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Abstract: This paper proposes two fully-automatic machine-extracted linguistic features from an 10 
unlimited text input for Mandarin prosody generation. One is the punctuation confidence (PC) 11 
which measures the likelihood of inserting a major punctuation mark (PM) at a word boundary. 12 
Another is the quotation confidence (QC) which measures the likelihood of a word string to be 13 
quoted as a meaningful or emphasized unit in text. Because a major PM in a text is highly 14 
correlated with a prosodic break, and a quoted word string plays an important role in human 15 
language understanding, the two features potentially could provide useful information for 16 
prosody generation. The idea is first realized by employing conditional random field (CRF)-based 17 
models to predict major PMs, quoted word string locations, and their associated confidences, i.e., 18 
the PC and the QC, for each word boundary. Then, the predicted punctuations and their 19 
confidences are combined with traditional contextual linguistic features to predict 20 
prosodic-acoustic features. Both objective and subjective tests showed that the prosody generation 21 
with the proposed linguistic features performed better than the one without the proposed features. 22 
So, the proposed PC and QC are promising features for Mandarin prosody generation. 23 

Keywords: Mandarin; prosody generation; linguistic feature; break prediction; text-to-speech; 24 
punctuation confidence 25 

 26 

1. Introduction 27 

Prosody generation plays a crucial role in a text-to-speech system (TTS). We can regard prosody 28 
generation as a function mapping from linguistic feature to prosodic structures or prosodic-acoustic 29 
feature. In a practical implementation of an unlimited-text Mandarin text-to-speech system (MTTS), 30 
availability and reliability of linguistic features are highly dependent on performances of text 31 
analyzers. A basic text analyzer includes Chinese word segmenter, grapheme-to-phone (G2P) 32 
converter and part of speech (POS) tagger. Prosodic structures are abstract descriptions of speech 33 
prosody, and usually categorically represented by prosodic break tags, such as non-break, 34 
minor/major break, and so forth. A commonly agreed Mandarin prosody hierarchy is a four-layer 35 
prosodic structure with, from the lowest layer to the highest one, syllable (SYL) layer, prosodic word 36 
(PW) layer, intermediate phrase (or prosodic phrase, PPh) layer, and intonation phrase (IP) layer, 37 
which are demarked respectively by non-break, minor break, major break, and utterance boundary 38 
[1-3]. Prosodic-acoustic features are prosodic information numerically represented by values or 39 
vectors of log-F0 contour, duration, and energy of any linguistic domain, e.g., a phone, a syllable, an 40 
initial/final, or a word. Representative prosodic-acoustic features for Mandarin speech are syllable 41 
log-F0 contour, syllable duration, pause duration, and syllable energy level [4-6]. Besides, in the 42 
most popular speech synthesis method - HMM-based synthesis [7-10], prosodic-acoustic features are 43 
modeled in HMM state level, i.e., state duration, state logF0 value, and energy contour enclosed by 44 
spectral parameters. 45 
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No matter what the target (prosodic structure or prosodic-acoustic feature) of prosody 46 
generation is, studies of prosody generation focused on the following two issues: (1) design or 47 
utilization of prediction model, and (2) utilization of features. In the first issue, popular prediction 48 
methods for generating prosodic structure are hierarchical stochastic model [11], N-gram model [12], 49 
classification and regression tree (CART) [13,14], bottom-up/sifting hierarchical CART [13], Markov 50 
model [15], artificial neural networks [16], maximum entropy model [17], etc. As for generating 51 
prosodic-acoustic features, popular pattern recognition tools were utilized, such as multi-layer 52 
perceptron (MLP) [18-23], recurrent neural network (RNN) [4], CART [7-10,24], and decision tree 53 
plus hidden Markov model with multi-space distribution modeling of F0 contour [7-10], and so 54 
forth. In the second issue, conventional linguistic features, such as POS, word length, sentence 55 
length, position in a sentence, and so forth, are widely used in many existing MTTSs 56 
[4,12-14,17,22,24-27]. Some studies further improved the accuracy of prosodic structure prediction or 57 
prosodic-acoustic prediction by incorporating higher-level syntactic features, such as word chunk 58 
[16] and syntactic tree [16,26,27]. On the other hand, statistical linguistic features - connective degree 59 
[14], punctuation confidence (PC) [28-31] and quotation confidence (QC) [30,31] were proposed to 60 
neglect complex syntactic tree parsing and manual word chunking that causes impracticality in 61 
constructing an unlimited-text MTTS. 62 

This paper focuses on the second issue to extend and elaborate on our previous works in the PC 63 
[28-31] and QC [30,31] features. More substantial analysis and modeling details are provided in this 64 
paper to give readers an insight into the proposed PC and QC features. The proposed PC and QC 65 
features are motivated by automatic Chinese punctuation generation [32] and linguistic 66 
characteristic of Chinese punctuation system [33]. The PC measures the likelihood of inserting a 67 
major punctuation mark (MPM) at a word boundary while the QC measures the likelihood of a 68 
word string quoted by brackets to emphasize the meaning of the quoted word strings. In [32], a 69 
maximum entropy (ME)-based automatic Chinese punctuation generation method was proposed to 70 
insert 16 types of punctuation mark (PM) to an un-punctuated text by using features of word and 71 
lexical-functional grammar features. The results in [32] showed that the punctuation generation 72 
model could generate alternative/acceptable insertions, deletions or substitutions of PMs. This 73 
phenomenon was also observed in a human punctuation experiment reported by Tseng [33] in 74 
which alternative punctuation strategies were found among different native Mandarin Chinese 75 
speakers. These observations reflect the fact that Chinese PMs serve as a loose reference to both 76 
syntactic structure and semantic domain, and therefore native Chinese writers would freely utilize 77 
PMs to delimit written Chinese into various linguistic elements, such as phrases and clauses, to 78 
clearly express the meaning of a text. Furthermore, punctuation generation of a speaker when 79 
reading written Chinese would reflect his/her prosodic phrasing strategy because pause break is 80 
highly correlated with some MPMs, such as period, comma, exclamatory mark, question mark, 81 
semicolon, and colon. Therefore, an automatic punctuation generation model predicting MPMs 82 
trained from a large text corpus can learn punctuation strategies for MPMs from various text 83 
contributors, to provide useful cues for both prosodic break [28,31] and prosodic-acoustic feature 84 
predictions [29-31]. 85 

On the other hand, a word strings sandwiched by brackets or quotes have essential or unique 86 
meanings in sentences. By our analysis on a large text corpus - the Academia Sinica Balanced Corpus 87 
of Modern Chinese (ASBC) V.4.0 [34] with 9,454,734 words (or 31,126 paragraphs), we found that the 88 
functions of the quoted word strings can be classified into several cases: (1) to add supplementary 89 
information to the proceeding words, (2) to represent the name of a particular person, place or 90 
institution, (3) to emphasize the meaning of a word string, or (4) to indicate a new derived 91 
compound word or a word chunk which compose a complex meaning. In the cases of (3) and (4), the 92 
quoted word strings which are called quoted phrases in this paper, from small to large linguistic 93 
units, may form new-derived words, compound words, base phrases, word chunks,  syntactic 94 
phrases, and even sentences. The mentioned-above linguistic units are usually larger than common 95 
words in size, containing more complex meanings than a word, or even generating new meanings, 96 
and maybe constituting a higher-level unit in syntax than POSs of words. Since a quoted phrase 97 
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exhibits richer linguistic information than just words, it plays a crucial role in human language 98 
understanding when reading a text. Moreover, it is generally agreed that a speaker can generate 99 
good prosody if he/she understands the meanings of a text. Thus, adding quotations to plain 100 
Chinese texts and then regarding the added brackets as linguistic features may help naturalness of 101 
machine-generated prosody. Note that in written Chinese, the use of quotations by adding brackets 102 
depends on writing styles or habits of text contributors. Unlimited Chinese input texts may already 103 
contain some brackets to exhibit the four functions illustrated previously. However, the remaining 104 
un-quoted words may also be emphasized, be regarded as larger syntactic units if they share similar 105 
contextual POS or word structures with the quoted phrases. For the case that Chinese texts contain 106 
no quotations, if quotations can be labeled with brackets by a machine automatically given the word 107 
and POS information, the features associated with the labeled brackets could provide richer 108 
linguistic information to enhance the performances of prosodic-acoustic feature predictions. 109 

To realize the ideas of automatic MPM and quotation predictions, we construct two types of the 110 
conditional random field [35,36] (CRF)-based automatic punctuation generation models: the 111 
CRF-based MPM generation model and the CRF-based quotation generation model. The CRF-based 112 
MPM generation model predicts MPMs and generates the associated confidence measures, referred 113 
to as the punctuation confidence (PC), from major PM-removed word/POS sequences. The PC can be 114 
regarded as a statistical linguistic feature to measure the likelihood of inserting an MPM into a text. 115 
It is reasonable to hypothesize that word junctures which are more likely to be inserted with MPMs 116 
in text, are more likely to be inserted with pause breaks in an utterance. We could, therefore, expect 117 
that the utilization of the PC in prosody generation may improve the performance of 118 
prosodic-acoustic feature generation. The CRF-based quotation generation model predicts the 119 
structures of quoted word string (i.e., QP) from bracket-removed word/POS sequences and 120 
generates the associated confidence, referred to as the quotation confidence (QC). The QC can also 121 
be taken as a statistical linguistic feature to measure the likelihood of word strings being quoted by a 122 
left bracket and a right bracket. Since words in the brackets are closely related to constitute 123 
meanings, it is reasonable to assume that less prosodic breaks are inserted within a quoted text, and 124 
quoted text may be emphasized with some variations in prosodic-acoustic features. We therefore 125 
also expect the use of QC may also assist in prosody generation. 126 

To evaluate the usefulness of the proposed PC and QC in Mandarin prosody generation, the 127 
experiments of prosodic-acoustic feature prediction were conducted, and the corresponding 128 
objective and subjective tests were then evaluated. The experimental database is a read Mandarin 129 
speech corpus – the Treebank speech corpus, containing 425 utterances with 56,237 syllables uttered 130 
by a professional female announcer. The corpus is further divided into three parts: a training set of 131 
301 utterances with 41,317 syllables, a development set of 75 utterances with 10,551 syllables, and a 132 
test set of 44 utterances of 3,898 syllables. The corpus used for training the CRF-based punctuation 133 
generator was the Academia Sinica Balanced Corpus of Modern Chinese (ASBC) V.4.0 [34] (denoted 134 
as the ASBC text corpus thereafter). In the prosodic-acoustic feature prediction, the proposed 135 
linguistic features combined with conventional linguistic feature were taken as input to directly 136 
predict four prosodic-acoustic features of syllable log-F0 contour, syllable duration, syllable energy 137 
level, and inter-syllable pause duration. Objective tests were evaluated by root-mean-square error 138 
(RMSE). Subjective tests were then evaluated with speech-synthesized utterances with the predicted 139 
prosodic-acoustic features. 140 

Several advantages of the approach can be found. First, the PC and the QC can be easily 141 
obtained from features of word/POS sequence which can be robustly obtained by current word 142 
segmentation and POS tagging technologies without using complicated statistical syntactic parsing. 143 
This makes the proposed approach more suitable for practical on-line unlimited TTS. Second, as 144 
being trained using a large text corpus, the CRF-based punctuation generation models can learn 145 
alternative punctuation strategies from numerous paragraphs by various writers to generate more 146 
reliable PCs and QCs. Third, compared with the size of an available text corpus for constructing a 147 
statistical syntactic parser, the size of corpus used to train the CRF-based punctuation generator can 148 
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be considerably larger. Therefore, we can expect that the PC and the QC would be more robust than 149 
syntactic features derived from an automatic syntactic parser. 150 

The research process and the corresponding section organization of this paper are summarized 151 
as follows: 152 
 Section 2: Analysis of Punctuations 153 

We show the relationship between punctuations and prosodic structures via analyzing the 154 
Treebank speech corpus which is labeled with prosodic break tags. This analysis motives the 155 
proposed PC. This section will also analyze the quoted phrases observed in the ASBC text 156 
corpus, finding the possible QC candidates for the training of the CRF-based quotation model. 157 

 Section 3: Construction of the CRF-based MPM Generation Model 158 
The CRF-based MPM generation model will be trained given with the ASBC text corpus. 159 

The precisions and recalls of the MPM insertions are examined on the test set of the ASBC text 160 
corpus. The feasibility of the proposed PC in prosody generation will be examined by analysis 161 
the relationship between the prosodic-acoustic features of the training set of the Treebank 162 
speech corpus and the associated PC generated by the CRF-based MPM generation model. 163 

 Section 4: Construction of the CRF-based Quotation Generation Model 164 
The model will also be trained and examined on the ASBC text corpus. The feasibility of the 165 

QC for the prosody generation is also examined on the Treebank speech corpus. 166 
 Section 5: Prosody Generation Experiments 167 

The prosody generation experiments will be conducted on the Treebank speech corpus. The 168 
proposed PC and QC features generated by the proposed automatic punctuation generation 169 
models with the texts of the Treebank text corpus are combined with the conventional 170 
linguistic features to predict the prosodic-acoustic features of syllable pitch contour, syllable 171 
duration, syllable energy level, and pause duration. Objective and subjective tests were 172 
conducted to verify the usefulness of the proposed PC and QC features. 173 

 Section 6: Conclusions and Future Works 174 

2. Analysis of Punctuations 175 

Because prosodic-acoustic features are highly dependent on Mandarin prosodic structure and 176 
the prosodic structure are categorically represented by a finite set of prosodic break tags, it is easier 177 
to analyze the relationship between prosodic break types and PMs than to analyze the relationship 178 
between numerical prosodic-acoustic features and PMs. This section, therefore, analyzes the 179 
relationship between Chinese PMs and Mandarin prosodic structure. In the following subsections, 180 
the analyses will disclosure the motivations and the rationality of the proposed PC and QC features. 181 
The prosody labeling system for illustrating prosodic structures of utterances used in this study will 182 
be introduced in Section 2.1. The relationship between the labeled prosodic break types and PM 183 
types will be discussed in Section 2.2. Section 2.3 will experiment to let native Mandarin speakers 184 
insert MPMs manually given with PM-removed texts excerpted from the Treebank speech corpus. 185 
The relationships between the human-labeled MPMs by the native Mandarin speakers and the 186 
associated prosodic break types are analyzed, showing some evidence for the proposed PC. Section 187 
2.4 will analyze the quoted phrases observed in the ASBC text corpus, finding the possible QC 188 
candidates for the training of the CRF-based quotation generation model. 189 

2.1. Prosody Label System 190 

Famous prosody labeling systems are the ToBI [37], TILT [38], and C-ToBI [39]. The 191 
mentioned-above prosody labeling systems require human labeling with linguistic expertise. To 192 
leverage the intensive human labor and to increase consistency of prosody labeling, Chiang et at. 193 
[40,41] proposed an unsupervised joint prosody labeling and modeling (PLM) method to construct a 194 
speaker-dependent statistical hierarchical prosodic model (HPM) and to label prosody tags for 195 
Mandarin speech. The PLM method was then successfully applied to construct a 196 
speaker-independent HPM to assist in a large vocabulary speech recognition task [42]. Hence, in this 197 
study, to avoid intensive human labeling and inconsistent labeling results, the corpus was labeled 198 
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with seven break types by the PLM method [40,41] proposed by Chiang et al.. As shown in Figure 1, 199 
the seven break types, i.e. {B0, B1, B2-1, B2-2, B2-3, B3, B4}, delimit an utterance into four types of 200 
prosodic units, namely syllable (SYL), prosodic word (PW), prosodic phrase (PPh), and breathe 201 
group/prosodic phrase group (BG/PG). 202 

 203 

Figure 1. The prosody-hierarchy model of Mandarin speech used in this study [42] 204 

In the labeling system, each defined break type is characterized by its specific juncture 205 
prosodic-acoustic features. B4 is defined as a major break accompanying long pause and apparent F0 206 
reset across adjacent syllables; B3 is a major break with medium pause and medium F0 reset; B0 and 207 
B1 represent respectively non-breaks of tightly-coupling syllable juncture and normal syllable 208 
boundary, within a PW, which have no identifiable pauses between SYLs; and B2 is a minor break 209 
with three variants: F0 reset (B2-1), short pause (B2-2), or pre-boundary syllable duration 210 
lengthening (B2-3). 211 

Among various types of prosodic-acoustic features, pause duration is the most salient cue to 212 
specify boundaries of prosodic units. Figure 2 displays the distributions of pause durations for the 213 
seven break types. As can be seen from the figure, the higher-level break types were generally 214 
associated with more prolonged pause duration. Note that B4, B3, and B2-2 have apparent pause 215 
duration (>30ms), while B0, B1, B2-1 and B2-3 all have very short pause duration (<30ms). By the 216 
above analysis on the pause duration of the seven break types, this study categorizes four break 217 
classes to ease the following analysis in Section 2.2, including (i) B4, (ii) B3, (iii) B2-2, and (iv) 218 
non-pause break type (NPB) which is a grouping of B0, B1, B2-1 and B2-3. 219 

  220 

Figure 2. The distributions of pause durations (ms) for the seven break types. The average pause 221 
duration (ms) for each of the prosodic break type is displayed within the brackets. 222 

2.2. Relationship Between the Labeled Break Types and PM Types 223 

It is generally agreed that pause breaks co-occur with PMs. Most TTSs cautiously insert pause 224 
only on major PMs, such as comma and period. This cautious strategy of pause insertion can make 225 
the synthesized speech very stable but may be unnatural as the input sentence is very long and 226 
constituted in complicated syntactic structures. Table 1 shows the co-occurrence matrix of four break 227 
classes and three syllable juncture types calculated from the training set of the Treebank speech 228 
corpus. It can be seen from the table that most PM locations co-occur with pause-related break type 229 
(B2-2, B3, and B4), while most intra-word locations map to NPB. In-between of PM and intra-word, 230 
non-PM inter-word locations co-occur with NPB, B2-2, and B3. About 40% of prosodic phrase 231 
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boundaries (B3s) and over 94% of B2-2 come from non-PM inter-word junctures. By more detail 232 
analysis, we find that 60% of non-PM B3s coincides with depth-1 node boundary of the full parsed 233 
syntactic tree. The above discussions imply that it would be unsatisfactory to insert pause only at 234 
PM locations. 235 

Table 1. Co-occurrence matrix of four target break types and three syllable juncture types 236 

 NPB B2-2 B3 B4 

Intra-word 21,970 14 2 0 

Non-PM inter-word 20,288 3,148 1,391 30 

PM 30 169 2,130 2,320 

 237 

Table 2 shows the co-occurrence matrix of four break classes and eight high-frequency PM 238 
types in the Treebank speech corpus. It can be found from the table that the MPM set {period ‘。’, 239 
exclamation mark ‘！’, question mark ‘？’, semicolon ‘；’, colon ‘：’, comma ‘，’} is highly 240 
correlated with major breaks, i.e., B3 and B4. This implies that a word juncture which tends to insert 241 
an MPM in a text is more likely to be a major break in an utterance. This motivates us in this study to 242 
propose a CRF-based automatic MPM generator to predict the insertion of MPM (i.e., punctuation) 243 
and its likelihood (i.e., punctuation confidence, PC) for each word juncture, and use them to help the 244 
prosody generation. 245 
 246 

Table 2. Correlation matrix of 4 break types and 8 PM types 247 

 。 ！ ？ ； ： ， 、 ‧ 

NPB 1 0 0 0 0 4 25 1 

B2-2 2 1 1 0 1 88 75 1 

B3 42 1 7 9 2 1,901 168 0 

B4 606 39 58 63 0 1,523 30 1 

 248 
Note that in the texts of the training set of the Treebank speech corpus, no word string was 249 

quoted by Chinese brackets. This means we cannot directly analyze the relationship between 250 
Chinese brackets and labeled break types. In this paper, we directly analyze the characteristics of 251 
the brackets and their associated quoted phrases from the ASBC text corpus in Subsection 2.4. 252 

2.3. Human Labeled PMs vs. Prosodic Break Types 253 

Evidently, we may conclude from the results shown in Table 2 that the occurrences of B3 and B4 254 
are highly correlated with MPMs of periods, exclamation marks, question marks, semicolons, 255 
colons, and commas. We, therefore, assume that an automatic punctuation generation model 256 
predicting MPMs trained from a large text corpus can learn punctuation strategies for MPMs from 257 
various text contributors to provide informative cues for prosodic-acoustic feature predictions. To 258 
access the feasibility of the proposed idea, we conduct an experiment in which ten native Mandarin 259 
speakers are asked to insert periods and commas to the same 30 PM-deleted short paragraphs. These 260 
30 paragraphs were chosen from the Treebank speech corpus which is labeled with prosodic breaks 261 
as stated in Section 2.1. The maximum and minimum lengths of the paragraphs are 270 and 80 262 
characters, and the average length is 138 characters. The frequencies of word junctures being added 263 
with periods or commas can be regarded as the PCs made by human labelers (or text contributors). 264 
The analysis of the relationship between these frequencies (PCs by humans) and labeled prosodic 265 
breaks would provide some evidence that the proposed method is feasible. 266 

Figures 3(a)-(c) show average percentages of prosodic break types with respect to the number 267 
of times that a word juncture is inserted with a comma (Figure 3(a)), a period (Figure 3(b)), and a 268 
comma or a period (Figure 3(c)), respectively. Here, the number of the time that a comma or a period 269 
inserted is analogous to the proposed PC. We can find in Figures 3(a)-(c) that the percentages of NPB 270 
drop rapidly when the frequencies of MPM insertions increase. In Figure 3(a), it is found that 271 
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percentages for B4 increase as the frequency of comma insertion increases. The percentage for B3 272 
reaches the highest value around two/three comma insertions, and then decreases and keeps a level 273 
for more than four insertions. The percentage for B2-2 has a similar trend with the one for B3 but in a 274 
lower level. As can be seen from Figure 3(b), B4 dominates when more than three insertions of 275 
periods are observed for each word juncture. These results indicate that a word juncture is more 276 
likely to be inserted with pause-related break types (B2-2, B3, and B4) when the PC values are larger. 277 
It is also found that the break types of the higher prosodic units (i.e., larger break types) are likely to 278 
be associated with larger PC values. Figure 3(c) can be view as the result combined with Figures 3(a) 279 
and (b). Because commas and periods are major populations in the MPM set, the result shown in 280 
Figure 3(c) is analogous to the distributions of the prosodic break types concerning the PC values. 281 
We can observe more evident trends for the percentages of four break classes in Figure 3(c), and 282 
these trends would be informative for prosody generation. 283 

  284 
(a)                                  (b) 285 

 286 
(c) 287 

Figure 3. Average percentages of prosodic break types concerning the number of times that a word 288 
juncture is inserted with (a) a comma, (b) a period and (c) a comma or a period 289 

2.4. Analysis of Quotations 290 

Table 3 shows 26 types of Chinese quotation marks existing in the ASBC text corpus [34]. We 291 
categorize words sandwiched by quotation mark into ten types according to their functions, and we 292 
called these sandwiched words ‘quoted phrase’ (QP). Table 4 shows the types of QPs, their statistics, 293 
and examples. In the following, we describe the characteristics of the QPs: 294 

Type 1 -（）: They mostly function as enumerating. Therefore, we do not regard Type 1 as our 295 
prediction targets for QP.  296 

Type 2 -｛｝: They are mostly titles of books or article, so we regard this type as our prediction 297 
targets.  298 

Type 3 - 〔〕: They mostly function as captions of articles. This type is not included in our 299 
prediction target. 300 

Type 4 and 5 - 「」and『』: This type contributes most samples (68%) for the QP predictions since 301 
their properties are generally like word chunks or base phrases. For the single-word QPs of this type, 302 
they usually are emphasized nouns, verbs, or idioms. Most two- to four-word QPs are noun phrases. 303 
For QPs that longer than four words are generally long noun phrases or even sentences.  304 
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Types 6, 7 and 8  - 〈〉【】《》: these types are similar to the Type 2 and therefore included in 305 
the QP prediction. 306 

Type 9 - “”: We include the samples of this type in the QP prediction. In this type, single-word 307 
QPs are generally proper nouns. The two- to four-word QPs mostly are frequently-used phrases, 308 
and five- to six-word QPs are similar to sentences. 309 

Type 10 -〝〞: This type is similar to the types 4 and 5. We take this type as the QP prediction 310 
target though the sample size is very small. 311 

Table 5 shows statistics of lengths of QPs in word. It is found that most QPs are single-word to 312 
four-word QPs. Single-word QPs are usually emphasized nouns or verbs. Two- to four-word QPs 313 
are mostly base-phrase like word strings (or word chunks). The QPs longer than four words are 314 
mostly sentence-like units. 315 

Table 3. Types of Chinese quotations 316 

NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Quotes （ ） ( ) ｛ ｝ { } 〔 〕 ﹝ ﹞ 「 」 『 』 

Type 1 2 3 4 5 

 317 

NO. 17 18 19 20 21 22 23 24 25 26 

Quotes 〈 〉 【 】 《 》 “ ” 〝 〞 

Type 6 7 8 9 10 

 318 

Table 4. Types of QPs, their statistics, and examples. Examples are delimited by commas, and words 319 
are delimited by slashes for each example. 320 

type count (percentage) Examples 

1 （） 14131 (25.13%) 
Ｓ, 圖/一, 見/左/圖, 本/報/資料/照片, 一種/蔗糖/做成/的/

蘭姆酒, 不/合/者/恕/不/退件 

2 ｛｝ 34 (0.06%) 桃花源記, 山居/筆記, 松花江/的/浪 

3 〔〕 101 (0.17%) 
本報訊, 其他/功能, 美麗/與/哀愁, 草地/上/的/午餐, 倫飛/

電腦/公司/應對/之/道 

4 「」 37197 (66.17%) 
人, 企業/改造, 十八歲/的/約定, 戀愛/中/的/寶貝, 全/國/原

住民/教育/會議, 臺北市/土地/使用/分區/管制/規則 

5 『』 1223 (2.17%) 
他, 新/民族, 廣島/什錦/煎餅, 與/夫/訣別/書, 大家/來/寫/村

/史, 羅浮宮/博物館/珍藏/名/畫/特展 

6 〈〉 562 (0.99%) 
夾竹桃, 芝蘭室/記, 馬難/明白/了, 銀鬚/上/的/春天, 一隻/

米蘭/夜梟/的/報告, 屘叔/和/他/的/孫子/們 

7 【】 314 (0.55%) 
宗教, 趙/６８, 救主/的/使命, 對/你/的/忠告, 族群/與/文化/

政策/綱領, 男人/的/一半/還/是/男人 

8 《》 2523 (4.48%) 
芝蘭室圖, 黃色/壁紙, 存有/與/時間, 屋頂/上/的/小孩,在/我

/墳/上/起舞, 我/和/我/豢養/的/宇宙 

9 “” 105 (0.18%) 
蒼蠅, 新/音樂, 助人/之/服務, 只要/信/不要/怕, 創造/海/中/

的/動物, 人/死/後/靈魂/仍然/存在 

10 〝〞 22 (0.039138%) 善有善報, 第一/夫人, 女人/的/私家/珍藏 

 321 

Table 5. Statistics of lengths of QPs in word. 322 
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Length in word # of example percentage 

1 26791 41% 

2 16749 25% 

3 10933 17% 

4 5847 9% 

5 3415 5% 

5 1988 3% 

 323 

3. The Proposed Punctuation Confidence  324 

3.1. The CRF-Based MPM Generator 325 

The Punctuation Confidence (PC) [28] is produced by a CRF-based MPM generator. The task of 326 
the CRF-based MPM generator can be viewed as a label-tagging problem that labels each lexical 327 
word juncture with a sequence of types of PMs, e.g., presence or absence of an MPM, Y, by using 328 
some linguistic feature sequence, X. It is formulated by 329 

1

1 1

1
( | ) exp ( , , )

( )

T I

i i t t

t i

P f Y y Y
N

 

 

 
  

 
Y X X

X
                    (1) 330 

where ( )N X  is a normalization factor to ensure that ( | ) 1P Y
Y X ; t stands for lexical word 331 

index; tY  represents prediction target, i.e., type of PM between the t-th and (t+1)-th lexical words; I 332 

represents the number of feature functions, and 1( , , )i t tf Y y Y  X  is a feature function defined by 333 

1

1,  if  is satisfied and  
( , , )

0,  otherwise

j k

i t t

h y y
f Y y Y 

 
  



X
X                 (2) 334 

where 
jh  represents the j-th possible linguistic feature context; and ky  is the k-th possible tag (i.e., 335 

PM type) to be predicted. Generally, feature contexts are organized into several groups, referred to 336 
as ‘feature templates.’ The predicted PM sequence can be obtained by the Viterbi search: 337 

1 2

* * *

1 2
, , ,

, , , arg max ( | )
T

T
Y Y Y

Y Y Y P Y X                                  (3) 338 

Moreover, the PC is given by the forward/backward calculation: 339 

, ( ) ( | )t k t kP Y y  X X                                        (4) 340 

which is the marginal probability of the k-th type of PM for the t-th word. 341 

3.2. The Design of Prediction Targets 342 

Two types of prediction targets are designed: the basic PC (bPC) and the improved PC (iPC). 343 
The bPC is generated by considering the two prediction targets: the presence of an MPM, y1, and the 344 
absence of an MPM, y0. The iPC is produced by considering structures of sentences accompanying 345 
with MPMs. For the bPC, the MPMs includes ‘。’, ‘！’, ‘？’, ‘；’, ‘：’, and ‘，’. The PC, 

, ( )t k X , 346 

generated by the target setting {y1, y0} is called the basic PC (bPC). Figure 4(a) shows the original text 347 
with word/PM tokens and Figure 4(b) shows the corresponding target-labeling example for the 348 
training of bPC. 349 

 350 
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 351 

Figure 4. An exemplary tag labeling for the PC training: original word/PM sequence is shown in 352 
pane (a), the tag labeling for the training of bPC (b), iPCst (c), and iPCef (d). Note that each sentence 353 
is in a different color and each word is delimited by spaces. 354 

Note that the bPC only considers modeling the insertion of the MPMs and the MPMs serve as 355 
delimiters for sentences. Therefore, modeling structures of sentences could be equivalent modeling 356 
insertion of MPMs and even could give a better prediction of MPM insertion. Besides, by an analysis 357 
on the ASBC text corpus [34], it is found that many long sentences could be inserted with some 358 
optional MPMs without losing understanding. These optional inserted MPMs may correspond to 359 
insertion of pause breaks. We hence proposed so-called the improved PC (iPC) to model sentence 360 
structures and optional MPMs in a sentence. Two types of the iPC are designed: iPCst and iPCef. The 361 
iPCst is designed for modeling of sentence structure while iPCef is for modeling of an enforced 362 
MPM insertion in a sentence. For the prediction of the iPCst, the prediction targets for the CRF-based 363 
MPM generator are labeled for each word and designed to represent sentence structures regarding 364 
word position in a sentence. The targets ‘B’, ‘I’, ‘M’, ‘S’, and ‘E’ respectively present beginning, 365 
intermediate, middle, single and ending words in a sentence. To further precisely label the word 366 
order information in a sentence, numbers 1 to 4 are added to the targets ‘B’ and ‘E’ for indicating 367 
forward and backward word order. According to the statistics about sentence length in word for the 368 
ASBC text corpus, the length of sentences mostly (84%) distributes from 4 to 9 words. The target 369 
labeling schemes, therefore, are designed differently for sentences with 9  and 9  words. The 370 
complete targets for iPCst are listed in Table 6. Specifically, there are four rules to guide the tagging 371 
of targets: 372 
1. ‘B1’, ‘B2’, ‘B3’, and ‘B4’ represent the first, second, third, and fourth word in a sentence 373 

respectively while ‘E1’, ‘E2’, ‘E3’, and ‘E4’ represent respectively the first last, second last, third 374 
last, and fourth last word in a sentence.  375 

2. If sentence length is 9  words, we use ‘B1’~‘B4’ and ‘E4’~‘E1’ to tag targets from the 376 
beginning and the ending of a sentence and use ‘M’ to tag the other intermediate words in a 377 
sentence. 378 

3. If sentence length is 9  words and even, we use ‘B1’~‘Bk’ and ‘E1’~‘Ek‘ to tag targets from the 379 
beginning and the ending of a sentence for k=1~4 and k= (length of sentence in word)/2. 380 

4. If sentence length is 9  words and odd, we use ‘B1’~‘Bk’ and ‘E1’~‘Ek‘ to tag targets from the 381 
beginning and the ending of a sentence for k=1~4 and k= (length of sentence in word)/2. The rest 382 
of the words are labeled with ‘I’ to indicate the intermediate words in a sentence. 383 

Figure 4(c) shows an exemplary tag labeling for the iPCst training. 384 
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The idea of the prediction of the iPCef is to enforce inserting an MPM in a sentence. This 385 
enforced MPM may provide informative cues for inserting a pause or exhibit a pre-boundary 386 
syllable duration lengthening for word junctures in a long sentence. To realize this enforced MPM 387 
insertion, the prediction targets are designed to learn to insert an MPM given instances of two 388 
consecutive sentences whose sandwiched MPM are removed. The target set for iPCef is similar to 389 
the one for iPCst shown in Table 6 but using upper- and lower-case letters for the distinction 390 
between tags respectively for first and second sentences. This idea is motivated by observing 391 
frequent pause insertions in long sentences as shown in Section 2. Figure 4(d) shows an example of 392 
prediction target labeling for iPCef. Noted that in the training of iPCef, two consecutive sentences 393 
are taken as one training instance for an enforced MPM insertion. 394 

Table 6. Targets for iPCst 395 

target tag: position in a sentence 

B1: 1st word 

B2: 2nd word 

B3: 3rd word 

B4: 4th word, 

I: intermediate word if sentence length in word is odd and less than 9 

M: intermediate word if sentence length in word is equal or more than 9 

E4: 4th last word 

E3: 3rd last word 

E2: 2nd last word 

E1: 1st last word 

S: single word 

3.3. Design of Features and Templates 396 

The linguistic features used in the CRF training are lexical words ( tW ), POSs ( tS ) and word 397 

length ( tL ). Therefore, the linguistic feature sequence for the CRF model is 398 

1 2{ , , }TX X XX  and { , , }t t t tX W S L                           (5) 399 

The linguistic features are generated by the NCTU Chinese parser [43,44]. The significance of these 400 
linguistic features is summarized in Table 7. 401 

Table 7. The significance of the linguistic features 402 

Feature Definition Description 

tW
 t-th lexical word The smallest meaningful linguistic unit 

tS  Part of speech (POS) of t-th lexical word Basic syntactic role of t-th lexical word; 47 categories [45] 

tL  Length of t-th lexical word in syllable Longer words are more likely to be followed by PMs 

 403 
The feature templates for the training of the CRF-based MPM generators for PCs considered 404 

the contextual word, POSs, length of the word, and the combinations of the above features. In this 405 
study, we design four templates for the PC generation as shown in Table 8. All the templates 406 
consider the same POS, lexical word-POS and word length contexts. The difference between the 407 
templates 1 and 2 is that the template 2 considers wider word contexts. The templates 3 and 4 are 408 
similar to the template 1 and 2 but different in that the templates 3 and 4 add a combination of the 409 
previous target 

1tY
 (i.e., bigram templates) and the POS of the current word tS . The reason for this 410 

combination is that we observe that the types of the current PM, 
tY , depend on the joint factor of the 411 

previous PM type, 
1tY
, and the current POS, tS . 412 

3.5. The Experiment of PC Generation and Evidence 413 

The CRF models were trained by the ASBC [34] training set with 6,625,277 words, and the best 414 
feature templates were tuned by the results on the training set with 2,817,785 words. The tool for the 415 
training is CRF++: Yet Another CRF toolkit [36]. Table 9 shows precisions and recalls of predicted 416 
MPM insertions trained by setting prediction targets of bPC, iPCst and iPCef with the templates 1 to 417 
4. It is observed that the best precision and recall are achieved by the template 4, followed by the 418 
templates 3, 2 and 1, indicating that the wider feature contexts and joint factors of 1( , )t tY S  could 419 
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improve the MPM prediction. The best precision/recall of MPM generations on the test set for bPC, 420 
iPCst and iPCef are respectively 94.1%/93.1%, 96.9%/96.1%, and 95.7%/95.5%. We choose the results 421 
made by the template 4 for the following analysis and prosody generation experiments. The results 422 
were reasonably high to model the characteristics of MPM insertion and sentence structures. 423 

Table 8. Feature templates for PC. The notation represents a sequence: 
t lW 

, 
1t lW  

…
tW …

1t uW  
,

t uW 
. 424 

 
template 1 template 2 template 3 template 4 

Lexical word context tW  
= 1~ 1{ }tW     ,

1 0,1{ }t

tW 

 



  

1

1

t

tW 


 

tW  
= 1~ 1{ }tW     ,

1 0,1{ }t

tW 

 



  

1

1

t

tW 


 

POS context 3~ 3{ }tS     , 
1 0,1{ }t

tS 

 



  
,

2 0~2{ }t

tS 

 



  
,

3 0~3{ }t

tS 

 



  
, 1

3 0~3{ }t

tS 

 

 

  
, 2

3 0,1{ }t

tS 

 

 

  
 

Lexical word and POS context 
3~ 3{( , )}t tW S     , 1 0,1{( , )}t

t tW S 

 



   , 
2 0~2{( , )}t

t tW S 

 



  
, 

3 0~3{( , )}t

t tW S 

 



  
, 

1

3 0~3{( , )}t

t tW S 

 

 

  
 

Lexical word length 1~ 1{ }tL      

Previous Target & POS context 1tY   1tY   1( , )t tY S  1( , )t tY S  

 425 

Table 9. The precisions and recalls of the MPM generations by target labeling methods for bPC, 426 
iPCst, and iPCef. 427 

 
bPC iPCst iPCef 

 Precision Recall Precision Recall Precision Recall 

Template 1 0.902 0.867 0.961 0.949 0.940 0.937 

Template 2 0.919 0.890 0.962 0.951 0.942 0.938 

Template 3 0.905 0.869 0.967 0.959 0.955 0.953 

Template 4 0.941 0.931 0.969 0.961 0.957 0.955 

 428 
We then examine the interplay between the proposed PC values, i.e., 

, ( )t k X , and distributions 429 

of prosodic-acoustic features on the training set of the treebank speech corpus in Figures 5, 6 and 7. 430 
Figure 5 shows the average syllable logF0s corresponding to the prediction targets for bPC (a), 431 
iPCst (b) and iPCef (c) in different levels of PC values. Note that the PC values are divided into ten 432 
even intervals from 0 to 1 for the bPC in Figure 5(a). As can be seen from Figure 5(a), the average 433 
syllable logF0 decrease as the bPC for MPM, i.e., 

, ( )t k X  for the prediction target y1, increases while 434 

the bPC for y0 exhibits a contrary trend. This indicates that a syllable would have lower logF0 value 435 
as the syllable is more likely to be followed by an MPM. Figure 5(b) shows the average syllable 436 
logF0 of the prediction targets in the three representative levels of iPCst values, i.e., the high level: 437 
iPCst = 0.9~1.0, the median level: iPCst = 0.5~0.6, and low level: iPCst = 0.0~0.1. Note that the 438 
prediction targets are listed in a forward position order in a sentence on the x-axis, i.e., ‘B1’, ‘B2’, 439 
‘B3’, ‘B4’, ‘I’/’M’, ‘E4’, ‘E3’, ‘E2’, and ‘E1’. A clear trend of logF0 declination can be found for the 440 
high-level iPCst. On the contrary, the average syllable logF0s are flat for the low-level iPCst. The 441 
average syllable logF0s for the median-level iPCst shows a moderate logF0 declination trend. 442 
Figure 5(c) shows the average syllable logF0 of the prediction targets in the three representative 443 
levels of iPCef values. The prediction targets in Figure 5(c) are also listed in a forward position 444 
order in a sentence on the x-axis. The logF0 declination effects are also clearly observed for the cases 445 
of the high and median levels of iPCef values. These findings may indicate that the proposed PCs 446 
could provide informative cues for modeling logF0 declination effect in prosody generation. Besides, 447 
iPCst and iPCef (especially iPCef) exhibited a higher and lower logF0s in the beginning and end of a 448 
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sentence, respectively, indicating the proposed iPCst and iPCef may provide more significant cues 449 
than bPC for prosody generation. 450 

   451 
(a)                                     (b) 452 

 453 
(c) 454 

Figure 5. Average syllable logF0s corresponding to the prediction targets for bPC (a), iPCst (b) and 455 
iPCef (c) in different levels of PC values.  456 

Figure 6 shows the average syllable duration corresponding to the prediction targets for bPC (a), 457 
iPCst (b) and iPCef (c) in different levels of PC values. It is found in Figure 6(a) that the average 458 
syllable durations are shortened for the two extreme cases: bPC for y1 < 0.1 and bPC for y0 > 0.9. This 459 
result indicated that the bPC could provide cues to shorten or lengthen the syllable durations when 460 
it is very unlikely or likely to insert an MPM following the target syllable. Figure 6(b) shows the 461 
average syllable durations of the prediction targets in the high, median and low levels of iPCst. 462 
Note that the prediction targets are also listed in a forward position order in a sentence on the x-axis. 463 
Significant long average syllable durations can be found at the prediction target of ‘E1’ which 464 
represents a syllable followed by an MPM for the high and median iPCst levels. It is reasonable to 465 
observe a slightly longer average syllable duration for the target ‘M’ because the target ‘M’ 466 
represents an intermediate location in a long sentence where is more likely to be inserted with a 467 
prosodic break. The average syllable durations for all the prediction of the low-level iPCst are 468 
almost in the same level. These results indicate that the proposed iPCst can model the pre-boundary 469 
syllable duration lengthening effect with various degrees of the iPCst values. It is also found that in 470 
the case of the prediction target ‘S’ which represent a word sandwiched by preceding and following 471 
MPMs, the syllable is lengthened as the iPCst value is high. The prediction targets ‘B1’ (the first 472 
syllable in a sentence) and ‘I’ (the intermediate syllable in a short sentence) have shortened average 473 
syllable durations compared with their nearby syllable locations in a sentence. These results 474 
coincide the findings in the previous studies [46] about syllable durations in a PPh. In the paper [46], 475 
it was found that first syllable in a PPh and intermediate syllable in a short PPh is shortened. The 476 
shortened syllable duration for the target ‘E2’ (the second last syllable in a sentence) manifested a 477 
significant contrast for the following pre-boundary syllable duration lengthening cue by the 478 
prediction target ‘E1’. In Figure 6(c), the trends of average syllable durations of the prediction 479 
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targets for the first sentence and the ones of the second sentence are similar. It is also reasonable to 480 
observe a slightly longer average syllable duration for the targets of ‘B4’, ‘M’, ‘b4’, and ‘m’ because 481 
these targets are distant to the beginning and the ending of a sentence, resulting in a more probable 482 
insertion of a prosodic break. Note that the CRF-based MPM generator for the iPCef predicts an 483 
enforced MPM for each sentence. Words of each sentence are therefore labeled with the prediction 484 
targets of {‘B1’, ‘B2’, … ‘E2’, ‘E1’, ‘S’, ‘b1’, ‘b2’, …‘e2’, ‘e1’, ‘s’} to represent delimiting one sentence 485 
into two (the first and second sentences). The prediction target ‘E1’ in this case indicates that there 486 
exists an enforced inserted MPM in a sentence. The similar trends for the average syllable durations 487 
of the first and second sentences indicated that the proposed iPCef could more sophisticatedly 488 
model syllable duration patterns for a long sentence which may be delimited into two PPhs. Recall 489 
that as stated in Section 2.2, 40% of prosodic phrase boundaries (B3s) come from non-PM inter-word 490 
junctures. It is, therefore, encouraging to observe this syllable duration patterns made by the 491 
enforced insertion of MPM by modeling of iPCef. The superiority of the proposed iPCef over the 492 
proposed iPCst and bPC in the prediction of syllable duration is partially confirmed by the prosody 493 
generation experiment shown later in this paper (Section 5.3). 494 

 495 
(a)                                     (b) 496 

 497 
(c) 498 

Figure 6. Average syllable durations corresponding to the prediction targets for bPC (a), iPCst (b) 499 
and iPCef (c) in different levels of PC values. 500 

Figure 7 shows the pause durations corresponding to the prediction targets for bPC (a), iPCst (b) 501 
and iPCef (c) in different levels of PC values. Figure 7(a) shows a trend that the average pause 502 
durations increase as the bPC for MPM, i.e., 

, ( )t k X  for the prediction target y1, increases while the 503 

bPC for y0 exhibits a contrary trend. Long pause durations can be found for the prediction targets of 504 
‘E1’ and ‘S’ for the high and median levels of iPCst. We may conclude from the mentioned-above 505 
observations that the higher bPC or iPCst values would result in longer pause durations for the 506 
predicted MPM locations. In Figure 7(c), the trend of pause durations for the prediction targets of 507 
the second sentence is similar to the ones in Figure 7(b). The prediction target ‘E1’ for the first 508 
sentence only shows a slightly longer pause duration compared with the nearby targets. The pause 509 
durations for ‘E1’ is at the same level for the prediction targets that represent intermediate locations 510 
of a long sentence, i.e., ‘B4’, ‘M’, and ‘m’. This result indicates that the iPCef features would not 511 
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provide as salient cues for pause duration prediction as the iPCst features would. The objective 512 
evaluations of the prosody generation experiment shown later in this paper (Section 5.3) partially 513 
confirm this indication. 514 

 515 
(a)                                     (b) 516 

 517 
(c) 518 

Figure 7. Average pause durations corresponding to the prediction targets for bPC (a), iPCst (b) and 519 
iPCef (c) in different levels of PC values. 520 

4. The Quotation Confidence 521 

4.1. The Design of Prediction Targets 522 

The prediction of QPs is also developed by the CRF model as described in Section 3. The target, 523 
yk, is the k-th possible tag representing word position in a QP. The optimal QPs, * *

1 ,..., TY Y , can be 524 

predicted by Eq. (3), and the marginal probability for the k-th tag of the t-th word, 
, ( )t k X , is called 525 

the Quotation Confidence (QC) generated by Eq. (4).  Two types of QCs are designed in this study: 526 
basic QC (bQC) and sentence structure QC (sQC). The bQC is generated by predicting structures of 527 
QPs while sQC is generated by predicting both structures of QPs and their position in a sentence. As 528 
shown in Table 10, an 8-tag set is designed for modeling bQC. Besides, an additional tag ‘O’ is used 529 
to represent non-QP words. Figure 8(b) shows a target labeling example for the training of the bQC 530 
whose original word/PM tokens are shown in Figure 8(a). The sQC can be regarded as an improved 531 
version of bQC that use additional tags to represent positions of non-QP words in a sentence. These 532 
additional tags are designed in a two-alphabet format: xy where {B,M,F}x  represents a word 533 

string before a QP (B), in-between two QPs (M), or following a QP (F); {b,m,e,s}y  represents 534 

beginning (b), intermediate (m), the last (e), or a single word in a word string (s). Figure 8(c) shows a 535 
tag example for the sQC training. The complete set of the prediction target for sQC is shown in Table 536 
11. 537 

Table 10. Tag format for labeling of target QP for bQC. 538 

Length in word Tag format  Length in word Tag format 

1 S  4 B B2 M E 

2 B E  5 B B2 M M E 

3 B I E  6 B B2 B3 M M E 
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 539 

Figure 8. (a) Original word/PM tokens, (b) an exemplary tag labeling for the bQC training, and (c) an 540 
exemplar for the sQC training 541 

Table 11. Tag format for labeling of target QP for bQC 542 

Target Description 

Pb presence the first word in a word string which is before a quoted phrase 

Pm presence of the middle word in a word string which is before a quoted phrase 

Pe presence of the end word in a word string which is before a quoted phrase 

Ps presence of the single word in a word string which is before a quoted phrase 

Mb presence of the first word in a word string which is between two quoted phrases 

Mm presence of the middle word in a word string which is between two quoted phrases 

Me presence of the end word in a word string which is between two quoted phrases 

Ms presence of the single word in a word string which is between two quoted phrases 

Fb presence of the first word in a word string which is after a quoted phrase 

Fm presence of the middle word in a word string which is after a quoted phrase 

Fe presence of the end word in a word in the word string which is after a quoted phrase 

Fs presence of the single word in a word string which is after a quoted phrase 

B/B2/B3/I/M/E/S The same definitions as shown in Table 10 

4.2. Design of Features and Templates 543 

As shown in Table 12, the features used for the prediction of QP are similar to the ones used for 544 
the prediction of PC. The newly-added PM features are used to indicate information about sentence 545 
boundaries. Table 13 shows the five templates for the QP prediction in this study. In the template 1, 546 
we use a 3-POS context, i.e., from (t-1)-th to (t+1)-th in the POS field. The word-and-POS field 547 
contains the combined features of a 3-POS context and current word ( tW ). The templates 2 and 3 548 

respectively use a 5-POS context and a 7-POS context, and their combination with the current word. 549 
The templates 4 and 5 are identical to the templates 2 and 3 respectively in all feature fields except 550 
for the lexical word context field. We use a five-lexical word context for the templates 4 and 5.  551 

Table 12. The significance of the linguistic features 552 

Feature Definition Description 

tW
 t-th lexical word The smallest meaningful linguistic unit 

tS  Part of speech of t-th lexical word Basic syntactic role of t-th lexical word; 47 categories [45] 

tP  Major PM following t-th lexical word Major PM as sentence boundary 

tL  Length of t-th lexical word in syllable 
The structure of a QP is related to word length 

combinations 

 553 
 554 
 555 
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Table 13. Feature templates for bQC and sQC 556 

 
template 1 template 2 template 3 template 4 template 5 

Lexical word context = 1~ 1{ }tW     , 
1 0,1{ }t

tW 

 



  
, 1

1

t

tW 


 

= 2~ 2{ }tW     , 
1 0,1{ }t

tW 

 



  
, 

2 0,1,2{ }t

tW 

 



  
 

POS context 

1~ 1{ }tS    
, 

1 0,1{ }t

tS 

 



  
, 

1

1

t

tS 

  

2~ 2{ }tS    
, 

1 0,1{ }t

tS 

 



  
, 

2 0~2{ }t

tS 

 



  
, 

1

2 0,1{ }t

tS 

 

 

  
, 

2

2

t

tS 


 

3~ 3{ }tS     , 

1 0,1{ }t

tS 

 



  
, 

2 0~2{ }t

tS 

 



  
, 

3 0~3{ }t

tS 

 



  
, 

1

3 0~3{ }t

tS 

 

 

  
, 

2

3 0,1{ }t

tS 

 

 

  
 

The same as 

template 2 

The same as 

template 3 

Lexical word and POS 

context 

1~ 1{( , )}t tW S    
,  

1 0,1{( , )}t

t tW S 

 



  
 

, 1

1( , )t

t tW S 


 

1~ 1{( , )}t tW S    
, 

1 0,1{( , )}t

t tW S 

 



  
, 

 
2 0~2{( , )}t

t tW S 

 



  
, 

 1

2 0~1{( , )}t

t tW S 

 

 

  
, 

 2

2( , )t

t tW S 


 

1~ 1{( , )}t tW S    
, 

1 0,1{( , )}t

t tW S 

 



  
,  

2 0~2{( , )}t

t tW S 

 



  
, 

 
3 0~3{( , )}t

t tW S 

 



  
,  

1

3 0~2{( , )}t

t tW S 

 

 

  
 

The same as 

template 2 

The same as 

template 3 

PM tP  

Lexical word length tL  

Previous Target 1tY   

4.3. The Experiment of QC Generation and Evidence 557 

Notice that only 0.69% of the ASBC text corpus contributed instances of QPs, i.e., only 65,723 558 
QP token examples. To make the CRF models for QC concentrate more on predicting QPs, we only 559 
selected the sentences with QPs for training and testing. The numbers of QP tokens for training and 560 
testing are respectively 57,824 and 8,439. Table 14 shows the precisions and recalls for bQC and sQC. 561 
It can be seen from the tables that the five templates result in similar precisions and recalls. The best 562 
results are achieved by the template 5 for bPC and the template 4 for sQC. We, therefore, choose the 563 
best models trained by the templates 4 and 5 for the following analysis and prosody generation 564 
experiments. The precision and recall for predicting bQC are respectively around 60.7% and 39.0% 565 
while the precision and recall for sQC are respectively around 55.6% and 52.2%. These results show 566 
that modeling both structures of QPs and their position in a sentence could improve the prediction 567 
of QPs. Though the precision and recall are relatively much lower than the ones of the prediction of 568 
the PC, it is more interesting to analyze the interplay between the prosodic-acoustic features and the 569 
QC values, i.e., 

, ( )t k X . 570 

Table 14. QC model predictions results 571 

 bQC sQC 

 Precision Recall Precision Recall 

template 1 0.603 0.369 0.557 0.520 

template 2 0.603 0.380 0.552 0.520 

template 3 0.597 0.389 0.548 0.518 

template 4 0.606 0.384 0.556 0.522 

template 5 0.607 0.390 0.551 0.518 

 572 
Figure 9(a) shows the average syllable logF0 of the prediction targets in the three 573 

representative levels of bQC values, i.e. the high level: bQC = 0.9~1.0, the median level: bQC = 574 
0.4~0.5, and the slow level: bQC = 0.0~0.1. Note that the prediction targets are positioned in a 575 
forward order in a quoted phrase on the x-axis, i.e., ‘B’, ‘B2’, ‘B3’, ‘I’/‘M’, and ‘E’. We can observe a 576 
clear logF0 declination trend for the high and median bQC levels within a QP. The average logF0s 577 
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for the single-word QP and non-QP are at around the average levels. On the contrary, the average 578 
syllable logF0s are flat for the low-level iPCst. We may conclude from the mentioned-above 579 
observation that a string of words may have logF0 reset at the beginning of the string and then 580 
decline gradually as the string is more likely to be labeled as a QP. The logF0 declination within a 581 
QP can also be observed in Figure 9(b) for the median and high levels of sQC values. Note that 582 
some of the average logF0 of the prediction targets for the high-level sQC, i.e., ‘Mb’, ‘Mm’, ‘Me’, 583 
‘B3’ and ‘Ms’, are missing because the high sQC values were not generated by the CRF-based 584 
quotation generator for these prediction targets. Besides, logF0 declination can also be observed for 585 
the word string preceding to (‘Pb’, ‘Pm’ and ‘Pe’) and following (‘Fb’, ‘Fm’ and ‘Fe’) a quoted phrase. 586 
We, therefore, expect the sQC features provide more informative cues for logF0 generation than the 587 
bQC features d. The objective evaluations of the logF0 generation experiment shown later in this 588 
paper (Section 5.3) partially meet this expectation. 589 

  590 
(a)                                        (b) 591 

Figure 9. Average syllable logF0s corresponding to the prediction targets for bQC (a), sQC (b) in 592 
different levels of QC values. 593 

Figure 10 shows the average syllable durations of the prediction targets in the three 594 
representative levels of bQC values. The prediction targets are also positioned in a forward order in 595 
a quoted phrase on the x-axis. The pre/post-boundary duration lengthening effect may be modeled 596 
by the trends of the QCs shown in Figures 10(a) and (b) because the average syllable durations for 597 
prediction targets of ‘B’, ‘B2’, and ‘E’ increase as the QCs increases. It is also interesting to find that 598 
the syllable durations for the target ‘S’ which represent a single-word QP are longer as the 599 
corresponding QC values increase. Note that some of the average syllable durations of the 600 
prediction targets for the high and median level QCs are missing because we do not have syllable 601 
duration samples corresponding to those cases. For the non-QP cases, significant syllable 602 
shortening and lengthening are observed for the first (‘Fb’) and the last words (‘Fe’) in a word string 603 
which is followed by a QP, respectively. The objective evaluations of the syllable duration 604 
generation experiment shown later in this paper (Section 5.3) show that these QC features can make 605 
the RMSE of the synthesized prosody lower than the RMSE by the conventional linguistic features, 606 
confirming the QC features are useful in prosody generation. 607 

 608 

Figure 10. Average syllable durations corresponding to the prediction targets for bQC (a), sQC (b) in 609 
different levels of QC values. 610 
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Figures 11(a) and (b) shows the trends that a word which is more likely to be the end of QPs, 611 
i.e., the tags ‘E’ and ‘S’, is more tentative to be followed by a long pause while the other tags except 612 
for the tag ‘Fe’ exhibit a contrary trend. Because the sQC features provide more sophisticated 613 
structures of QPs and their contexts, we expect that the sQC features generate pause durations with 614 
lower RMSEs than the bQC features do.  615 

  616 

Figure 11. Average pause durations corresponding to the prediction targets for bQC (a), sQC (b) in 617 
different levels of QC values. 618 

5. Prosody Generation Experiments 619 

Figure 12 shows the flowchart for the experiments of prosody generation. First, the texts are fed 620 
into the text analysis modules to generate the linguistic feature sets for the following prosody 621 
generation and speech synthesis. Here, the text analysis modules include the conventional linguistic 622 
processors commonly used in MTTS and the proposed advanced PC and QC generators. Next, the 623 
four independent MLPs are trained with the conventional linguistic feature sets and the proposed 624 
PC and QC features to predict syllable logF0 contour (lf0), syllable duration (Dur), syllable energy 625 
level (Eng), and inter-syllable pause duration (Pau). Then, we conduct some objective tests to 626 
evaluate the RMSEs between the predicted prosodic-acoustic features and the true prosodic-acoustic 627 
features. Here, the predicted prosodic-acoustic features are generated by the given different settings 628 
of linguistic features to prove the usefulness of the proposed PC and QC features. Last, we utilize an 629 
HMM-based speech synthesizer with the predicted prosodic-acoustic features to generate 630 
synthesized speeches. These synthesized speeches are used to conduct subjective tests, showing that 631 
the proposed PC and QC features could improve the naturalness of the synthesized speeches. 632 

 633 
 634 

 635 

Figure 12. The flowchart for the experiments of prosody generation. 636 
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5.1 Text Analysis and Linguistic Feature Sets  637 

Figure 12 also shows the linguistic processors used and the associated linguistic features 638 
generated in this study. To set up various settings of experiments, the processors are categorized 639 
into two classes: 1) baseline processor and 2) the proposed advanced processor. The baseline 640 
processor contains functions of word segmentation, POS tagging, and grapheme to phone (G2P). 641 
Basically, features generated from the baseline processor cover linguistic information of phonetics, 642 
lexical word, and POS. Since the features extracted by the baseline processor are prevalent in most 643 
MTTSs [4,12-14,17,22,24-27], we regard the features generated from the baseline processor as the 644 
base linguistic features for prosody generation. In this study, we adopt NCTU Speech Lab 645 
Traditional Chinese Parser [43,44] as the baseline processor. It is an online CRF-based word tagger 646 
and generates information about word boundaries and the associated categories of POS. The 647 
F-measure of 96.72% for the word segmentation and the accuracy of 94.16% for the POS tagging are 648 
reported [44]. This study includes two advanced processors: the CRF-based MPM generator and the 649 
CRF-based quotation generator which were described in Section 3 and Section 4, respectively. These 650 
two advanced processors are cascaded after the baseline processor. The features used in the prosody 651 
generation experiments are organized into several sets according to the corresponding linguistic 652 
processors. They are summarized as follows: 653 

5.1.1. Raw 654 

The features in subset Raw can be simply extracted from raw texts. The most obvious feature 655 
from a raw text is the type of PM. PM is the most salient feature for predicting pause break because 656 
PMs serve as a delimiter in both syntax and intonation in Mandarin Chinese. Since sentence 657 
boundaries in Chinese can be identified by types of PMs, a contextual feature of syllable position in a 658 
sentence can also be extracted from the raw text. The positional features are highly related to 659 
rhythmic patterns of syllable duration and syllable F0 contour, e.g., syllables at the end of a sentence 660 
usually exhibit both syllable duration lengthening and F0 declination. 661 

5.1.2. WordSeg 662 

The features in subset WordSeg are extracted after the word segmentation, including word 663 
length, syllable position in a word, and word position in a sentence. For the feature of word length, it 664 
is conventional to include lengths of neighboring words because PWs are usually composed of 665 
several words with some length constraints. Most studies consider a window of five words [16,25] 666 
with the current word, two words to the left and the right. In this study, we extend the window to 667 
seven words, i.e., the current word, three words to the left and the right. The positional features in 668 
this subset are also essential to syllable duration patterns. The most significant evidence is that 669 
syllable position in a word affects the degree of syllable duration lengthening [4]. 670 

5.1.3. WordPos 671 

The features in subset WordPos are POS tags for the associated words and are obtained after the 672 
POS-tagging process. It was found that PWs were generally composed of 1-3 words with some POS 673 
combinations [12,13,38] given by word length constraints. Also, it is generally agreed that prosodic 674 
breaks or pause insertion were related to some POS pairs on word junctures [12,13,38]. Therefore, 675 
POS and word length are the most frequently used and important features for predicting prosody 676 
structures from texts. In this study, we adopt a 47-POS tag set [45] which is used by the NCTU 677 
Speech Lab Traditional Chinese Parser. Similar to the usage of word length, the analysis window 678 
size for POS is set to at most seven words, i.e., the current word, three words to the left and the right. 679 

5.1.4. G2P 680 

G2P set comprises important features characterizing properties of Mandarin prosody: tone, and 681 
base-syllable type, or initial-final type. There are five tones in Mandarin Chinese. To account for 682 
more prosodic variation that resulted from contextual tones, the tones of the current, following and 683 
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previous syllables are considered for prosody generation. There are around 411 base-syllable types 684 
in Mandarin Chinese, and a base-syllable can be further decomposed into two parts: an initial and a 685 
final. To reduce numbers of features, we take initial and final types as features to account for 686 
information of base-syllable type. In this study, we define 23 initial types and 40 final types. Besides 687 
the initial and final types of the current syllable, initial type of the following syllable and final type of 688 
the previous syllable are also considered for prosody generation. 689 

5.1.5 Advanced Feature Set – PCs and QCs 690 

The set comprises PC and QC generated correspondingly by the proposed CRF-based MPM 691 
generator and the proposed CRF-based quotation generator. The subset PC consists of the predicted 692 
punctuation sequence by Eq. (3), i.e. * * *

1 2, , , TY Y Y , and the PC by Eq. (4), i.e. 
, ( )t k X , with target 693 

settings of bPC, iPCst, and iPCef. The subset QC consists of the predicted quotation label sequence, 694 
i.e. * * *

1 2, , , TY Y Y , and the QC, i.e. 
, ( )t k X , with target settings of bQC and sQC.   695 

5.2. MLP-based Prosody Generation 696 

The prosody generation experiments were conducted by four independent MLPs to train 697 
prediction models for syllable logF0 contour (lf0) represented by 4-dimensional discrete orthogonal 698 
expansion coefficients [47], syllable duration (Dur) in sec, syllable energy level (Eng) in dB, and 699 
inter-syllable pause duration (Pau) in second. The feature vectors for the input layer of the MLPs can 700 
be categorized into three main categories for comparison: (1) baseline (BSL), (2) the proposed bPC, 701 
iPCst and iPCef (PCset), and (3) the proposed bQC and sQC (QCset). The BSL contains the most basic 702 
linguistic feature sets: Raw, G2P, WordSeg and WordPos. There are 28 and 67 features in the set Raw 703 
and G2P, respectively. The feature sets bPC, iPCst, iPCef, bQC, and sQC respectively are composed 704 
of 4, 22, 44, 16, and 38 numerical features representing the marginal probabilities 

, ( )t k X  and the 705 

predicted MPMs/quotations for some k-th target tags of PC or QC at the t-th word. The optimal 706 
numbers of nodes in the hidden layer of the MLPs and contextual analysis windows for the features 707 
of WordSeg/WordPos were tuned by the development set. 708 

5.3. Objective Tests 709 

Table 15 shows RMSEs for the prosodic-acoustic features by various linguistic feature sets. 710 
Generally, the proposed PCSet and QCset can generally improve the RMSEs w.r.t. BSL. For the lf0 711 
prediction, the feature sets with the proposed PCs or QCs generally performed better than the ones 712 
without the PCs/QCs. The best RMSE for lf0 was achieved by using the set QC2=BSL3+sQC. This 713 
result may be contributed from the properties of the sQC that models syntactic structures of base 714 
phrases or word chunks that are highly correlated with structures of prosodic words (PWs). It is also 715 
found that the feature sets with sQC could improve more RMSE than the ones with bQC did because 716 
sQC not only describe structures of QPs but also structures of their contexts. The proposed iPCst and 717 
iPCef can generally outperform the proposed bPC because they could model structures of sentences 718 
that are highly correlated with structures of PPhs or intonation phrases (IPs). 719 

For the predictions of Dur and Pau, the feature sets with WordPos could generally outperform 720 
the ones without WordPos. This partially confirms that the POS combination features are essential for 721 
the predictions of the structures of PWs, PPh, and IPs. When adding the proposed QCs and PCs, 722 
further improvements were achieved because the QCs and the PCs may provide information that 723 
may correlate with structures of PWs, PPh, and IPs. The iPCef could slightly perform better than the 724 
iPCst, bQC, and sQC in the prediction of Dur. This is maybe because the iPCef models a forced 725 
insertion of an MPM in a sentence to provide more information for pre-boundary syllable duration 726 
lengthening. Besides, it is reasonable to see that iPCst gave the best performance in the prediction of 727 
Pau since iPCst models structures of sentences which highly correlates with PPhs or IPs. 728 

 729 
 730 

 731 
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Table 15. RMSEs for the four prosodic-acoustic features. 732 

Feature set combinations lf0(logHz) Dur(ms) Eng(dB) Pau(ms) 

BSL 

BSL1= Raw+G2P 

BSL2= BSL1+WordSeg 

BSL3=BSL2+WordPos 

.191 

.182 

.186 

43.77 

39.93 

39.23 

3.72 

3.53 

3.50 

71.73 

64.62 

59.56 

PCset 

PC1= BSL3+bPC 

PC2= BSL3+iPCst 

PC3= BSL3+iPCef 

PC4= BSL2+iPCst 

PC5= BSL2+iPCef 

.185 

.175 

.174 

.173 

.174 

38.33 

37.82 

37.34 

38.39 

38.05 

3.48 

3.43 

3.47 

3.46 

3.48 

58.29 

57.29 

58.72 

63.93 

62.56 

QCset 

QC1= BSL3+bQC 

QC2= BSL3+sQC 

QC3= BSL2+bQC 

QC4= BSL2+sQC 

.170 

.169 

.176 

.172 

37.70 

37.83 

39.83 

39.30 

3.52 

3.52 

3.44 

3.54 

58.66 

57.95 

64.50 

63.33 

5.4 Subjective Tests 733 

  Mean opinion score (MOS) test and preference test were performed simultaneously by 15 734 
subjects given with 15 synthesized long utterances with lengths from 64 to 125 syllables (99 in 735 
average) for each prosody generation method. The feature combinations resulting in the smallest 736 
RMSEs for BSL/QCset/PCset in Table 5 were chosen to generate prosodic-acoustic features for speech 737 
synthesis by an HMM-based synthesizer [7-10]. There are three types of the proposed feature sets to 738 
be compared with the baseline (BSL): QCset, PCset, and QCset+PCset. As shown in Table 15, the best 739 
feature combination for the BSL is the combination of BSL2 for lf0, BSL3 for Dur, Eng, and Pau. The 740 
best combination for QCset is the one of QC2 for lf0 and Pau, QC1 for Dur, and QC3 for Eng while the best 741 
combination for PCset is the one of PC4 for lf0, PC3 for Dur, and PC2 for Eng and Pau. The feature sets 742 
for QCset+PCset are QC2 for lf0, PC3 for Dur, and PC2 for Eng and Pau. Before listening to the 743 
synthesized utterances by BSL and the ones by the proposed method, subjects were asked to listen to 744 
the true utterances in the test speech corpus corresponding to the synthesized speeches for reference. 745 
The order of the synthesized utterances in the preference test was randomly set. It is found from 746 
Table 16 that proposed QCset, PCset, and QCset+PCset generally could yield slightly more natural 747 
speech than BSL. The synthesized utterances with prosody generated by QCset+PCset achieved the 748 
most significant MOS difference to BSL. These results again confirm the usefulness of the proposed 749 
PC and QC features. 750 

 751 
Table 16. Preferences (%) and MOSs (numbers in brackets  standard deviation) for the two subjective tests. 752 

pairs The proposed BSL No prefer. 

QCset vs. BSL 34% (3.45  0.42) 25% (3.40  0.45) 41% 

PCset vs. BSL 37% (3.55  0.41) 21% (3.34  0.48) 42% 

QCset+PCset vs. BSL 38% (3.57  0.41) 22% (3.29  0.48) 40% 

6. Conclusions and Future Works 753 

This paper proposes two fully-automatic machine-extracted linguistic features from an 754 
unlimited text input for Mandarin prosody generation. One is the PC which measures the likelihood 755 
of inserting an MPM at a word boundary. Another is the QC which measures the likelihood of a 756 
word string to be quoted as a meaningful or emphasized unit in text. The rationale of these proposed 757 
punctuation generation inspired linguistic features was illustrated by analyses of the relationship 758 
between the prosodic structures and PM types, and structures of QPs. The usefulness of the 759 
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proposed PC and QC features in Mandarin prosody generation was proved by both objective and 760 
subjective tests. It is encouraging to see that the proposed features could improve the performances 761 
of Mandarin prosody generation. With the fast growth of deep learning technologies, in the near 762 
future, it is worthwhile to transplant CRF-based punctuation generation models to neural 763 
network-based models, e.g., long short-term memory recurrent neural network (LSTM-RNN) [48]. 764 
The neural network-based punctuation models can be easily integrated with the followed neural 765 
network-based prosody generator or speech synthesizer in the training phase. Under this integrated 766 
framework, it is also interesting to apply the transfer learning technique [49] to make a neural 767 
network learn prosody generation based on a neural network that generates punctuations. 768 
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