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Abstract: An effective on-board cloud detection method in small satellites would greatly improve
the downlink data transmission efficiency and reduce the memory cost. In this paper, an ensemble
method combining a lightweight U-Net with wavelet image compression is proposed and evaluated.
The red, green, blue and infrared waveband images from Landsat-8 dataset are trained and tested
to estimate the performance of proposed method. The LeGall-5/3 wavelet transform is applied on
the dataset to accelerate the neural network and improve the feasibility of on-board implement. The
experiment results illustrate that the overall accuracy of the proposed model achieves 97.45% by
utilizing only four bands. Tests on low coefficients of compressed dataset have shown that the overall
accuracy of the proposed method is still higher than 95%, while its inference speed is accelerated to
0.055 second per million pixels and maximum memory cost reduces to 2Mb. By taking advantage
of mature image compression system in small satellites, the proposed method provides a good
possibility of on-board cloud detection based on deep learning.
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0. Introduction

The global cloud covers is approximately 66% over land surfaces of the Earth, and it often appears
and covers objects on the surface in remote sensing images, which makes much difficulty in image
analysis tasks and object detection missions [1]. Good cloud detection algorithms are always necessary
especially before the implement of segmentation and object detection methods.

What’s more, with the trend of satellite missions towards lower cost and wide coverage, the
on-board cloud detection draws great attention in the research area [2], [3], [4], [5]. Since the
convolutional neural networks (CNN) have demonstrated excellent performance in various visual
recognition problems such as image classification [6], [7], CNN would provide better possibility of
accurate on-board cloud detection in small satellites. Besides, as for the smaller and lighter satellites
aiming at lauch cost reduction, which requires smaller and low-cost optical payload, the spectral
information is limited for image processing. In general, small satellite images are composed of at
most four wavebands including red, green, blue and infrared, thus, most of existing state-of-art
threshold-based methods, such as FMask [8], ACCA [9] and MSScvm [10], could not demonstrate
satisfactory performance without extra information like far infrared data or atmosphere temperature.

Since the cloud detection tasks applied on the satellite platforms are more constrained by the
hardware limits (such as memory storage and power restriction) than the classification algorithms,
and the consuming time of on-board deep learning would be intolerable, satellite image compression
systems should be considered to concentrate image features and accelerate the algorithms. In most
satellites, the images would be transmitted directly to the ground station after compression, and
uncompressed data is hard to adopted in small satellites for classification. On the other hands, the
low-frequency coefficients of the compressed images show great potential on image detection tasks
such as face recognition [11].

This paper proposed a lightweight deep neural networks based on U-Net, and obtained better
overall accuracy while reaches to the state-of-art inference speed by applying the LeGall-5/3 wavelet
transform [12] on the dataset. The SPARCS dataset based Landsat-8 [13] is utilized here and the
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Overall Accuracy on test data achieves 97.43%. Comparing with the state-of-art method F-mask and
SPARCS [13], which achieve 99.1% and 98.1% on Overall Accuracy separately by utilizing full 11
bands including Cirrus Band and Thermal Infrared Band, the proposed method shows competitive
performance only taking advantage of texture and geometric features from RGB and Infrared Bands.
After image compression is applied, the overall accuracy comes to 95.2% on the level-4 compressed
images, where the size of the compressed image narrows down to 16 × 16, and the inference speed of
the proposed method reduces from 7.23s to 0.055s, along with the maximum memory cost reducing
from 162.2Mb into 2.07Mb. Therefore, it provides a great possibility of implement of the on-board
deep learning algorithms to solve the high-resolution remote sensing image classification problems,
especially when rough cloud fraction needs to be calculated before image transmission. A comparison
with different algorithms including machine learning based method and threshold-based method on
the same dataset proves the validity and efficiency of our algorithm.

1. Background

In recent years, scholars have undertaken a great deal of research into cloud and cloud shadow
detection for different types of remote sensing data and several popular algorithms are proposed.
Since abundant spatial information is contained in the four waveband images, and since human
classifiers can almost always visually identify clouds within a scene, spatial information should be
sufficient for discrimination. The convolutional neural networks (CNN) have been proven to gather
and utilize image spatial information effectively, and it has shown excellent performance in various
visual recognition problems such as image classification, object detection, semantic classification and
action recognition.

Methods based on deep learning algorithms have been introduced in this area in very recent years
[14], [15]. Sholar [14] illustrates a lightweight constitutional neural network for cloud detection. Shi,
etc. [16] proposed a nerual network combined with super-pixel pre-classification method to achieve a
rough coud mask. While Xie, etc. [17] demonstrates a segmentation method combined with two neural
net works with different input size. However, most of the existing deep learning methods combine
with super-pixel segmentation method, which utilize super-pixel areas as input patches and obtain
single output for every patch. Therefore, existing methods could not obtain the pixel-wise detection
accuracy and is not able to achieve good classification performance on compressed images with small
size like 16 × 16. Therefore, some new deep learning networks designed for semantic segmentation
such as U-Net should be introduced here to achieve better accuracy on compressed dataset.

Several works have also taken efforts on other methods. In [18] Chie, etc. demonstrated a cloud
classification method on low-resolution images based on texton random forest, which explores the
potential possibility of on-board image processing in simple tasks. Weng, etc. [19] introduced deep
extreme learning machine to classify the images from HJ-1A/1B satellite and compute the cloud cover
fraction. And Bartos, etc. [20] illustrated the performance of segNet model combined with hard
negative mining method on cloud detection mission. A threshold-based method in [21] combined the
threshold segmentation with geometric feature and texture feature to detect cloud of GaoFen-1 images.

U-Net model was proposed by Olaf Ronneberger in 2015 [22]. By combining the high-resolution
layers with decoded low resolution images, and utilizing upsampling operators to reach the pixel-wise
result, U-Net framework has shown great performance on large biomedical images and won the ISBI
cell tracking challenge 2015. Thus, it shows great potential on pixel-wise classification of remote
sensing dataset.

2. Method

2.1. Data set up

In order to achieve better performance and objective results on cloud detection, the open source
Landsat data SPARCS (https://landsat.usgs.gov/sparcs) is downloaded and introduced here. There
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Figure 1. WRS2 path/row data location of imagery utilized for training and test

are several reasons that we select the SPARCS dataset: 1, according to article [13], the pixel-wise cloud
masks by the SPARCS dataset is acquired by 11 bands of Landsat-8 datasets and the groundtruth
accuracy is high enough considering that we only use four bands for training and testing; 2, different
circumstances including large thin cloud area, cloud over ocean, cloud over ice and snow are contained
in the dataset, which would make the proposed method more persuasive. 3, the classification results
in [13] by utilizing 11 bands provide a good comparison with the proposed method.

The dataset was originally created by M. Joseph Hughes, Oregon State University, from Landsat
8 Operational Land Imager (OLI) Level-1B scenes. The purpose of the data was to validate cloud
and cloud shadow masking derived from the Spatial Procedures for Automated Removal of Cloud
and Shadow (SPARCS) algorithm. SPARCS data has seven manually labeled classes, including cloud,
shadow, flooded, ice/snow, water, shadow over water, and land. Each mask is a 1000 × 1000 pixel
subset of an original Landsat 8 OLI/TIRS Level-1 scene with 11 spectral bands. In this paper, only
band 2, 3, 4, 5, which is Red, Blue, Green and infrared bands are utilized for training and testing, and
the classes are reclassified as two classes including cloud and non-cloud.

According to the reference [13], the overall 80 images are separated into two groups: 80% as
training set and 20% as test set. We carefully pick twelve representative scenes as test images to make
sure that every class is included and each class ratio in two groups keep approximately the same.
Beside, the geographical location is also considered, and the training and test dataset varies from
different hemispheres and latitudes, which is shown in Fig. 1. What’s more, considering the limitation
of GPU memory, the original image is divided into sub-images with 300 × 300 size and becomes the
input data for the proposed model.

2.2. Neural Network Classification

A lightweight neural network based on U-Net models are utilized here to explore the classifier
structures on the cloud detection accuracy. The U-Net supplements a usual contracting network by
successive layers, where pooling operators are replaced by up-sampling operators. Hence, these layers
increase the resolution of the output. In order to localize, high resolution features from the contracting
path are combined with the upsampled output. A successive convolution layer can then learn to
assemble a more precise output based on this information. Considering the engineering limits in
satellites, the network layers and channels are shorted, and the input size is reshaped to the size of
training data samples. What’s more, the Relu activation layers and batch normalization layers are
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Table 1. Architecture of proposed lightweight U-Net: L-unet; a depends on the input image size

Layers kernel size output size channels
Input 3 × 3 a × a 4

conv1-1 3 × 3 a × a 8
conv1-2 3 × 3 a × a 16
pool1 3 × 3 a/2 × a/2 16

conv2-1 3 × 3 a/2 × a/2 32
conv2-2 3 × 3 a/2 × a/2 32
pool2 3 × 3 a/4 × a/4 32

conv3-1 3 × 3 a/4 × a/4 64
conv3-2 3 × 3 a/4 × a/4 64
unpool1 3 × 3 a/2 × a/2 32

concat[unpool1,conv2-2] 3 × 3 a/2 × a/2 64
conv4-1 3 × 3 a/2 × a/2 32
conv4-2 3 × 3 a/2 × a/2 32
unpool2 3 × 3 a/2 × a/2 16

concat[unpool2,conv1-2] 3 × 3 a × a 32
conv5-1 3 × 3 a × a 16
conv5-2 3 × 3 a × a 8
conv5-3 3 × 3 a × a 2

Table 2. Architecture of the L-decov. a depends on the input image size

Layers kernel size output size channels
Input 3 × 3 a × a 4
conv1 3 × 3 a × a 8
conv2 3 × 3 a × a 16

fc3 1 × 1 a × a 32
fc4 1 × 1 a × a 32

deconv2 3 × 3 a × a 16
deconv1 3 × 3 a × a 8
output 1 × 1 a × a 2

adopted between layers, and Cross-entropy cost function and Adam optimizer are utilized here to
train the network. The architecture of the proposed lightweight networks (hereinafter referred to as
L-unet) is illustrated in Table. 1. The output size a in Table. 1 depends on the size of the input data.
For example, a would change from 300 to 150 when the original dataset is compressed in one level.

Considering that another popular architecture for pixelwise segmentation in deep learning
community is deconvolutional layer which was first proposed by Hyeonwoo Noh in 2015. And in
order to achieve better comparison with proposed network, another lightweight model (hereinafter
referred to as L-decov) based on [14] is developed, The network with only 7 layers is developed
based on Segnet [23] and DeconvNet [24]. It shares simliar deconvolution layers with DeconvNet.
The deconvolution layers is the transpose convolution layer which is a reverse convolution turning
convoluted images into their original size. It would help the neural network achieve the pixel-wise
detection precision. Several slight changes are applied for the original network. The input size is
adjusted according to the sample size of the training data. Besides, channels of every layer in L-decov
network are reduced compared with the original network. We carefully select the channels of each
network to make sure that their inference speed and memory cost is close on same dataset in same
hardware environment. Therefore, a better comparison could be achieved. The architecture of L-decov
is illustrated in Table. 2. Similarly, the output size a would be adjusted as the input size changes.

Training data for the neural networks randomly sampled from training sub-scenes without any
prepossessing steps. A total number of 1024 samples were used for the training of each work. And the
proposed network is trained using TensorFlow environment with configuration of signal GTX-1060
GPU.
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Figure 2. Discrete wavelet decomposition

2.3. Image compression

Since proposed neural network would be time-consuming for on-board satellite applications, the
compressed images would be considered as the input data. Image compression technology is required
to deal with the large volume of data produced by multi-spectral sensors [25]. Discrete Wavelet
Transform (DWT) algorithms have been utilized in most of the earth observation satellites during the
last few decades. [26]. In a typical data compression system, the first step is the two dimensional
DWT based forward transformation, separating images into high-frequency and low-frequency part,
in order to concentrate the most essential signal into the few low frequency parts. The DWT algorithm
is employed in several systems like JPFG2000 [27], Embedded Zero tree Wavelet algorithm (EZW)
[28], or Set Partitioning In Hierarchical Trees (SPIHT) [29]. The on-board compression theory has been
developed for decades and mature compression systems have been applied in satellites successfully.

The theory of the two dimensional DWT method has been throughly studied and widely discussed
in recent years. Plenty of wavelets, such as Haar wavelet [30], Symmetric wavelet [31], and LeGall-5/3
Wavelet, [32] have been introduced into the image compression system. For the two-dimensional
images, the wavelets would be applied three times that scan the image details in horizontal, vertical
and diagonal directions. It could be represented as a four channel perfect reconstruction filter bank as
shown in Fig. 2(a). Then this process could be repeated on the low low (LL) band utilizing the second
stage of identical filter bank. Thus, a typical two-dimensional DWT, utilized in image compression,
generates the hierarchical structure shown in Fig. 2(b).

Due to the overlarge size of the raw image data, the progressive transmission strategy is often
introduced in small satellites, which could divide the image into smaller parts and then separately
apply the wavelets. In this work, considering the practical memory limitation in small satellites, the
original raw data from testing dataset would be divide into several sub-images in 300 × 300 size. Thus,
a becomes 300 in Table. 1. Due to its popularity and high efficiency on satellite data compression,
LeGall-5/3 lossless wavelet compression algorithm is introduced here to verify the performance of
proposed networks on compressed images. The LL band of each filter bank is introduced into the
neural network. Therefore, the size of input image would becomes 16 × 16 (a = 16) in both networks
of Table. 1 and Table. 2. And the output size of each neural layer reduce into 8 × 8 and 4 × 4 after
pooling operation in the proposed lightweight U-Net.
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Table 3. Classification results of different algorithms on 16 test dataset, NN is the neural network
developed based on [13]

Algorithms Overall Accuracy Recall F1score
Proposed L-unet 0.9745 0.9169 0.9449

L-decov 0.9646 0.8280 0.8904
Adaboost 0.9138 0.7077 0.7977

Random Forest 0.9266 0.7225 0.8119
Neural Network 0.873 0.698 0.776

SVM 0.902 0.684 0.7780

3. Results and Discussion

3.1. Classification results

We trained the proposed models in last section and several algorithms are introduced to compare
with our method. A classical random forest method with iteration parameters setting to 20 is applied
to the training data, and the result of test data is illustrated. Besides, an Adaboost method is also
implemented, while the iteration parameter is also set to 20. And a SVM method with radial basis
function kernel(RBF) is introduced and evaluated. According to [13], a pixelwise neural network
with a hidden layer of 30 nodes are developed and evaluated. Considering about the lack of spatial
information after image compression, the post processing steps developed in [13] is not introduced
here. The input size of the neural network is changed since only four bands of the dataset are utilized
here while the whole 11 band images are required in [13]. The algorithms are implemented based on
the scikit-learn library in Python environment. Four waveband information for each pixel is reshaped
as feature vectors to train and test these models. The selection of training and test dataset keeps the
same as the two deep learning networks mentioned in last section.

We choose Overall Accuracy, Recall and F1score to evaluate the performance of the algorithms.
The F1score is the harmonic mean of Accuracy and Recall:

F1score =
2 × Accuracy × Recall

Accuracy + Recall
(1)

The cloud detection results of the 16 test images are illustrated in Table. 3. The results show that
the proposed method, L-unet expresses the best performance in all indicators on the test dataset.
Compared with overall accuracy, the Recall score decreases for all algorithms, while the proposed
method still has a obviously good performance, which shows strong capability on cloud detection.
The Neural Network developed based on [13] could not achieve satisfactory accuracy because of lack
of spectral information especially band 6, band 9, band 10, and band 11. As for the Random Forest,
Adaboost and Svm methods which could not take advantage of texture features from neighboring
pixels, the overall accuracy and recall is not good enough compared with the two convolutional
networks. To make effective comparison without losing impartiality, the segmentation results obtained
from the best four methods including L-unet, L-decov, Random Forest and Adaboost are illustrated
and further evaluated on compressed dataset.

Fig. 3 is of a scene with dense mid-altitude clouds in the river region of Kyauktazi, South Myanmar
(WRS2 path/row 133/49). The red color area represents that non-cloud areas are misclassified as cloud
area, while green color area means cloud areas are classified as non-cloud areas, All of the methods
have strong heavy cloud detection, though Adaboost and Random Forest miss some small, thin clouds
along the edge of the spissatus. Besides, threshold method miss-classified the coast line due to the
similar spectral features. It is obvious that both networks have better performance especially on the
non-cloud areas. To compare the performance of two networks, a scene with large thin cloud area
in South Sulawesi, Indonesia (WRS2 path/row 114/62), is presented in Fig. 4. Both methods have
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Figure 3. Image classification of a sub-scene from Kyauktazi, South Myanmar (WRS2 path/row
133/49), acquired on 21 May 2014. (a): False color image; (b): Results obtained by proposed method;
(c): by L-decov; (d): by Adaboost; (e): by Random Forest

good performance on heavy cloud while L-decov netowrk mis-classified the land between the thin
cloud, as illustrated in the yellow rectangle of Fig. 4. The reason that L-unet network has better
classification accuracy on thin cloud is, the high resolution layers are participated in the training
process in the decoding parts of the networks, which provides a larger vision for the training model.
That is, the texture and geometric characteristics are well analyzed and evaluated to make sure a good
performance in borders of different classes.

Fig. 5 shows the scene from Swiss alps, Switzerland (WRS2 path/row 195/28), which is introduced
here to evaluate the performance of the proposed method on ice and snow area. Fig. 5(b) illustrates the
groundtruth of the image, in which the blue areas represent the ice from the Alps, Fig. 5(c) illustrates
that the proposed network could well distinguish the ice from the cloud based on its geometric features.

Fig. 6 shows a sub-scene from Carangas, Bolivia (WRS2 path/row 1/73), which belongs to another
Landsat dataset Bimoes [33]. The image is introduced here to illustrate that the proposed method still
have better performance on different dataset. The comparison of Fig. 6(b) and Fig. 6(c) has shown
that the bright area between the mountains could be well distinguished from cloud by the proposed
method.

To further verify the performance of proposed method, the cloud detection recall of different
classes in the test dataset are illustrated in Table. 4. The results demonstrate that although L-decov
method shows slightly better detection recall in land areas, the proposed L-unet method performs
better in most classes, especially in the cloud area. That is, thin cloud areas, cloud over water, and
cloud over bright areas would be well distinguished by proposed method.

3.2. Compressed image classification

After applying LeGall-5/3 wavelets on the training and testing dataset, the patch size would be
reduced from 300 × 300 to 16 × 16, then the LL coefficients are introduced into the model to evaluate
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Figure 4. Image classification of a sub-scene from South Sulawesi, Indonesia (WRS2 path/row 114/62),
acquired on 27 February 2014. (a): False color image; (b): Results obtained by proposed method; (c):
Results obtained by L-decov; (d): sub scene of (a); (e): sub scene of (b); (f): sub scene of (c)

Figure 5. (a) A sub-scene from Swiss alps, Switzerland (WRS2 path/row 195/28), acquired on 12
February 2014. (b): Groundtruth of image (a); (c): Classification result of image (a)

Table 4. Cloud detection error on different classes

Classes Land Cloud Flood Snow Water Shadow Shadow-over-water
Class ratio 63.67% 20.35% 0.16% 2.82% 7.76% 4.92% 0.32%

Recall of L-decov 0.0722 0.1197 3.612e-5 9.14e-4 0.0125 0.0213 0.0033
Recall of L-unet 0.0822 0.0312 3.09e-5 3.37e-04 0.011 0.0166 0.0032
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Figure 6. (a) A sub-scene from Carangas, Bolivia (WRS2 path/row 1/73), acquired on 03 June 2013; (b):
Results obtained by proposed method; (c): Results obtained by L-decov;

Table 5. Overall cloud accuracy with compressed images

Classifiers Level1 Level2 Level3 Level4 Accuracy Decrease
Proposed L-unet 0.967 0.964 0.9586 0.952 1.5%

L-decov 0.960 0.9373 0.9373 0.927 3.3%
Adaboost 0.91027 0.90937 0.88726 0.86335 4.7%

RandomForest 0.92464 0.91893 0.90752 0.90321 2.1%

its performance. The overall accuracy of different algorithms are shown in Table. 5. The results
demonstrated that the proposed method shows the best performance in each level of the compression,
and most importantly, the overall accuracy also decreased the least after images compression. Hence,
by applying image compression strategy, the proposed model would keep the good performance on
cloud fraction accuracy while the computation time and required memory would visibly reduced.
In Fig. 7, The compressed image of the sub scene in Puerto Aldea, Chile (WRS2 path/row 1/81) is
illustrated. The classification results by L-unet demonstrated that the thin cloud area could still be
detected on the compressed image. The results shows that compared with other methods, the proposed
L-unet is more robust on the noise introduced by compression operation, and keeps sensitive of thin
cloud area on the compressed images.

Table. 6 demonstrated the inference speed of different algorithms. The speed of the algorithms is
verified in python-based environment on the i-7 core computer with 16G RAM. Table. 7 illustrated
the maximum cost of the two networks before and after the image compression. The memory cost is
composed of size of neural layers and parameters of weights while memory reuse is not considered.
And the data type of the input images is 16 bits integers. The inference speed results and the memory
cost results illustrate that the compression process dramatically accelerates proposed neural network
and reduces its memory cost. The memory cost of proposed L-unet becomes 2.07Mb after applying the
level-4 images, which is small enough for the ARM-based processors in satellites while considering
the power limitation. Besides, the comparison between two networks show that L-decov cost less
memory but has larger inference speed, because of the less neural layers and less parameters, along
with deconvolutional layers, which would cost more time compared with up-pooling layers.

4. Conclusion and future work

In this paper, a cloud detection method combined lightweight U-Net network with image
compression is introduced to classify the cloud by using four waveband images from Landsat dataset.
the LeGall-5/3 wavelet is applied to compress the dataset and accelerate the network for the possibility
of on-board cloud detection in small satellites. Several different algorithms including L-decov network,
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Figure 7. A sub-scene from Puerto Aldea, Chile (WRS2 path/row 1/81), acquired on 13 February 2014;
(a): False color image of level-4 compressed images; (b): Result obtained by L-unet where a = 16; (c):
Result obtained by L-decov where a = 16

Table 6. Inference speeds for different algorithms

Method Inference Speed (Sec/Mil-Pixels)
L-decov (GPU) 0.218
L-unet (GPU) 0.211

L-decov (no-GPU) 7.62
L-unet (no-GPU) 7.23

L-decov(Level-4, no-GPU) 0.058
L-unet(Level-4, no-GPU) 0.055

Adaboost 2.63
RandomForest 2.5195

Table 7. Maximum memory cost of the two networks

Netwok Input Size Maximum memory cost (Mb)
L-decov 300 × 300 185.6096
L-unet 300 × 300 162.1826

L-decov 16 × 16 (Level-4) 0.5952
L-unet 16 × 16 (level-4) 2.0652
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Adaboost, and RandomForest are demonstrated to compare with our method. The experiment results
illustrated that the proposed model keeps high accuracy after 4-level compression. And the inference
speed reaches to 0.055 second/per million pixels, while the maximum memory cost of the network is
only 2Mb.

There are still several aspects left for future improvement. To explore the possibility of on-board
application for cloud detection, details such as on on board image transformation and algorithms
implement would be researched further. The small deep learning neural networks with few layers have
become a popular topic since last year. Several improved CNN networks such MobileNet could be
verified to further reduce the network size and memory cost. Besides, other datasets such as Landsat-7
dataset should also be used to improve the proposed model.
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