accuracy and so on. Therefore, this paper adopts the adaptive lifting algorithm 225 
for automatic pavement crack recognition. 226 
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(2) Through image processing combined with adaptive lifting model in machine learning, we 227 
can calculate the ratio of the number of crack sub-blocks to the total number of image sub-blocks 228 
and use it to characterize the degree of crack damage in the current image. The results suggest that 229 
the speed and accuracy of recognition of our proposed algorithm can meet actual requirements. 230 

(3) The current research mainly focuses on pavement cracks, but it cannot automatically detect 231 
other types of damage, such as bags, pits, and repair of cracks. In the future, our research goal 232 
should place on other types of damage pavement to further improve the automatic pavement 233 
damage recognition system. 234 
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