

1 Article

2 **Formation of Fe- and Mg-rich smectite under**
3 **hyperalkaline conditions at Narra in Palawan,**
4 **Philippines**5 Misato Shimbashi ¹, Tsutomu Sato ^{2,*}, Minoru Yamakawa ³, Naoki Fujii ³, Tsubasa Otake ²6 ¹ Graduate School of Engineering, Hokkaido University N13W8, Kita-ku, Sapporo, Hokkaido 060-8628,
7 Japan; shimbashi.m@gmail.com8 ² Division of Sustainable Resource Engineering, Faculty of Engineering, Hokkaido University, N13W8,
9 Kita-ku, Sapporo, Hokkaido 060-8628, Japan; tomsato@hokudai.ac.jp10 ³ Radioactive Waste Management Funding and Research Center, Akashi-cho 6-4, Chuo-ku, Tokyo 104-0052,
11 Japan; fujii@rwmc.or.jp

12 * Correspondence: tomsato@hokudai.ac.jp; Tel.: +81-11-706-6305

13 Academic Editor: name

14 Received: date; Accepted: date; Published: date

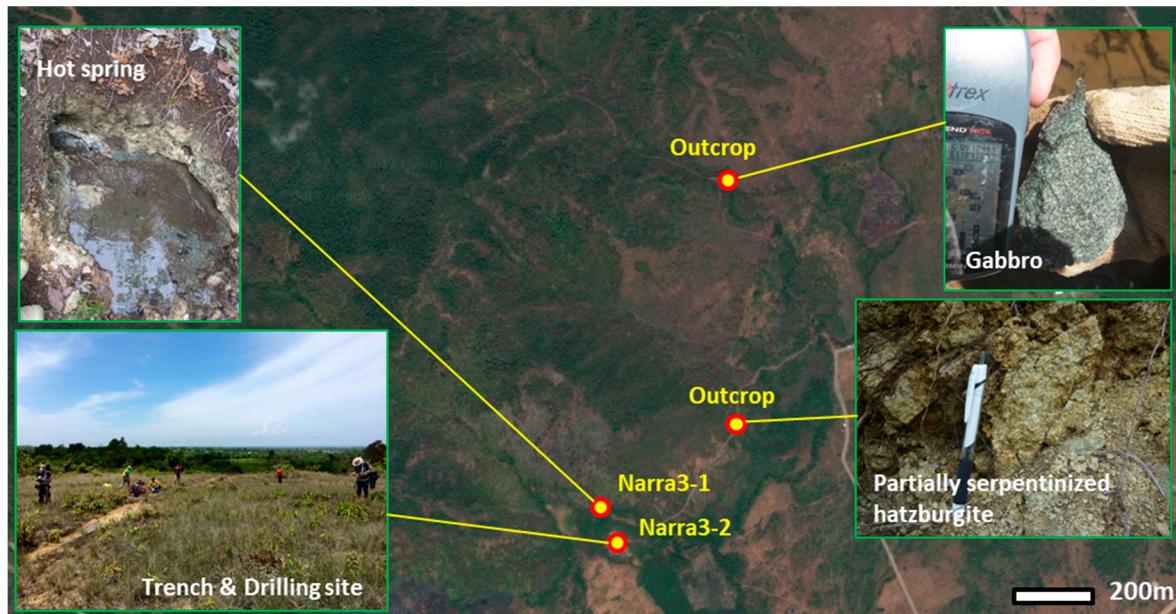
15 **Abstract:** Formation of Fe- and Mg-rich smectite and zeolite under alkaline conditions is
16 concerned as secondary minerals after alkaline alteration of bentonite in a repository of
17 radioactive wastes. It might be crucial for safety assessment whether smectite will be formed or
18 not as secondary minerals after alkaline alteration of bentonite. In present paper, Fe- and Mg-rich
19 smectite which are currently interacting with hyperalkaline groundwater was found at Narra in
20 Palawan, Philippines. Mineralogical and geochemical investigation was conducted to understand
21 formation process of smectite and factors determined secondary mineral species. Our study
22 revealed a certain amount of smectite may have been produced under hyperalkaline conditions,
23 altered from amorphous or poorly crystalline material such as M-S-H and F-S-H. Key factor which
24 decides smectite or zeolite as secondary minerals after alkaline alteration of bentonite might be
25 whether nuclei of M-S-H and/or F-S-H will be formed or not. This might be decided by the
26 presence of dissolved Mg²⁺ and Fe²⁺ in the system. Our suggested formation process of smectite
27 under alkaline conditions is analogue with generally-accepted model of smectite formation that
28 might have been occurred on early Mars.29 **Keywords:** Fe- and Mg-rich smectite; alkaline; ophiolite; M-S-H; F-S-H; C-S-H; geological disposal;
30 natural analogue; Mars

31

32 **1. Introduction**33 Smectite is ubiquitous clay mineral in diverse surface or near-surface environment on the Earth
34 and has used in many industrial fields. For example, bentonite, which mainly consists of
35 montmorillonite in smectite group, is planned to be used as buffer materials for geological disposal
36 of radioactive wastes due to its favorable properties of smectite such as low permeability and high
37 cation exchange capacity. However, loss of barrier function of bentonite has been concerned by
38 reactions with hyperalkaline leachates from cementitious materials in the repository. Many
39 laboratory experiments have been conducted to understand geochemical reactions of bentonite
40 under hyperalkaline conditions for the safety assessment. Among those, many previous studies
41 used NaOH, Ca(OH)₂ and/or KOH solution as the hyperalkaline leachates, and reported the
42 formation of zeolite [1-3]. However, there is a significant disparity in time scales and complexity of
43 reaction fields between laboratory experiments and actual disposal environments. Therefore,

44 “natural analogue studies” are unambiguously necessary to bridge such a gap for long-term safety
45 assessment and not only expert’s but also public acceptances.

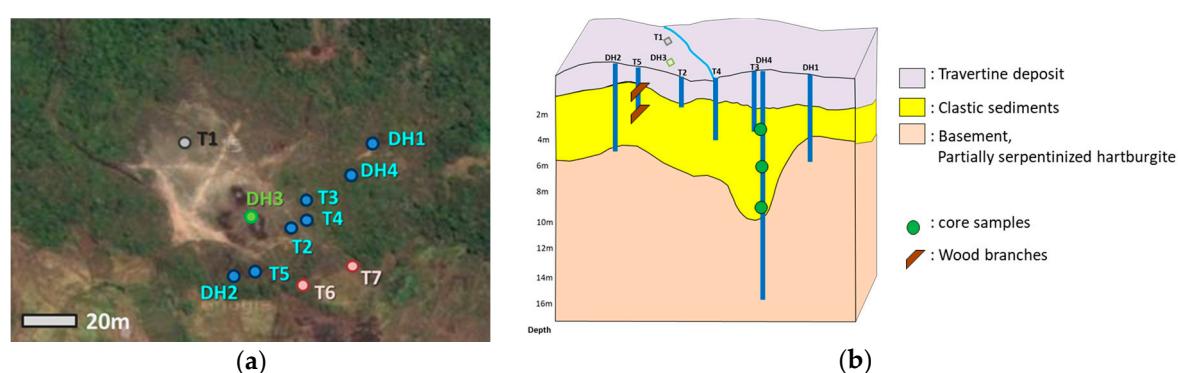
46 A previous natural analogue study examined interactions between bentonite and natural
47 alkaline fluids at Zambales ophiolite in Luzon, Philippines [4]. They reported that bentonite
48 alteration zone was limited within 5 mm because of clogging at the interface by secondary formed
49 minerals such as goethite, K-feldspar and Fe- and Mg-rich smectite. They attributed the limited
50 alteration of bentonite at the interface to this clogging. Because smectite has properties such as low
51 permeability and high cation exchange capacity as mentioned above, the formation of smectite at
52 the interface might play an important role for hydrologic barrier and nuclides isolation
53 performance. Therefore, smectite formation and subsequent clogging after dissolution of bentonite
54 in the repository would contribute to maintain a required barrier performance of bentonite. This
55 geochemical reaction presumably occurs in the repository because Fe might be supplied from other
56 engineered barrier components such as over pack and prefabricated engineering barrier, and Mg
57 might be derived from bentonite itself and groundwater. Therefore, the natural analogue study at
58 Zambales ophiolite showed important implication for understanding of long-term
59 bentonite-hyperalkaline interaction. However, that interaction between bentonite and alkaline fluids
60 has already finished so that fluid chemistry for the formation at that site was poorly understood.
61 Therefore, formation process of smectite and factors determined secondary mineral species are still
62 uncertain. For this reason, it is not enough to conclude the possibility of smectite formation after
63 bentonite dissolution in the repository from the results of natural analogue study at Zambales
64 ophiolite.


65 In Philippines, there are many hyperalkaline springs from present-day serpentization of
66 ultramafic rock. The authors found Fe- and Mg-rich smectite in underground sediments at Narra in
67 Palawan, Philippines and hyperalkaline fluids at the same site. In this site, study on stability of
68 smectite or formation of smectite under hyperalkaline conditions was available, although there is
69 unfortunately no bentonite. Therefore, in this study, mineralogical and geochemical investigation
70 was conducted to understand geochemical reaction of smectite under hyperalkaline condition.

71 **2. Geological setting and samples**

72 The Philippines Archipelago is surrounded by some major plates such as Eurasian Plate, Pacific
73 Plate and Indo-Australian Plate. Palawan is one of the islands situated on the south-eastern margin
74 of the South China Sea. Geology in the south and central Palawan is dominated by Palawan
75 ophiolite. Palawan ophiolite was detached from underlying upper mantle following initiation of
76 subduction at a spreading ridge in the Palaeocene, and thrust onto the Asian margin during collision
77 which began in the late Eocene [5]. The emplacement of the ophiolite was taken place between Late
78 Oligocene and Early Miocene [6]. The stratigraphic sequence in ophiolite is from tectonized
79 peridotites, cumulate peridotites, layered gabbro, sheeted dike complex, pillow basalts and pelagic
80 sedimentary rocks. In the ophiolite observed at the surface of ground, the peridotites have
81 commonly changed into serpentinite. This occurs in the mantle wedge at depths of 30 to 40 km
82 below the surface, which is called as “(high temperature) serpentization”.

83 Samples were collected at Narra in the central Palawan. Figure 1 shows sampling sites and the
84 studied area on a bird’s-eye photo. The main sampling site (Narra3-2) is alluvial fan channel
85 distributed on a gentle slope of Palawan ophiolite basement. The basement is composed of partially
86 serpentized harzburgite and small amount of gabbro (Figure 1). Spring water spouts along
87 fractures of Palawan ophiolite on the top of the fan channel (Narra3-1), and flowing to Narra3-2 on
88 the surface fan deposition as surface waters. Surface of Narra3-2 is covered by calcite travertine.
89 Trench and drilling excavations were conducted at Narra3-2. Figure 2 shows bird’s-eye photo and
90 cross-sectional view of the main sampling site (Narra3-2). Below the travertine deposit, clastic
91 sediments originated from Palawan ophiolite were deposited.


92

93

Figure 1. Bird's-eye photo and sampling sites of the studied area

94 Locations of trenches and drill holes are shown in Figure 2(a). Solid samples were collected
 95 from each trenches and drill holes. Because the clastic sediments could be collected spatially larger
 96 than basement, 20 samples collected from all over the clastic sediments layer were mainly provided
 97 to detailed analysis. Among those, core samples from the deepest drill hole (DH4) were analyzed in
 98 more detail to understand long-term interaction between clastic sediments and groundwater.
 99 Wooden branches in clastic sediments at different depth are collected from Trench5 (T5) to estimate
 100 time from their deposits. Location of core samples from DH4 and wooden branches from T5 were
 101 shown in cross-sectional view of Narrra3-2 (Figure 2(b)).
 102

103

Figure 2. (a) Bird's-eye photo of Narrra3-2 ; (b) cross-sectional view of Narrra3-2

104 Water samples were collected from groundwater discharged from the trench walls and drill
 105 holes (T1-7 and DH1-4), surface water from different locations at Narrra3-2 (upper stream, middle
 106 stream and lower stream) as well as spring water at Narrra3-1.

107 3. Methods

108 To obtain data on chemistry of water samples, the following analyses were conducted.
 109 Temperature, pH and ORP were measured at the site. Alkalinity was measured by titrating HNO₃
 110 into 50 mL of water samples that had been filtered through 0.45 µm polytetrafluoroethylene (PTFE)
 111 membrane filters at the site. Additional filtered water samples were obtained by filtering through
 112 0.2 µm PTFE membranes for analyses of cations and anions. Concentration of major cations was
 113 analyzed by atomic adsorption spectrometry (ZA3300, Hitachi, Co. Ltd.), except concentration of Al

114 was analyzed by atomic adsorption spectrometry (Z-5010, Hitachi, Co. Ltd.), and concentration of Si
115 was analyzed by Spectrophotometry (U-1100, Hitachi, Co. Ltd.). Concentration of major anions was
116 analyzed by ion chromatography (ICS-2100, Thermo, Co. Ltd.).

117 Clastic sediments and rock samples were air-dried or freeze-dried, and then conducted X-ray
118 diffraction analysis to determine the mineralogical compositions by using an X-ray diffractometer
119 (Multiflex, Rigaku, Co. Ltd.) equipped for graphite-monochromatic $\text{CuK}\alpha$ radiation and operated at
120 40 kV and 40 mA. The randomly oriented powder samples were scanned from 5° to 70° in 20° at
121 scanning speed of 0.01°/s. Samples were separated in fraction less than 2 μm from course fraction by
122 ultrasonic dispersion and centrifugation. Preferred orientation specimens were prepared by drying
123 <2 μm diameter fraction suspension and mounting on glass slides at room temperature with and
124 without ethylene glycol solvation. Ethylene glycol solvation was conducted with ethylene glycol
125 vapor at 60°C for more than 12 hours. They were analyzed by using an X-ray diffractometer
126 (RINT1200, Rigaku, Co. Ltd.) equipped for $\text{CuK}\alpha$ radiation at 30 kV and 20 mA. The samples were
127 scanned from 2° to 40° in 20° at scanning speed of 0.02°/s. The randomly oriented powder samples of
128 <2 μm diameter fraction were measured to observe 060 reflection of clay minerals. 061 reflection is
129 useful to distinguish dioctahedral and trioctahedral clay minerals because d060 is sensitive to the
130 degree of occupancy and the size of cations in octahedral sheets. The samples were scanned from
131 59° to 63° in 20° by a fixed time scan method with 10 seconds for each 0.02 degree.

132 Selected core samples were embedded into a resin to make thin sections. Occurrences of
133 infilling materials at matrix of clastic sediments were observed and quantitative analysis of their
134 chemical compositions was conducted by using an Electron Probe Micro Analyzer (JXA-8530F,
135 JEOL, Co. Ltd.). Structural formula of smectite was determined by following procedures: (1) assign
136 all Si^{4+} to the tetrahedral site, (2) assign all Al^{3+} to the tetrahedral site until tetrahedral site
137 occupancy is 4, and then assign Al^{3+} to the octahedral site, (3) assign all Fe to the tetrahedral site
138 until tetrahedral site occupancy is 4 under assumption that Fe is present as Fe^{3+} , and then assign Fe
139 to the octahedral site (4) assign all Mg^{2+} to the octahedral site, (5) assign all Ca^{2+} , Na^{+} and K^{+} to the
140 interlayer site.

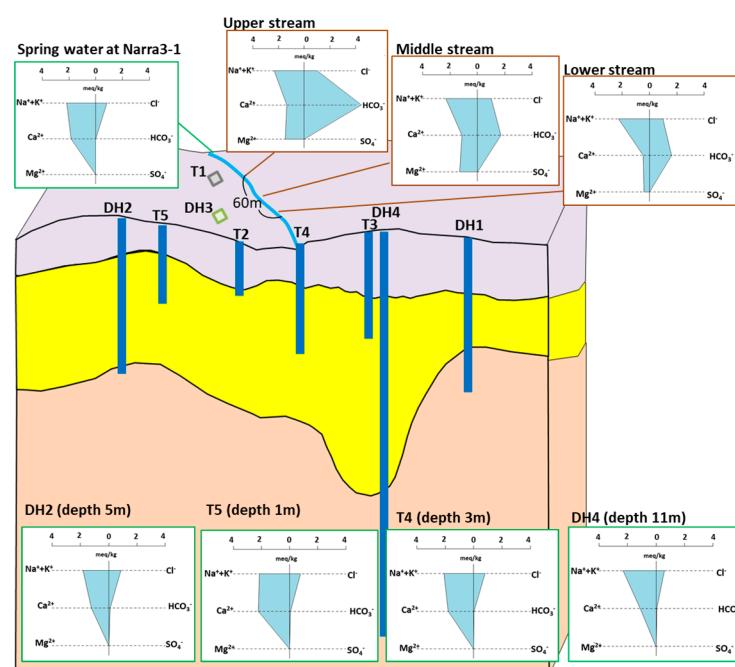
141 Minerals at matrix observed in thin sections were picked up by using micromanipulator
142 (Quick Pro, Micro Support Co. Ltd.) and hard tool probe (CP-005, Micro Support Co. Ltd.). They
143 were analyzed by Transmission Electron Microscope (JEM-2010, JEOL, Co. Ltd.) for characterization
144 of minerals at matrix. Energy Dispersive X-ray Spectroscopy equipped with TEM was also used to
145 confirm that target particles were picked up.

146 Radioactive carbon (^{14}C) dating of wooden branches in the clastic sediments was conducted by
147 using tandem-type accelerator mass spectrometer (15SDH-2, National Electrostatics Corporation).
148 ^{14}C decay with time, and its half-life is 5730 years. Therefore, ^{14}C dating is suitable for estimation of
149 time shorter than tens thousands of years. When wood is alive, containing carbon isotope is similar
150 with that of atmosphere. However, ^{14}C is just decreasing in wooden branches after stopping
151 biological activity. Therefore, ^{14}C in samples yielded burial age of wooden branches. Preprocessing
152 procedure of graphitization of samples was done at Toki Research Institute of Isotope Geology and
153 Geochronology.

154 “The Geochemist’s Workbench” software package was used to carry out the thermodynamic
155 calculation to obtain phase diagrams for Mg-Si-Al-Na system. In the calculation, thermodynamic
156 database “thermoddem” provided by BRGM was used after incorporation of equilibrium constants
157 for magnesium silicate hydrate (M-S-H) reported in a previous study [7].

158 4. Results

159 4.1. Fluids analyses

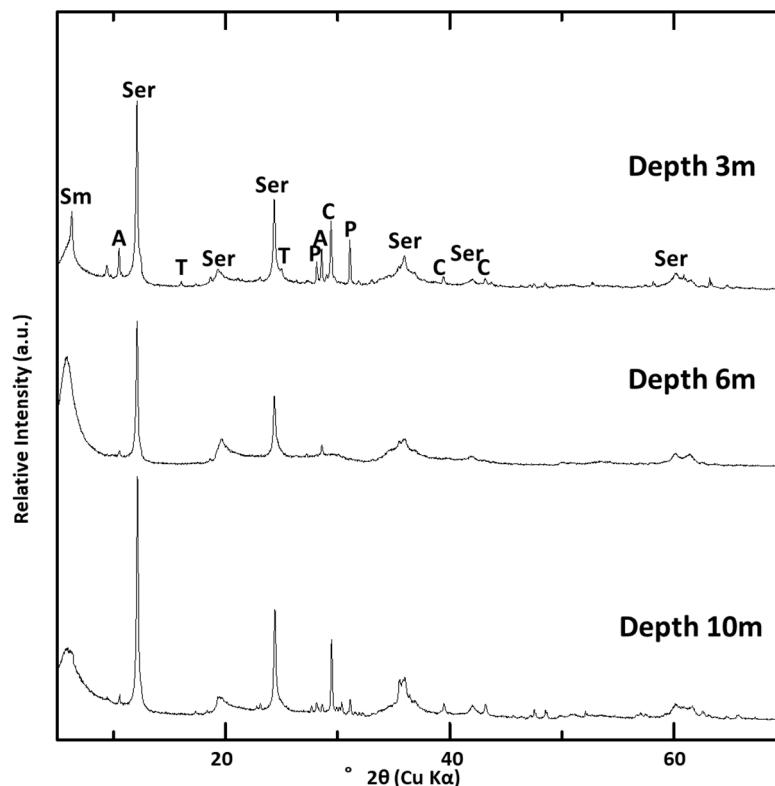

160 On-site measurements and concentrations of major cations and anions are reported in Table 1.
161 Results of the chemical analyses show that both spring water at Narra3-1 and groundwater at Narra
162 3-2 were hyperalkaline ($\text{pH} > 11$; Table 1), and have very similar geochemical characteristics in the
163 stiff diagrams (Figure 3). They have same characteristics such as low dissolved Mg, Si, Fe, HCO_3^-

164 concentrations and high dissolved Ca concentration regardless of the different sampling depths
 165 (~11m to 1m below the surface) for the groundwater. This chemistry of those samples is similar with
 166 that of groundwater from other representative ophiolites [8–11], and similar with leachates from
 167 cement degradation.
 168

169 **Table 1.** On-site measurements and concentrations of major cations and anions in ppm

Sample	T [°C]	pH	ORP [mV]	Na ⁺	K ⁺	Mg ²⁺	Fe ⁽²⁺³⁾⁺	Al ³⁺	Ca ²⁺	Si ²⁺	Cl ⁻	SO ₄ ²⁻	HCO ₃ ⁻
Narra 3-1	38.6	11.16	-450	48.6	2.94	0.02	0.02	0.07	37.5	0.9	29.5	0.18	0.09
T1	30.3	11.31	-176 ¹	44.6	2.12	0.02	0.02	0.01	32.2	0.7	25.6	0.08	0.77
DH2	35.9	11.18	-113	40.3	2.66	0.03	0.03	0.03	24.8	5	31.3	0.10	5.6
T5	29.9	11.36	-152	48.2	2.24	<0.01	0.01	0.13	44.8	4.1	27.8	<0.01	3.6
T6	27.2	10.96	-107	50.1	2.46	0.01	0.02	0.19	24.6	5.77	28.5	1.92	9.2
DH3	33.5	11.29	-99	51.2	2.72	0.01	0.02	0.07	33.9	2.8	28.7	0.12	1.2
T2	28.8	11.39	-160	46.1	2.32	0.02	0.02	0.08	26.9	2.5	27.3	0.13	0.67
T7	27.7	11.16	-141	49.1	2.02	<0.01	0.02	0.18	26.8	4.27	28.6	0.63	8.9
T4	33.4	11.17	-30	47.1	2.54	0.02	0.03	0.10	36.4	2.3	28.5	0.21	2.1
T3	33.7	11.37	-111	50.4	2.39	0.01	0.05	0.08	48.5	2.5	27.0	0.02	<0.01
DH4	33.0	11.39	-119	51.8	2.96	0.02	0.03	0.06	22.4	2.9	21.1	0.14	2.8
DH1	30.9	11.08	-79	51.1	3.56	<0.01	0.04	0.07	10.4	8	31.6	0.83	2.3
Upper stream	32.5	9.3	120	52.6	2.55	18.0	0.02	<0.01	27.3	11	36.6	0.58	275.5
Middle stream	33.2	9.64	120	52.4	2.55	16.0	0.02	<0.01	22.9	10	36.2	0.53	105.9
Lower stream	32.4	9.73	115	51.7	2.42	5.00	0.02	<0.01	9.2	4.2	35.3	0.34	100.4

170

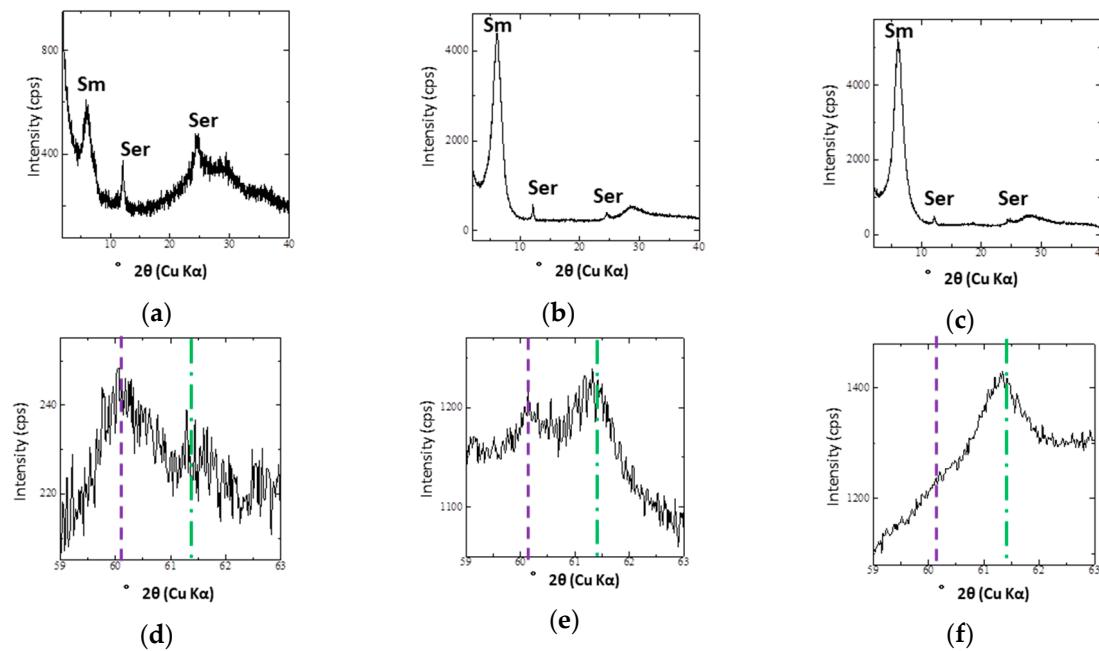

171 **Figure 3.** Stiff diagrams of representative water samples (spring water at Narra3-1, surface water at
172 Narra3-2, groundwater at Narra3-2 collected from DH2, T5, T4 and DH4)

173 On the other hand, surface water has different characteristics from those of hyperalkaline
174 groundwater (Figure 3). Surface water are less alkaline ($\text{pH} < 10$), and showed higher Mg^{2+} and HCO_3^-
175 concentrations than those in the hyperalkaline groundwater and spring water (Figure 3). Moreover,
176 dissolved Ca, Mg and HCO_3^- concentrations decreased from the upper stream to the lower stream
177 (Figure 3).

178 **4.2. XRD analyses**

179 Smectite was identified in all the clastic sediment samples after XRD measurements of ethylene
180 glycol-solvated and preferred orientation samples. Although smectite was found to be present
181 under hyperalkaline conditions, it is still uncertain whether smectite at this site was produced
182 under this condition or transported from other places because of sediments. Detail analyses were
183 conducted to understand formation process of smectite.

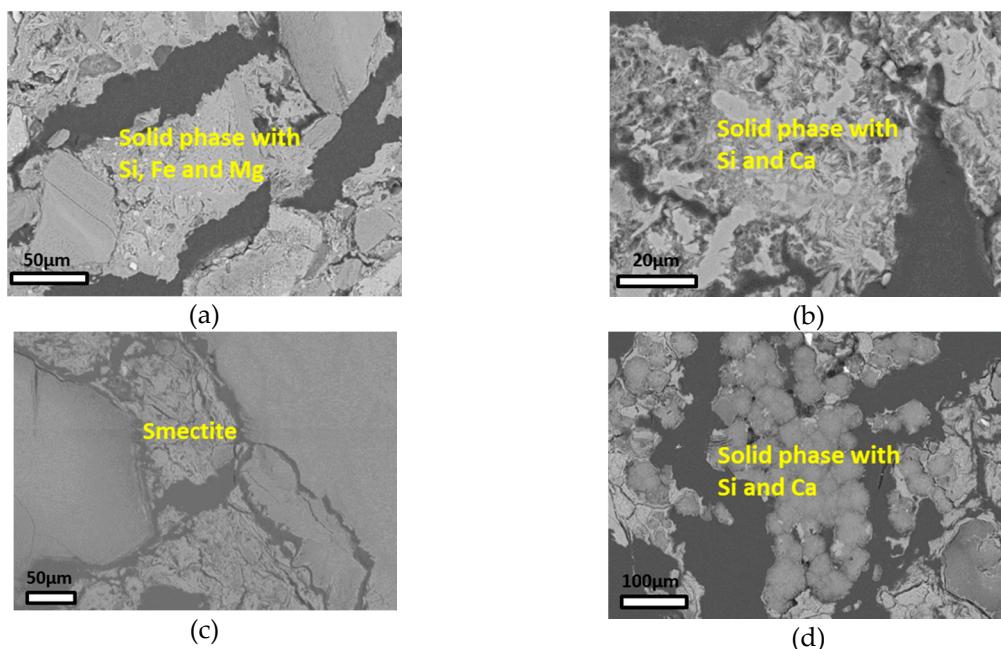
184 Figure 4 shows XRD patterns of the samples collected from DH4 (3-10m in depth). They were
185 collected from clastic sediments layer. Smectite, serpentine and amphibole were detected in those
186 samples. Besides, tobermorite, pyroxene and calcite were detected in some of them (Figure 4).



188 **Figure 4.** XRD spectra of randomly oriented powder samples of DH4 at each depth (3m, 6m and
189 10m) Sm: smectite; Ser: serpentine; T: tobermorite; P: pyroxene; A: amphibole; C: calcite

190 T1 (3m in depth) is located upper part of alluvial fan channel than other trenches and drill holes
191 (Figure 2). From XRD analysis of samples collected from T1, only calcite was detected. Compared to
192 depth of travertine deposits for each trenches and drill holes, travertine deposits were thick at upper
193 part of alluvial fan channel, which is T1, than other trenches and drill holes.

194 Figure 5 shows preferred orientation XRD spectra and 060 reflection of $< 2 \mu\text{m}$ fraction. The
195 intensity of peak assigned to smectite is higher in samples from deeper parts of DH4 (6m and 10m
196 in depth) compared to that from shallower parts of DH4 (3m in depth). This trend was also
197 observed for most of samples collected from clastic sediments layer at each trenches and drill holes.


198 From its 060 reflection, smectite is identified as nontronite because of the position of 060 reflection in
 199 smectite-rich samples (e.g. Figure 5(e)(f)).
 200

201 **Figure 5.** XRD spectra of $<2\mu\text{m}$ fraction of DH4 at each depth : (a) Oriented XRD spectra at depth 3m
 202 ; (b) Oriented XRD spectra at depth 6m ; (c) Oriented XRD spectra at depth 10m ; (d) XRD spectra of
 203 060 reflection at depth 3m ; (e) XRD spectra of 060 reflection at depth 6m ; (f) XRD spectra of 060
 204 reflection at depth 10m ; Sm: smectite; Ser: serpentine

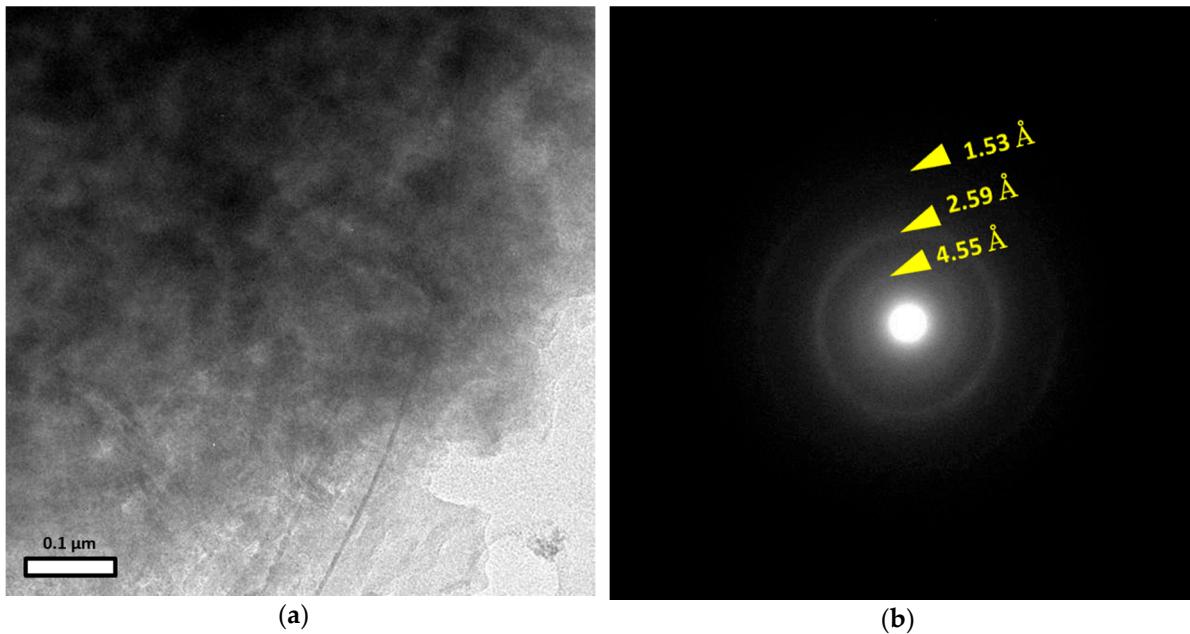
205 4.3. EPMA analyses

206 Occurrences of infilling materials at matrix of clastic sediments collected from DH4 (3m and
 207 6m in depth) were observed by EPMA (Figure 6). Those samples were chosen for detailed analysis
 208 because smectite content is different (Figure 5(a)(b)). Minerals at matrix could be divided mainly
 209 into 2 categories. One is solid phase with Si, Fe and Mg, and the other is solid phase with Si and Ca.
 210 The solid phase with Si, Fe and Mg was present as major minerals that filled matrix of clastic
 211 sediments.
 212

213 **Figure 6.** Occurrences of minerals that filled matrix of clastic sediments from DH4 at each depth : (a)
 214 solid phase with Si, Fe and Mg at depth 3m. ; (b) solid phase with Si and Ca at depth 3m. ; (c)
 215 Smectite at depth 6m. ; (d) solid phase with Si and Ca at depth 6m.

216 From chemical compositions determined by EPMA, most of minerals at matrix at depth 6m
 217 were assigned as smectite. However, solid phase with Si, Fe and Mg at matrix at depth 3m was not
 218 assigned as smectite for the following reasons. Chemical compositions of smectite at depth 6m and
 219 minerals that filled matrix at depth 3m are similar except that Si content of minerals that filled
 220 matrix at depth 3m is lesser than that of smectite. Crystal structure of phyllosilicates is classified in 2
 221 layer types, 1:1 layers and 2:1 layers. Smectite has 2:1 layers in which one octahedral sheet is
 222 sandwiched between two tetrahedral sheets, and some clay minerals such as serpentine has 1:1
 223 layers in which one octahedral sheet is bonded to one tetrahedral sheet. Fe- and Mg-rich smectite
 224 have Mg, Fe as major cations in octahedral sheets with small amount of isomorphous substitution of
 225 Al. And it has Si as major cations in tetrahedral sheets with small amount of isomorphous
 226 substitution of Al and Fe^{3+} . Therefore, $(Fe+Mg)/Si$ ratio will indicate layer types. Table 2 shows
 227 $(Fe+Mg)/Si$ ratio of ideal smectite, ideal serpentine, smectite at depth 6m and minerals at matrix at
 228 depth 3m. $(Fe+Mg)/Si$ ratio of ideal smectite is about 0.5-0.8, and $(Fe+Mg)/Si$ ratio of ideal serpentine
 229 is about 1.5. $(Fe+Mg)/Si$ ratio of minerals at matrix at depth 3m is about 1.24-1.51, while that at depth
 230 6m, which is assigned to smectite, is about 0.55-0.88. This indicates that minerals at matrix at depth
 231 3m might not form 2:1 layers, and were not assigned as smectite. This phase was characterized in
 232 section 4.4 by using TEM.

233 **Table 2.** $(Fe+Mg)/Si$ ratio of ideal smectite, ideal serpentine, smectite from DH4 at depth 6m and
 234 minerals at matrix of clastic sediments from DH4 at depth 3m. N represents number of analyzed
 235 points.


	Ideal smectite	Ideal serpentine	Smectite at depth 6m	Minerals at matrix at depth 3m
$(Fe+Mg)/Si$	0.5-0.8	1.5	0.55-0.88	1.24-1.51
Analyzed points	-	-	14	16

236 Solid phase with Si and Ca was partially observed at matrix of clastic sediments (Figure 6).
 237 Chemical contents of this mineral are mainly Si, Ca. Ca/Si ratio at each points is about 0.4-0.8. They
 238 contain small amount of Fe.

240 *4.4. TEM observations*

241 Solid phase with Si, Fe and Mg that filled matrix of clastic sediments from DH4 at depth 3m
 242 was not identified as smectite (see section 4.3). They were picked up by using micromanipulator for
 243 TEM observation, and confirmed that target particles were surely picked up by chemical analysis of
 244 constituent using EDS equipped with TEM. Figure 7 shows TEM image, and the corresponding
 245 selected-area diffraction (SAD) pattern. These particles formed indeterminate aggregate (Figure
 246 7(a)). SAD pattern shows 3 diffuse rings (Figure 7(b)). The observed d-spacing is 4.55 Å, 2.59 Å and
 247 1.53 Å. Previous study reported that M-S-H is low crystalline phase with broad humps at 4.51 Å,
 248 3.34 Å, 2.56 Å and 1.54 Å by XRD [7], and those d-spacings, except for 3.34 Å, are very similar with
 249 observed d-spacing of particle picked up from matrix of clastic sediments from DH4 at depth 3m.

250

251
252 **Figure 7.** TEM results for solid phase with Si, Fe and Mg at matrix of clastic sediments from DH4 at
depth 3m: (a) Low magnified image. ; (b) SAD pattern of the area in (a).

253 **4.5. ^{14}C dating**

254 ^{14}C dating of wooden branches in the clastic sediments collected from T5 at different depth
255 yields 2443 ± 46 years and 1209 ± 46 years. ^{14}C dating of wooden branches in sediments collected from
256 different depth at T5 shows burial age of wooden branches from deeper parts is older than that
257 from shallower parts.

258 **5. Discussion**259 *5.1. Origin of hyperalkaline groundwater and its relation to alkaline surface water*

260 Hyperalkaline groundwater at Narra3-2 and spring water at Narra3-1 have same
261 characteristics (Figure 3). This chemistry of those samples is similar with that of groundwater from
262 other representative ophiolites [8–11]. They have indicated that the geochemical characteristics of
263 those fluids are governed by geochemical reactions of meteoric waters with ultramafic rocks [10].
264 Therefore, chemistry of both groundwater and spring water at the site are also likely caused by
265 geochemical reactions of meteoric water with Palawan ophiolite.

266 On the other hand, alkaline surface water at Narra3-2 showed higher Mg^{2+} and HCO_3^-
267 concentrations than those in the hyperalkaline groundwater and spring water (Figure 3) although
268 the field observation suggests that part of the surface water is possibly derived from the spring
269 water. This may be due to mixing of the spring water with other surface water that are enriched in
270 Mg and HCO_3^- , which was derived from weathering of ultramafic rocks with meteoric waters [10].
271 Moreover, dissolved Ca , Mg and HCO_3^- concentrations decreased from upper stream to lower
272 stream. This is probably due to precipitation of carbonate minerals. The carbonate minerals may
273 precipitate when the spring water become oversaturated in term of carbonate minerals by the
274 mixing with other surface water that contain Mg^{2+} and HCO_3^- at near neutral pH. This is consistent
275 with that travertine deposits were thicker at upper part of alluvial fan channel (T1) than that at
276 other trenches and drill holes. Clastic sediments were covered by travertine deposit. Consequently,
277 spring water spouts at Narra3-1, and formed travertine deposit at Narra3-2 after deposition of
278 clastic sediments at the site. Because surface water at Narra3-2 has different types from
279 hyperalkaline groundwater (Figure 3), mixing of hyperalkaline groundwater at Narra3-2 and
280 surface water in subsurface environment was not occurred currently at least.

281 *5.2. Evidence of the interaction between clastic sediments and hyperalkaline groundwater*

282 Solid phases with Si and Ca were formed at matrix of clastic sediments from DH4 (3m and 6m
283 in depth) (Figure 6(b)(d)). Among minerals that detected in XRD analysis, mineral with Si and Ca is
284 tobermorite. Therefore, the solid phases with Si and Ca at matrix of clastic sediments would be
285 tobermorite. Previous study reported formation of 14 Å tobermorite-like C-S-H at room temperature
286 [12]. C-S-H has well known to form under alkaline pH such in concrete matrix [13]. Therefore,
287 C-S-H formation under alkaline conditions primary formed as infilling materials at matrix of clastic
288 sediments and precursor of the observed tobermorite. The presence of authigenic tobermorite
289 consequently indicates that the infilling materials at matrix of clastic sediments formed by direct
290 precipitation from hyperalkaline groundwater and/or interaction between the clastic sediments and
291 hyperalkaline groundwater. In situ geochemical reaction involved with hyperalkaline groundwater
292 would also be supported by the evidence of discharge of hyperalkaline groundwater from trench
293 walls and drill holes.

294 *5.3. Identification of the solid phase with Si , Fe and Mg*

295 In the clastic sediments, from the results of XRD and EPMA, smectite was also observed as
296 infilling materials (Figure 6(c)). In general, smectite is group name for expandable clay minerals and
297 chemically divided into two sub groups such as dioctahedral smectite and trioctahedral smectite.
298 The sub groups are mainly classified by valence of cations in octahedral sheets. Major cations in
299 octahedral sheets of smectite are mainly Al^{3+} or Fe^{3+} for dioctahedral smectite and Mg^{2+} or Fe^{2+} for
300 trioctahedral smectite. The smectite observed in the sediments was identified as nontronite based
301 on 060 reflection in XRD patterns (Figure 5). Nontronite ordinary consists Fe^{3+} as main cations in
302 octahedral sheets, and it is classified as dioctahedral smectite. Therefore, Fe in smectite might be
303 mainly ferric state. However, smectite that filled matrix of clastic sediments from DH4 at depth 6m
304 has Mg^{2+} with wide range of Fe/Mg ratio from 1.1 to 2.9, which is different from ideal nontronite.

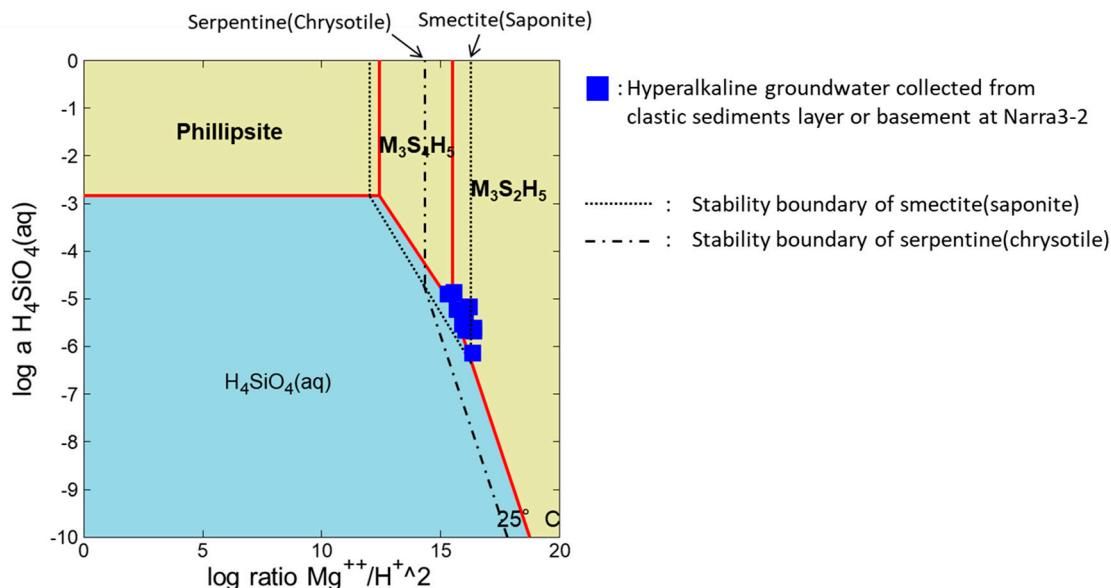
305 Chemical composition of smectite from DH4 at depth 6m is between nontronite and trioctahedral
 306 smectite. This type of smectite is previously reported [14,15]

307 On the other hand, solid phase with Si, Fe and Mg at matrix of clastic sediments from DH4 at
 308 depth 3m was not identified as smectite (see section 4.3). This is consistent with the result of
 309 preferred orientation XRD analysis that shows smectite is poor in samples from DH4 at depth 3m
 310 compared to those at deeper depth (Figure 5 (a)(b)(c)). Major infilling materials would be separated
 311 in fraction less than 2 μ m from course fraction by ultrasonic dispersion and centrifugation, and only
 312 smectite and serpentine were detected from XRD pattern of the fraction less than 2 μ m (Figure 5(a)).
 313 Therefore, solid phase with Si, Fe and Mg at matrix of clastic sediments from DH4 at depth 3m
 314 would be considered to be serpentine as shown in the XRD pattern or X-ray amorphous material.
 315 The d-spacing obtained from SAD pattern of particle picked up from matrix of clastic sediments
 316 from DH4 at depth 3m are very similar with that of M-S-H reported previously [7]. M-S-H might be
 317 precursor of phyllosilicates such as smectite, talc, serpentine and sepiolite [7,16,17], although this is
 318 still controversial. In terms of Fe, previous study reported nuclei of a trioctahedral ferrous
 319 stevensite under reducing condition by aging coprecipitated gel of silica and Fe^{2+} -sulphate at low
 320 temperature (75 °C) [18]. In this laboratory experiment, although crystallization of the nuclei into
 321 smectite was not observed under reducing condition in 15 days, subsequent oxidation induced
 322 rapid crystallization of ferric nontronite-like smectite for a few weeks. This synthetic smectite has
 323 broad peaks with d-spacing at 14-15.5 Å, 4.54 Å, 3.41 Å, 2.61 Å, 2.28 Å, 1.70 Å and 1.52 Å in the XRD
 324 pattern. Similar d-spacing was observed by evolution of Fe^{3+} -Si coprecipitates at 100 °C and 150 °C
 325 [19], and reported d-spacing at 4.45 Å, 2.56 Å, 1.71 Å, 1.51 Å and 1.29 Å by TEM. Table 3 shows
 326 d-spacing of solid phase with Si, Fe and Mg at matrix from DH4 at depth 3m, M-S-H [7], Fe^{2+} - Si
 327 coprecipitates [18], and Fe^{3+} -Si coprecipitates [19]. From this data shown in Table 3, solid phase with
 328 Si, Fe and Mg that infilled matrix of clastic sediments from DH4 at depth 3m have similar structure
 329 with not only M-S-H [7], but also Fe^{2+} - Si coprecipitates [18], and Fe^{3+} -Si coprecipitates [19].
 330 Therefore, solid phase with Si, Fe and Mg as infilling materials from shallower parts might be
 331 amorphous or poorly crystalline material related to M-S-H and F-S-H.

332 **Table 3.** Comparison of d-spacing of solid phase with Si, Fe and Mg at matrix from DH4 at depth
 333 3m measured by TEM, M-S-H measured by XRD [7], Fe^{2+} -Si coprecipitates measured by XRD [18],
 334 and Fe^{3+} -Si coprecipitates measured by TEM [19]. All d-spacing in Å.

Minerals at matrix from DH4 at depth 3m	M-S-H	Fe^{2+} -Si coprecipitates	Fe^{3+} -Si coprecipitates
-	-	14-15.5	-
4.55	4.51	4.54	4.45
-	3.34	3.41	-
2.59	2.56	2.61	2.56
-	-	2.28	-
-	-	1.70	1.71
1.53	1.54	1.52	1.51
-	-	-	1.29

335


336 5.4. Formation of Fe- and Mg-rich smectite under hyperalkaline conditions

337 Smectite was observed as infilling materials at matrix of clastic sediments as well as
 338 tobermorite (Figure 6). This might indicate smectite might be also formed under alkaline conditions.
 339 However, smectite is known to be produced by weathering of ultramafic minerals such as olivine
 340 and pyroxene under non-alkaline conditions. This remains uncertainties whether smectite at this

341 site was produced under this condition or transported from other places. It is very important to
 342 determine origin of the smectite. If the smectite formed under hyperalkaline condition at the site,
 343 this study will focus on smectite formation under hyperalkaline condition. On the contrary, if the
 344 smectite formed, transported and deposit at the site, this study will focus on smectite stability
 345 under hyperalkaline condition.

346 Smectite is rich in clastic sediments from deeper parts, and smectite was formed as infilling
 347 material at matrix of clastic sediments (e.g. sample from DH4 at depth 6m, Figure 6(c)). On the
 348 other hand, amorphous or poorly crystalline material such as M-S-H and F-S-H was formed as
 349 infilling material at matrix of clastic sediments from shallower parts (e.g. sample from DH4 at
 350 depth 3m, see section 5.3). Figure 8 shows a phase diagram for Mg-Si-Al-Na system. Chemical
 351 compositions of hyperalkaline groundwater are plotted within the stability fields of smectite
 352 (saponite) and serpentine (chrysotile). However, those fluids are not plotted in boundary of
 353 serpentine and smectite. When those thermodynamically stable phases are suppressed, they are
 354 plotted along the solubility line of M-S-H. This indicates concentrations of dissolved Mg and Si in
 355 the hyperalkaline groundwater are controlled by dissolution or precipitation of M-S-H, and not by
 356 dissolution or precipitation of stable phase such as serpentine and smectite. As mentioned above,
 357 from EPMA and TEM observations, M-S-H formed at matrix of clastic sediment. As consequence,
 358 M-S-H would be precipitated from hyperalkaline groundwater.

359

360 **Figure 8.** Phase diagram for Mg-Si-Al-Na system. Blue squares represent hyperalkaline groundwater
 361 collected from clastic sediments layer or basement at Narra3-2. Dotted lines show stability
 362 boundaries of smectite (saponite) and serpentine (chrysotile). ; $M_3S_1H_5$: M-S-H($3MgO \cdot 4SiO_2 \cdot 5H_2O$);
 363 $M_3S_2H_5$: M-S-H($3MgO \cdot 2SiO_2 \cdot 5H_2O$)

364 The smectite formed at matrix of clastic sediments from deeper parts shows the same
 365 occurrences with amorphous or poorly crystalline materials such as M-S-H from shallower parts. A
 366 previous study reported that a structure of M-S-H might be similar with 2:1 phyllosilicates with
 367 vacancies of Si in tetrahedral sites [16]. Because of structural and chemical similarities between
 368 M-S-H and smectite, there is a possibility that M-S-H was precipitated from hyperalkaline
 369 groundwater first by the interaction between clastic sediments and hyperalkaline groundwater, and
 370 alters to smectite. Although the relation with dissolved Fe^{2+} or Fe^{3+} concentration and formation of
 371 F-S-H has not been understood, F-S-H might be precipitated or coprecipitated with M-S-H, and
 372 form solid phase with Si, Fe and Mg.

373 Chemistry of hyperalkaline groundwater is governed by geochemical reactions of meteoric
 374 waters with Palawan ophiolite. Therefore, hyperalkaline groundwater have more likely been

375 flowing much longer than the deposition of clastic sediments at the site, and clastic sediments have
376 more likely been interacting with hyperalkaline groundwater since clastic sediments have deposited
377 at Narra3-2. ^{14}C dating of wooden branches in sediments collected from different depth at T5 shows
378 burial age of wooden branches from deeper place is older than that from shallow place. This
379 indicates clastic sediments at Narra3-2 might have deposited gradually. Therefore, estimated
380 time-scale of the interaction between sediments and hyperalkaline groundwater is basically longer
381 when sediments are present at deeper place. This is consistent that smectite was formed at matrix of
382 clastic sediments from deeper parts (e.g. sample from DH4 at depth 6m) and amorphous or poorly
383 crystalline material such as M-S-H and F-S-H was formed at matrix of clastic sediments from
384 shallower parts (e.g. sample from DH4 at depth 3m).

385 These results suggest that smectite was produced under hyperalkaline conditions via
386 amorphous or poorly crystalline material such as M-S-H and F-S-H by the interaction between
387 clastic sediments and hyperalkaline groundwater. Because ^{14}C dating of wooden branches might
388 indicate deposition age of wooden branches as well as the sediments, the age also indicates
389 interaction time-scale between clastic sediments and hyperalkaline groundwater. Therefore, a
390 certain amount of smectite might likely be produced under hyperalkaline conditions for thousands
391 of years or more.

392 5.5. Implications from this study

393 Fe- or Mg-rich smectite have also been detected in Noachian-aged and early Hesperian-aged
394 terrains on Mars [20,21]. A generally-accepted formation pathway of smectite is aqueous alteration
395 of mafic rocks in surface or subsurface environments at neutral to alkaline pH [20,22]. Therefore,
396 formation process of smectite in our studied area is analogue with generally-accepted pathway that
397 might have been occurred on early Mars. This indicates that our suggested process of smectite
398 formation under hyperalkaline conditions is not extraordinary process, and might have been
399 occurred as well as on early Mars.

400 Many previous experimental works reported the formation of zeolite after alkaline alteration
401 of bentonite [1–3]. On the other hand, natural analogue study at Zambales ophiolite reported the
402 formation of smectite after alkaline alteration of bentonite [4]. Because smectite might play an
403 important role for hydrologic barrier and nuclides isolation performance in the repository, it is
404 important to understand factors determined secondary mineral species. Our study proposed that
405 smectite were altered from amorphous or poorly crystalline material such as M-S-H and/or F-S-H
406 under hyperalkaline conditions. Previous studies reported that a certain amount of Mg^{2+} and/or Fe^{2+}
407 is necessary for the three-layer silicate minerals even during synthesize of Al^{3+} - or Fe^{3+} -rich smectite
408 at low temperature [23,24]. From our study and that previous studies [23,24], key factor which
409 decides smectite or zeolite as secondary minerals after alkaline alteration of bentonite might be
410 whether nuclei of M-S-H and/or F-S-H will be formed or not.

411 Previous natural analogue study in Cyprus reported the naturally-occurring formation of
412 Fe-bearing palygorskite as a result of bentonite alteration by alkaline fluids [8]. Because constituent
413 elements of Fe-bearing palygorskite include Mg and Fe, a certain amount of Mg^{2+} (and Fe^{2+}) will be
414 expected in the system. Factors that differed smectite or palygorskite as secondary minerals after
415 alkaline alteration of bentonite are still unknown.

416 6. Conclusions

417 In present paper, Fe- and Mg-rich smectite in clastic sediments which are currently interacting
418 with hyperalkaline groundwater was found at Narra in Palawan, Philippines. Hyperalkaline
419 groundwater is likely caused by geochemical reactions of meteoric water with Palawan ophiolite.
420 Fe- and Mg-rich smectite and amorphous or poorly crystalline material such as M-S-H and F-S-H
421 show the same occurrences, and they were formed at matrix of clastic sediments as major infilling
422 minerals at the site. From chemistry of hyperalkaline groundwater and occurrences, M-S-H might
423 precipitate from hyperalkaline groundwater. The presence of authigenic tobermorite as infilling
424 material also support that major infilling materials at matrix of clastic sediments formed by

425 interaction between the clastic sediments and hyperalkaline groundwater. Therefore, a certain
426 amount of smectite might have been produced under hyperalkaline conditions, altered from
427 amorphous or poorly crystalline material such as M-S-H and F-S-H.

428 Our suggested formation process of smectite under alkaline conditions is analogue with
429 generally-accepted model of smectite formation that might have been occurred on early Mars. This
430 indicates that our suggested formation process is not extraordinary process.

431 In the repository of radioactive wastes, alkaline alteration of bentonite is concerned. It might be
432 crucial for safety assessment whether smectite will be formed or not as secondary minerals after
433 alkaline alteration of bentonite. This is because smectite might play an important role for hydrologic
434 barrier and nuclides isolation performance in the repository. Our study provides more
435 understanding about secondary mineral formation after bentonite dissolution under hyperalkaline
436 conditions in the repository. Key factor which decides smectite or zeolite as secondary minerals
437 after alkaline alteration of bentonite might be whether nuclei of M-S-H and/or F-S-H will be formed
438 or not. This might be decided by the presence of dissolved Mg^{2+} and Fe^{2+} in the system. Therefore,
439 Mg^{2+} and Fe^{2+} should be examined carefully when we consider the interaction between bentonite and
440 hyperalkaline fluids in the future works.

441 **Acknowledgments:** This research was initiated within a project of “natural analogue study” to develop
442 geological disposal technologies in Japan, which was funded by the Ministry of Economy Trade and Industry
443 (METI), Japan. The authors would like to thank to Mr. Yukinobu Kimura in Obayashi Corporation for fluids
444 analyses, Dr. W. Russell Alexander in Bedrock Geosciences and Prof. Carlo Arcilla in University of the
445 Philippines for valuable advices throughout this research and set up field survey, and Dr. Hisao Satoh in
446 Mitsubishi Materials Corporation for EPMA analyses. The authors also thank to Mr. Masanobu Nishimura in
447 Obayashi Corporation and Mr. Tatsuaki Nakazuka in Kiso-Jiban Consultants Corporation for field survey.
448 Analyses of ^{14}C dating were performed under the Shared Use Program of JAEA Facilities [JAEA-AMS-TONO].

449 **Author Contributions:** M.S. is principal author conducting field survey, sampling, analyses, experiments, and
450 writing this paper. T.S. is chief supervisors of M.S. in master course. T.S. designed this study. T.O. is also one
451 of supervisors and conducted field survey and geochemical consideration. N.F. is principal manager of this
452 project. M.Y. contributed to this study as geologist and petrologist.

453 **Conflicts of Interest:** The authors declare no conflict of interest.

454 References

1. Fernàndez, R.; Cuevas, J.; Sàncchez, L.; Vigil de la Villa, R.; Santiago, L. Reactivity of the cement – bentonite interface with alkaline solutions using transport cells. *Appl. Geochemistry* **2006**, *21*, 977–992, doi:10.1016/j.apgeochem.2006.02.016.
2. Vigil de la Villa, R.; Cuevas, J.; Ramírez, S.; Leguey, S. Zeolite formation during the alkaline reaction of bentonite. *Eur. J. Mineral.* **2001**, *635–644*, doi:10.1127/0935-1221/2001/0013-0635.
3. Ruiz, R.; Blanc, C.; Pesquera, C.; González, F.; López, J. L.; Benito, I. Zeolitization of a bentonite and its application to the removal of ammonium ion from waste water. *Appl. Clay Sci.* **1997**, *12*, 73–83.
4. Fujii, N.; Yamakawa, M.; Shikazono, N.; Sato, T. Geochemical and Mineralogical Characterizations of Bentonite interacted with Alkaline Fluids generating in Zambales Ophiolite, Northwestern Luzons, Philippines. *Geol. Soc. Japan* **2014**, *120*, 361–375, doi:10.5575/geosoc.2014.0036.
5. Mitchell, A. H. G.; Hernandez, F.; Cruz, A. P. Dela Cenozoic evolution of the Philippine Archipelago. *J. Southeast Asian Earth Sci.* **1986**, *1*.
6. Aurelio, M. A.; Forbes, M. T.; Joy, K.; Taguibao, L.; Savella, R. B.; Bacud, J. A.; Franke, D.; Pubellier, M.; Savva, D.; Meresse, F.; Steuer, S.; Carranza, C. D. Middle to Late Cenozoic tectonic events in south and central Palawan (Philippines) and their implications to the evolution of the south-eastern margin of South China Sea: Evidence from onshore structural and offshore seismic data. *Mar. Pet. Geol.* **2014**, *58*, 658–673, doi:10.1016/j.marpgeo.2013.12.002.

472 7. Nied, D.; Enemark-rasmussen, K.; Hopital, E. L.; Skibsted, J.; Lothenbach, B. Properties of magnesium
473 silicate hydrates (M-S-H). *Cem. Concr. Res.* **2016**, *79*, 323–332, doi:10.1016/j.cemconres.2015.10.003.

474 8. Milodowski, A. E.; Norris, S.; Alexander, W. R. Minimal alteration of montmorillonite following
475 long-term interaction with natural alkaline groundwater®: Implications for geological disposal of
476 radioactive waste. *Appl. Geochemistry* **2016**, *66*, 184–197, doi:10.1016/j.apgeochem.2015.12.016.

477 9. Anraku, S.; Matsubara, I.; Morimoto, K.; Sato, T. Geochemical Factors for Secondary Mineral Formation
478 at Naturally-Occurring Hyperalkaline Spring in Oman Ophiolite. *J. Clay Sci. Soc. Japan* **2017**, *17*–30.

479 10. Barnes, I.; Neil, J. R. O. The Relationship between Fluids in Some Fresh Alpine-Type Ultramafics and
480 Possible Modern Serpentinization, Western United States. *Geol. Soc. Am. Bull.* **1969**, *80*, 1947–1960.

481 11. Bruni, J.; Canepa, M.; Chiodini, G.; Cioni, R.; Cipolli, F.; Longinelli, A.; Marini, L.; Ottonello, G.;
482 Vetuschi, M. Irreversible water – rock mass transfer accompanying the generation of the neutral , Mg –
483 HCO₃ and high-pH , Ca – OH spring waters of the Genova province , Italy. *Appl. Geochemistry* **2002**, *17*,
484 455–474.

485 12. Suzuki, S.; Sinn, E. 1.4 nm tobermorite-like calcium silicate hydrate prepared at room temperature from
486 Si(OH)₄ and CaCl₂ solutions. *J. Mater. Sci. Lett.* **1993**, *12*, 542–544.

487 13. Hong, S.; Glasser, F. P. Alkali binding in cement pastes Part I . The C-S-H phase. *Cem. Concr. Res.* **2000**,
488 *29*, 1893–1903.

489 14. Decarreau, A.; Colin, F.; Herbillon, A.; Manceau, A.; Nahon, D.; Paquet, H.; Trauth-badaud, D.;
490 Trescases, J. J. DOMAIN SEGREGATION IN Ni-Fe-Mg-SMECTITES. *Clays Clay Miner.* **1987**, *35*, 1–10.

491 15. Gainey, S. R.; Hausrath, E. M.; Adcock, C. T.; Ehlmann, B. L.; Xiao, Y.; Bartlett, C. L.; Tschauner, O.;
492 Hurowitz, J. A. Clay mineral formation under oxidized conditions and implications for
493 paleoenvironments and organic preservation on Mars. *Nat. Commun.* **2017**, *1*–7,
494 doi:10.1038/s41467-017-01235-7.

495 16. Roosz, C.; Grangeon, S.; Blanc, P.; Montouillout, V.; Lothenbach, B.; Henocq, P.; Giffaut, E.; Vieillard, P.;
496 Gaboreau, S. Crystal structure of magnesium silicate hydrates (M-S-H): The relation with 2:1 Mg – Si
497 phyllosilicates. *Cem. Concr. Res.* **2015**, *73*, 228–237, doi:10.1016/j.cemconres.2015.03.014.

498 17. Zhang, T.; Vandeperre, L. J.; Cheeseman, C. R. Formation of magnesium silicate hydrate (M-S-H)
499 cement pastes using sodium hexametaphosphate. *Cem. Concr. Res.* **2014**, *65*, 8–14,
500 doi:10.1016/j.cemconres.2014.07.001.

501 18. Decarreau, A.; Bonnin, D. SYNTHESIS AND CRYSTALLOGENESIS AT LOW TEMPERATURE OF FE (
502 III)-SMECTITES BY EVOLUTION OF COPRECIPITATED GELS: EXPERIMENTS IN PARTIALLY
503 REDUCING CONDITIONS. *Clay Miner.* **1986**, *21*, 861–877.

504 19. Decarreau, A.; Bonnin, D.; Badaut-trauth, D.; Couty, R.; Kaiser, P. SYNTHESIS AND
505 CRYSTALLOGENESIS OF FERRIC SMECTITE BY EVOLUTION OF SI-FE COPRECIPITATES IN
506 OXIDIZING CONDITIONS. *Clay Miner.* **1987**, *2*, 207–223.

507 20. Bishop, J. L.; Loizeau, D.; McKeown, N. K.; Saper, L.; Dyar, M. D.; Des, D. J.; Parente, M.; Murchie, S. L.
508 What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars.
509 *Planet. Space Sci.* **2013**, *86*, 130–149, doi:10.1016/j.pss.2013.05.006.

510 21. Vaniman, D. T.; Bish, D. L.; Ming, D. W.; Bristow, T. F.; Morris, R. V.; Blake, D. F.; Chipera, S. J.;
511 Morrison, S. M.; Treiman, A. H.; Rampe, E. B.; Rice, M.; Achilles, C. N.; Grotzinger, J.; McLennan, S. M.;
512 Williams, J.; Iii, J. B.; Newsom, H.; Downs, R. T.; Maurice, S.; Sarrazin, P.; Yen, A. S.; Morookian, J. M.;
513 Farmer, J. D.; Stack, K.; Milliken, R. E.; Ehlmann, B.; Sumner, D. Y.; Berger, G.; Crisp, J. A.; Hurowitz, J.

514 A.; Anderson, R.; Desmarais, D.; Stolper, E. M.; Edgett, K. S.; Gupta, S.; Spanovich, N.; Team, M. S.

515 Mineralogy of a Mudstone at Yellowknife Bay , Gale Crater , Mars. *Sciencesexpress* **2013**, 1–15.

516 22. Chemtob, S. M.; Nickerson, R. D.; Morris, R. V; Agresti, D. G.; Catalano, J. G. Synthesis and structural

517 characterization of Ferrous trioctahedral smectites: Implications for clay mineral genesis and

518 detectability on Mars. *J. Geophys. Res. Planets* **2015**, *120*, 1119–1140, doi:10.1002/2014JE004763.Received.

519 23. Harder, H. THE ROLE OF MAGNESIUM IN THE FORMATION OF SMECTITE MINERALS. *Chem.*

520 *Geol.* **1971**, *10*, 31–39.

521 24. Harder, H. NONTRONITE SYNTHESIS AT LOW TEMPERATURES. *Chem. Geol.* **1976**, *18*.

522