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10 Abstract: This paper proposes two fully-automatic machine-extracted linguistic features from an
11 unlimited text input for Mandarin prosody generation. One is the punctuation confidence (PC)
12 which measures the likelihood of inserting a major punctuation mark (PM) at a word boundary.
13 Another is the quotation confidence (QC) which measures the likelihood of a word string to be
14 quoted as a meaningful or emphasized unit in text. Because a major PM in a text is highly
15 correlated with a prosodic break, and a quoted word string plays an important role in human
16 language understanding, the two features potentially could provide useful information for
17 prosody generation. The idea is first realized by employing conditional random field (CRF)-based
18 models to predict major PMs, quoted word string locations, and their associated confidences, i.e.,
19 the PC and the QC, for each word boundary. Then, the predicted punctuations and their
20 confidences are combined with traditional contextual linguistic features to predict
21 prosodic-acoustic features. Both objective and subjective tests showed that the prosody generation
22 with the proposed linguistic features performed better than the one without the proposed features.

23 So, the proposed PC and QC are promising features for Mandarin prosody generation.

24 Keywords: Mandarin; prosody generation; linguistic feature; break prediction; text-to-speech;
25 punctuation confidence
26

27 1. Introduction

28 Prosody generation plays a crucial role in a text-to-speech system (TTS). We can regard prosody
29  generation as a function mapping from linguistic feature to prosodic structures or prosodic-acoustic
30 feature. In a practical implementation of an unlimited-text Mandarin text-to-speech system (MTTS),
31  availability and reliability of linguistic features are highly dependent on performances of text
32 analyzers. A basic text analyzer includes Chinese word segmenter, grapheme-to-phone (G2P)
33 converter and part of speech (POS) tagger. Prosodic structures are abstract descriptions of speech
34  prosody, and usually categorically represented by prosodic break tags, such as non-break,
35  minor/major break, and so forth. A commonly agreed Mandarin prosody hierarchy is a four-layer
36  prosodic structure with, from the lowest layer to the highest one, syllable (SYL) layer, prosodic word
37  (PW) layer, intermediate phrase (or prosodic phrase, PPh) layer, and intonation phrase (IP) layer,
38  which are demarked respectively by non-break, minor break, major break, and utterance boundary
39  [1-3]. Prosodic-acoustic features are prosodic information numerically represented by values or
40  vectors of log-FO contour, duration, and energy of any linguistic domain, e.g., a phone, a syllable, an
41  initial/final, or a word. Representative prosodic-acoustic features for Mandarin speech are syllable
42  log-FO contour, syllable duration, pause duration, and syllable energy level [4-6]. Besides, in the
43 most popular speech synthesis method - HMM-based synthesis [7-10], prosodic-acoustic features are
44  modeled in HMM state level, i.e., state duration, state logF0 value, and energy contour enclosed by
45  spectral parameters.
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46 No matter what the target (prosodic structure or prosodic-acoustic feature) of prosody
47  generation is, studies of prosody generation focused on the following two issues: (1) design or
48  utilization of prediction model, and (2) utilization of features. In the first issue, popular prediction
49  methods for generating prosodic structure are hierarchical stochastic model [11], N-gram model [12],
50 classification and regression tree (CART) [13,14], bottom-up/sifting hierarchical CART [13], Markov
51 model [15], artificial neural networks [16], maximum entropy model [17], etc. As for generating
52 prosodic-acoustic features, popular pattern recognition tools were utilized, such as multi-layer
53 perceptron (MLP) [18-23], recurrent neural network (RNN) [4], CART [7-10,24], and decision tree
54  plus hidden Markov model with multi-space distribution modeling of FO contour [7-10], and so
55 forth. In the second issue, conventional linguistic features, such as POS, word length, sentence
56  length, position in a sentence, and so forth, are widely used in many existing MTTSs
57  [4,12-14,17,22,24-27]. Some studies further improved the accuracy of prosodic structure prediction or
58  prosodic-acoustic prediction by incorporating higher-level syntactic features, such as word chunk
59 [16] and syntactic tree [16,26,27]. On the other hand, statistical linguistic features - connective degree
60 [14], punctuation confidence (PC) [28-31] and quotation confidence (QC) [30,31] were proposed to
61  neglect complex syntactic tree parsing and manual word chunking that causes impracticality in
62  constructing an unlimited-text MTTS.

63 This paper focuses on the second issue to extend and elaborate on our previous works in the PC
64 [28-31] and QC [30,31] features. More substantial analysis and modeling details are provided in this
65  paper to give readers an insight into the proposed PC and QC features. The proposed PC and QC
66  features are motivated by automatic Chinese punctuation generation [32] and linguistic
67  characteristic of Chinese punctuation system [33]. The PC measures the likelihood of inserting a
68  major punctuation mark (MPM) at a word boundary while the QC measures the likelihood of a
69  word string quoted by brackets to emphasize the meaning of the quoted word strings. In [32], a
70  maximum entropy (ME)-based automatic Chinese punctuation generation method was proposed to
71  insert 16 types of punctuation mark (PM) to an un-punctuated text by using features of word and
72 lexical-functional grammar features. The results in [32] showed that the punctuation generation
73 model could generate alternative/acceptable insertions, deletions or substitutions of PMs. This
74  phenomenon was also observed in a human punctuation experiment reported by Tseng [33] in
75  which alternative punctuation strategies were found among different native Mandarin Chinese
76  speakers. These observations reflect the fact that Chinese PMs serve as a loose reference to both
77  syntactic structure and semantic domain, and therefore native Chinese writers would freely utilize
78  PMs to delimit written Chinese into various linguistic elements, such as phrases and clauses, to
79  clearly express the meaning of a text. Furthermore, punctuation generation of a speaker when
80  reading written Chinese would reflect his/her prosodic phrasing strategy because pause break is
81 highly correlated with some MPMs, such as period, comma, exclamatory mark, question mark,
82  semicolon, and colon. Therefore, an automatic punctuation generation model predicting MPMs
83  trained from a large text corpus can learn punctuation strategies for MPMs from various text
84  contributors, to provide useful cues for both prosodic break [28,31] and prosodic-acoustic feature
85  predictions [29-31].

86 On the other hand, a word strings sandwiched by brackets or quotes have essential or unique
87  meanings in sentences. By our analysis on a large text corpus - the Academia Sinica Balanced Corpus
88  of Modern Chinese (ASBC) V.4.0 [34] with 9,454,734 words (or 31,126 paragraphs), we found that the
89  functions of the quoted word strings can be classified into several cases: (1) to add supplementary
90 information to the proceeding words, (2) to represent the name of a particular person, place or
91 institution, (3) to emphasize the meaning of a word string, or (4) to indicate a new derived
92  compound word or a word chunk which compose a complex meaning. In the cases of (3) and (4), the
93  quoted word strings which are called quoted phrases in this paper, from small to large linguistic
94 units, may form new-derived words, compound words, base phrases, word chunks, syntactic
95  phrases, and even sentences. The mentioned-above linguistic units are usually larger than common
96  words in size, containing more complex meanings than a word, or even generating new meanings,
97  and maybe constituting a higher-level unit in syntax than POSs of words. Since a quoted phrase
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98  exhibits richer linguistic information than just words, it plays a crucial role in human language

99  understanding when reading a text. Moreover, it is generally agreed that a speaker can generate
100  good prosody if he/she understands the meanings of a text. Thus, adding quotations to plain
101  Chinese texts and then regarding the added brackets as linguistic features may help naturalness of
102  machine-generated prosody. Note that in written Chinese, the use of quotations by adding brackets
103  depends on writing styles or habits of text contributors. Unlimited Chinese input texts may already
104  contain some brackets to exhibit the four functions illustrated previously. However, the remaining
105  un-quoted words may also be emphasized, be regarded as larger syntactic units if they share similar
106  contextual POS or word structures with the quoted phrases. For the case that Chinese texts contain
107  no quotations, if quotations can be labeled with brackets by a machine automatically given the word
108 and POS information, the features associated with the labeled brackets could provide richer
109  linguistic information to enhance the performances of prosodic-acoustic feature predictions.
110 To realize the ideas of automatic MPM and quotation predictions, we construct two types of the
111  conditional random field [35,36] (CRF)-based automatic punctuation generation models: the
112  CRF-based MPM generation model and the CRF-based quotation generation model. The CRF-based
113  MPM generation model predicts MPMs and generates the associated confidence measures, referred
114 to as the punctuation confidence (PC), from major PM-removed word/POS sequences. The PC can be
115  regarded as a statistical linguistic feature to measure the likelihood of inserting an MPM into a text.
116 It is reasonable to hypothesize that word junctures which are more likely to be inserted with MPMs
117  in text, are more likely to be inserted with pause breaks in an utterance. We could, therefore, expect
118  that the utilization of the PC in prosody generation may improve the performance of
119  prosodic-acoustic feature generation. The CRF-based quotation generation model predicts the
120  structures of quoted word string (i.e., QP) from bracket-removed word/POS sequences and
121  generates the associated confidence, referred to as the quotation confidence (QC). The QC can also
122 be taken as a statistical linguistic feature to measure the likelihood of word strings being quoted by a
123 left bracket and a right bracket. Since words in the brackets are closely related to constitute
124  meanings, it is reasonable to assume that less prosodic breaks are inserted within a quoted text, and
125  quoted text may be emphasized with some variations in prosodic-acoustic features. We therefore
126  also expect the use of QC may also assist in prosody generation.
127 To evaluate the usefulness of the proposed PC and QC in Mandarin prosody generation, the
128  experiments of prosodic-acoustic feature prediction were conducted, and the corresponding
129  objective and subjective tests were then evaluated. The experimental database is a read Mandarin
130  speech corpus — the Treebank speech corpus, containing 425 utterances with 56,237 syllables uttered
131 by a professional female announcer. The corpus is further divided into three parts: a training set of
132 301 utterances with 41,317 syllables, a development set of 75 utterances with 10,551 syllables, and a
133 test set of 44 utterances of 3,898 syllables. The corpus used for training the CRF-based punctuation
134  generator was the Academia Sinica Balanced Corpus of Modern Chinese (ASBC) V.4.0 [34] (denoted
135  as the ASBC text corpus thereafter). In the prosodic-acoustic feature prediction, the proposed
136  linguistic features combined with conventional linguistic feature were taken as input to directly
137  predict four prosodic-acoustic features of syllable log-FO contour, syllable duration, syllable energy
138  level, and inter-syllable pause duration. Objective tests were evaluated by root-mean-square error
139  (RMSE). Subjective tests were then evaluated with speech-synthesized utterances with the predicted
140  prosodic-acoustic features.
141 Several advantages of the approach can be found. First, the PC and the QC can be easily
142  obtained from features of word/POS sequence which can be robustly obtained by current word
143 segmentation and POS tagging technologies without using complicated statistical syntactic parsing.
144  This makes the proposed approach more suitable for practical on-line unlimited TTS. Second, as
145  Dbeing trained using a large text corpus, the CRF-based punctuation generation models can learn
146  alternative punctuation strategies from numerous paragraphs by various writers to generate more
147  reliable PCs and QCs. Third, compared with the size of an available text corpus for constructing a
148  statistical syntactic parser, the size of corpus used to train the CRF-based punctuation generator can
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149  be considerably larger. Therefore, we can expect that the PC and the QC would be more robust than
150  syntactic features derived from an automatic syntactic parser.

151 The research process and the corresponding section organization of this paper are summarized
152  asfollows:

153 @ Section 2: Analysis of Punctuations

154 We show the relationship between punctuations and prosodic structures via analyzing the
155 Treebank speech corpus which is labeled with prosodic break tags. This analysis motives the
156 proposed PC. This section will also analyze the quoted phrases observed in the ASBC text
157 corpus, finding the possible QC candidates for the training of the CRF-based quotation model.
158 @ Section 3: Construction of the CRF-based MPM Generation Model

159 The CRF-based MPM generation model will be trained given with the ASBC text corpus.
160 The precisions and recalls of the MPM insertions are examined on the test set of the ASBC text
161 corpus. The feasibility of the proposed PC in prosody generation will be examined by analysis
162 the relationship between the prosodic-acoustic features of the training set of the Treebank
163 speech corpus and the associated PC generated by the CRF-based MPM generation model.
164 ® Section 4: Construction of the CRF-based Quotation Generation Model

165 The model will also be trained and examined on the ASBC text corpus. The feasibility of the
166 QC for the prosody generation is also examined on the Treebank speech corpus.

167 @ Section 5: Prosody Generation Experiments

168 The prosody generation experiments will be conducted on the Treebank speech corpus. The
169 proposed PC and QC features generated by the proposed automatic punctuation generation
170 models with the texts of the Treebank text corpus are combined with the conventional
171 linguistic features to predict the prosodic-acoustic features of syllable pitch contour, syllable
172 duration, syllable energy level, and pause duration. Objective and subjective tests were
173 conducted to verify the usefulness of the proposed PC and QC features.

174 ® Section 6: Conclusions and Future Works

175 2. Analysis of Punctuations

176 Because prosodic-acoustic features are highly dependent on Mandarin prosodic structure and
177  the prosodic structure are categorically represented by a finite set of prosodic break tags, it is easier
178  to analyze the relationship between prosodic break types and PMs than to analyze the relationship
179 between numerical prosodic-acoustic features and PMs. This section, therefore, analyzes the
180  relationship between Chinese PMs and Mandarin prosodic structure. In the following subsections,
181  the analyses will disclosure the motivations and the rationality of the proposed PC and QC features.
182  The prosody labeling system for illustrating prosodic structures of utterances used in this study will
183  be introduced in Section 2.1. The relationship between the labeled prosodic break types and PM
184  types will be discussed in Section 2.2. Section 2.3 will experiment to let native Mandarin speakers
185  insert MPMs manually given with PM-removed texts excerpted from the Treebank speech corpus.
186  The relationships between the human-labeled MPMs by the native Mandarin speakers and the
187  associated prosodic break types are analyzed, showing some evidence for the proposed PC. Section
188 2.4 will analyze the quoted phrases observed in the ASBC text corpus, finding the possible QC
189  candidates for the training of the CRF-based quotation generation model.

190  2.1. Prosody Label System

191 Famous prosody labeling systems are the ToBI [37], TILT [38], and C-ToBI [39]. The
192  mentioned-above prosody labeling systems require human labeling with linguistic expertise. To
193  leverage the intensive human labor and to increase consistency of prosody labeling, Chiang et at.
194  [40,41] proposed an unsupervised joint prosody labeling and modeling (PLM) method to construct a
195  speaker-dependent statistical hierarchical prosodic model (HPM) and to label prosody tags for
196  Mandarin speech. The PLM method was then successfully applied to construct a
197  speaker-independent HPM to assist in a large vocabulary speech recognition task [42]. Hence, in this
198  study, to avoid intensive human labeling and inconsistent labeling results, the corpus was labeled
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199  with seven break types by the PLM method [40,41] proposed by Chiang et al.. As shown in Figure 1,
200  the seven break types, i.e. {BO, B1, B2-1, B2-2, B2-3, B3, B4}, delimit an utterance into four types of
201  prosodic units, namely syllable (SYL), prosodic word (PW), prosodic phrase (PPh), and breathe
202  group/prosodic phrase group (BG/PG).

BGPG 54| BG PG B4 | BGPG
PPh ‘ | PPh | B3 | PPh B3] PPh ' PI
B2-1 B2-1 — B2-1/—
PW [ ew B2 PW || pw B2 pw || PW PW | 522
B2-3 B2-3 ' B2-3
syLlpipo syL|  [svi]  [svi]mimo[svi] [svi]  [svi] [svi|Bimo SYL SY
203
204 Figure 1. The prosody-hierarchy model of Mandarin speech used in this study [42]
205 In the labeling system, each defined break type is characterized by its specific juncture

206  prosodic-acoustic features. B4 is defined as a major break accompanying long pause and apparent FO
207  reset across adjacent syllables; B3 is a major break with medium pause and medium FO reset; BO and
208 Bl represent respectively non-breaks of tightly-coupling syllable juncture and normal syllable
209 boundary, within a PW, which have no identifiable pauses between SYLs; and B2 is a minor break
210  with three variants: FO reset (B2-1), short pause (B2-2), or pre-boundary syllable duration
211  lengthening (B2-3).

212 Among various types of prosodic-acoustic features, pause duration is the most salient cue to
213 specify boundaries of prosodic units. Figure 2 displays the distributions of pause durations for the
214  seven break types. As can be seen from the figure, the higher-level break types were generally
215  associated with more prolonged pause duration. Note that B4, B3, and B2-2 have apparent pause
216  duration (>30ms), while BO, B1, B2-1 and B2-3 all have very short pause duration (<30ms). By the
217  above analysis on the pause duration of the seven break types, this study categorizes four break
218  classes to ease the following analysis in Section 2.2, including (i) B4, (ii) B3, (iii) B2-2, and (iv)
219  non-pause break type (NPB) which is a grouping of B0, B1, B2-1 and B2-3.

T T T T T T -wBO (3)
------ B1  (11)
—B2-1 (18)
—-=-B2-2 (109)
—B2-3 (16)
—p3 (287)
B4 (543)

200 300 400 500 600 700 800 900

220
221 Figure 2. The distributions of pause durations (ms) for the seven break types. The average pause
222 duration (ms) for each of the prosodic break type is displayed within the brackets.

223 2.2. Relationship Between the Labeled Break Types and PM Types

224 It is generally agreed that pause breaks co-occur with PMs. Most TTSs cautiously insert pause
225  only on major PMs, such as comma and period. This cautious strategy of pause insertion can make
226  the synthesized speech very stable but may be unnatural as the input sentence is very long and
227  constituted in complicated syntactic structures. Table 1 shows the co-occurrence matrix of four break
228  classes and three syllable juncture types calculated from the training set of the Treebank speech
229  corpus. It can be seen from the table that most PM locations co-occur with pause-related break type
230 (B2-2, B3, and B4), while most intra-word locations map to NPB. In-between of PM and intra-word,
231  non-PM inter-word locations co-occur with NPB, B2-2, and B3. About 40% of prosodic phrase
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232 Dboundaries (B3s) and over 94% of B2-2 come from non-PM inter-word junctures. By more detail
233 analysis, we find that 60% of non-PM B3s coincides with depth-1 node boundary of the full parsed
234 syntactic tree. The above discussions imply that it would be unsatisfactory to insert pause only at
235  PMlocations.

236 Table 1. Co-occurrence matrix of four target break types and three syllable juncture types

NPB B2-2 B3 B4

Intra-word 21,970 14 2 0
Non-PM inter-word 20,288 3,148 1,391 30
PM 30 169 2,130 2,320
237
238 Table 2 shows the co-occurrence matrix of four break classes and eight high-frequency PM

239  types in the Treebank speech corpus. It can be found from the table that the MPM set {period * - ’,
’ ' 4

17, question mark ‘ ?’, semicolon

L.y

; 7, colon

Loy

240  exclamation mark :’, comma ‘ '} is highly
241  correlated with major breaks, i.e., B3 and B4. This implies that a word juncture which tends to insert
242  an MPM in a text is more likely to be a major break in an utterance. This motivates us in this study to
243 propose a CRF-based automatic MPM generator to predict the insertion of MPM (i.e., punctuation)
244 and its likelihood (i.e., punctuation confidence, PC) for each word juncture, and use them to help the

245  prosody generation.

246
247 Table 2. Correlation matrix of 4 break types and 8 PM types
° ! ? ; : ’ >
NPB 1 0 0 0 0 4 25 1
B2-2 2 1 1 0 1 88 75 1
B3 42 1 7 9 2 1,901 168 0
B4 606 39 58 63 0 1,523 30 1
248
249 Note that in the texts of the training set of the Treebank speech corpus, no word string was

250  quoted by Chinese brackets. This means we cannot directly analyze the relationship between
251  Chinese brackets and labeled break types. In this paper, we directly analyze the characteristics of
252  the brackets and their associated quoted phrases from the ASBC text corpus in Subsection 2.4.

253  2.3. Human Labeled PMs vs. Prosodic Break Types

254 Evidently, we may conclude from the results shown in Table 2 that the occurrences of B3 and B4
255 are highly correlated with MPMs of periods, exclamation marks, question marks, semicolons,
256 colons, and commas. We, therefore, assume that an automatic punctuation generation model
257  predicting MPMs trained from a large text corpus can learn punctuation strategies for MPMs from
258  various text contributors to provide informative cues for prosodic-acoustic feature predictions. To
259  access the feasibility of the proposed idea, we conduct an experiment in which ten native Mandarin
260  speakers are asked to insert periods and commas to the same 30 PM-deleted short paragraphs. These
261 30 paragraphs were chosen from the Treebank speech corpus which is labeled with prosodic breaks
262  as stated in Section 2.1. The maximum and minimum lengths of the paragraphs are 270 and 80
263  characters, and the average length is 138 characters. The frequencies of word junctures being added
264  with periods or commas can be regarded as the PCs made by human labelers (or text contributors).
265  The analysis of the relationship between these frequencies (PCs by humans) and labeled prosodic
266  breaks would provide some evidence that the proposed method is feasible.

267 Figures 3(a)-(c) show average percentages of prosodic break types with respect to the number
268  of times that a word juncture is inserted with a comma (Figure 3(a)), a period (Figure 3(b)), and a
269  comma or a period (Figure 3(c)), respectively. Here, the number of the time that a comma or a period
270  inserted is analogous to the proposed PC. We can find in Figures 3(a)-(c) that the percentages of NPB
271  drop rapidly when the frequencies of MPM insertions increase. In Figure 3(a), it is found that
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272  percentages for B4 increase as the frequency of comma insertion increases. The percentage for B3
273 reaches the highest value around two/three comma insertions, and then decreases and keeps a level
274  for more than four insertions. The percentage for B2-2 has a similar trend with the one for B3 butin a
275 lower level. As can be seen from Figure 3(b), B4 dominates when more than three insertions of
276  periods are observed for each word juncture. These results indicate that a word juncture is more
277  likely to be inserted with pause-related break types (B2-2, B3, and B4) when the PC values are larger.
278  Itisalso found that the break types of the higher prosodic units (i.e., larger break types) are likely to
279  be associated with larger PC values. Figure 3(c) can be view as the result combined with Figures 3(a)
280  and (b). Because commas and periods are major populations in the MPM set, the result shown in
281  Figure 3(c) is analogous to the distributions of the prosodic break types concerning the PC values.
282  We can observe more evident trends for the percentages of four break classes in Figure 3(c), and
283  these trends would be informative for prosody generation.

100 T T T T 100 1
] NPE Bi2-2 B B4|
& a0 1 E & .
@ 2 —&— NPEB
& B0} 7 B0}
Z £ —&— B2-2
3 ] —&—B3
z 407 z Ay —o— B4
_ =
2 E
2 a0t 2 a0t /\
D .m_,—o—ﬂ—\—\_ro i} T, o
1] 2 4 5 g 10 0 2 4 3 g 10
284 number of times that a word juncture is inserted with a comma nurmber of times that a word juncture is inserted with a period
285 (a) (b)
100 T T T T
| NPE B2-2 B3 B4 |
= w0} g
o
=4
2 60t -
=
=i}
[l
T 40+ b
o
o
2
s 20y E
ot 2 b
0 2 4 53 g 10
286 number of times that a word juncture is inserted with a comma ar a period
287 (©)
288 Figure 3. Average percentages of prosodic break types concerning the number of times that a word
289 juncture is inserted with (a) a comma, (b) a period and (c) a comma or a period
290  2.4. Analysis of Quotations
291 Table 3 shows 26 types of Chinese quotation marks existing in the ASBC text corpus [34]. We

292  categorize words sandwiched by quotation mark into ten types according to their functions, and we
293  called these sandwiched words ‘quoted phrase’ (QP). Table 4 shows the types of QPs, their statistics,
294  and examples. In the following, we describe the characteristics of the QPs:

295 Type 1 - () : They mostly function as enumerating. Therefore, we do not regard Type 1 as our
296  prediction targets for QP.

297 Type 2 - { } : They are mostly titles of books or article, so we regard this type as our prediction
298  targets.

299 Type 3 - () : They mostly function as captions of articles. This type is not included in our
300  prediction target.

301 Type4and5- " jandF j: This type contributes most samples (68%) for the QP predictions since

302  their properties are generally like word chunks or base phrases. For the single-word QPs of this type,
303  they usually are emphasized nouns, verbs, or idioms. Most two- to four-word QPs are noun phrases.
304  For QPs that longer than four words are generally long noun phrases or even sentences.
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Types6,7and8 - () [] () :these types are similar to the Type 2 and therefore included in
the QP prediction.
Type 9 - “”: We include the samples of this type in the QP prediction. In this type, single-word
QPs are generally proper nouns. The two- to four-word QPs mostly are frequently-used phrases,

and five- to six-word QPs are similar to sentences.
Type 10 - *” : This type is similar to the types 4 and 5. We take this type as the QP prediction

target though the sample size is very small.

Table 5 shows statistics of lengths of QPs in word. It is found that most QPs are single-word to
four-word QPs. Single-word QPs are usually emphasized nouns or verbs. Two- to four-word QPs
are mostly base-phrase like word strings (or word chunks). The QPs longer than four words are
mostly sentence-like units.

Table 3. Types of Chinese quotations

NO. 2 4 5 6 7 8 9 10 11 12 13 14 16
Quotes ) ) { } { } ( ) ( J r J
Type 2 5
NO. 17 18 19 20 21 22 23 24 25 26
Quotes ( ) [ ] ( ) A ”
Type 7 8 9 10

Table 4. Types of QPs, their statistics, and examples. Examples are delimited by commas, and words

are delimited by slashes for each example.

type count (percentage) Examples
. S, [/, BB, AR — R )
! O 14131 (25.13%) BT, R/ /B R R
2 {} 34 (0.06%) BEFETRED, WE/EERD, MO T/MINR
) AR, EH/ThAE, SOME/ER/EIR, EiHY L//TE,
3 0] 101(0.17%) B R
A, TSI, )R, SRR, S/EE
r 0, ’ ’ ’ ’
4 / 37197 (66.17°%) (LR sk, BT - M P e
. . i, /I, FEEL/S8/ME, B/ SRR, KR/
> . 1223 2.17%) [, R R
] 0 562 099%) JerThE, EHRAE, BEIA/T, S LER, —e)
oo SRR S0, AR/ T 1P
. s B/6 8, BRI/, RN, RS
7 (] 314 (0:55%) ORI, At R
. S, /R, T /B, TR/ b/ N
8 0 2523 (4.48%) A
. 105 0.15% EE, T/, AR, B (SRR, G/
' el NI
10 22 (0.039138%) EHEWR, F—/RAN, LANNFF/ET

Table 5. Statistics of lengths of QPs in word.
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Length in word # of example percentage
1 26791 41%
2 16749 25%
3 10933 17%
4 5847 9%
5 3415 5%
5 1988 3%
323
324 3. The Proposed Punctuation Confidence
325  3.1. The CRF-Based MPM Generator
326 The Punctuation Confidence (PC) [28] is produced by a CRF-based MPM generator. The task of

327  the CRF-based MPM generator can be viewed as a label-tagging problem that labels each lexical
328  word juncture with a sequence of types of PMs, e.g., presence or absence of an MPM, Y, by using
329  some linguistic feature sequence, X. It is formulated by

330 P(YIX)=L9XP(§,

N (X) L /11 fi (Yt = vat—v X)J (1)

331 where N(X) is a normalization factor to ensure that ZY P(Y | X)=1; t stands for lexical word

332  index; Y, represents prediction target, i.e., type of PM between the t-th and (t+1)-th lexical words; I
333  represents the number of feature functions, and f,(Y, =V,Y, ;, X) is a feature function defined by

1, if X=h, is satisfied and y =y,

334 1:i (Yt = y’Yt—l’ X) = { 2)

0, otherwise
335  where h; represents the j-th possible linguistic feature context; and Yy, is the k-th possible tag (i.e.,

336  PM type) to be predicted. Generally, feature contexts are organized into several groups, referred to
337  as’feature templates.” The predicted PM sequence can be obtained by the Viterbi search:

338 YOYy, Yy =arg max P(Y|X) ®)

Yy
339  Moreover, the PC is given by the forward/backward calculation:
340 Dk (X) = P(Yl = Y | X) “4)
341  which is the marginal probability of the k-th type of PM for the #-th word.

342 3.2. The Design of Prediction Targets

343 Two types of prediction targets are designed: the basic PC (bPC) and the improved PC (iPC).
344  The bPC is generated by considering the two prediction targets: the presence of an MPM, y1, and the
345  absence of an MPM, yo. The iPC is produced by considering structures of sentences accompanying
346  with MPMs. For the bPC, the MPMs includes “ =/, “ 17, “?’,“;,“:’, and > ". The PC, ¢, (X),

347  generated by the target setting {y1, yo} is called the basic PC (bPC). Figure 4(a) shows the original text
348  with word/PM tokens and Figure 4(b) shows the corresponding target-labeling example for the
349  training of bPC.

350
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() Z&EHL T AR A K L AL MM e 2R 450 KFE & HE & T AR
A A
(b) ¥E4EHvo Tho HAENe FHhve Ko Lo BEZFERMe P v/ dlve R E/M &
Zlyo KRH#Nvo #lyo BFhHiym &lye Telye AR Hlo An
() k4Bl T/B2 HAMB3 A/MB4 A/M L/M B 5/E4 PIEE/E3 @9/E2 £ 2/Bl
#A/B1 KE/MB2 #y/E2 ¥ H/E1 4/Bl /B2 A&/ A/E2 AJEL
(d) Instance 1: ¥:&45/E1 T/E2 HAAK/E3Z FH/E4 R/M E/M ®HHE/E4 PIE/E3 &
/B2 B E/El HA/ML KE/MD2 #y/e2 Ef Blel
Instance 2: =X &/Bl1 & E/B2 &/E2 3] &/E1 4/bl  =Tui/b2 HAA/A Fle2 Alel
351
352 Figure 4. An exemplary tag labeling for the PC training: original word/PM sequence is shown in
353 pane (a), the tag labeling for the training of bPC (b), iPCst (c), and iPCef (d). Note that each sentence
354 is in a different color and each word is delimited by spaces.
355 Note that the bPC only considers modeling the insertion of the MPMs and the MPMs serve as
356  delimiters for sentences. Therefore, modeling structures of sentences could be equivalent modeling
357  insertion of MPMs and even could give a better prediction of MPM insertion. Besides, by an analysis
358  on the ASBC text corpus [34], it is found that many long sentences could be inserted with some
359  optional MPMs without losing understanding. These optional inserted MPMs may correspond to
360 insertion of pause breaks. We hence proposed so-called the improved PC (iPC) to model sentence
361  structures and optional MPMs in a sentence. Two types of the iPC are designed: iPCst and iPCef. The
362  iPCst is designed for modeling of sentence structure while iPCef is for modeling of an enforced
363  MPM insertion in a sentence. For the prediction of the iPCst, the prediction targets for the CRF-based
364  MPM generator are labeled for each word and designed to represent sentence structures regarding
365 word position in a sentence. The targets ‘B’, ‘I’, ‘M, ’S’, and ‘E’ respectively present beginning,
366  intermediate, middle, single and ending words in a sentence. To further precisely label the word
367  order information in a sentence, numbers 1 to 4 are added to the targets ‘B’ and ‘E’ for indicating
368  forward and backward word order. According to the statistics about sentence length in word for the
369  ASBC text corpus, the length of sentences mostly (84%) distributes from 4 to 9 words. The target
370 labeling schemes, therefore, are designed differently for sentences with <9 and >9 words. The
371  complete targets for iPCst are listed in Table 6. Specifically, there are four rules to guide the tagging
372  of targets:
373 1. ‘Bl ‘B2’, ‘B3, and ‘B4’ represent the first, second, third, and fourth word in a sentence
374 respectively while ‘E1’, ‘E2’, ‘E3’, and ‘E4’ represent respectively the first last, second last, third
375 last, and fourth last word in a sentence.
376 2. If sentence length is >9 words, we use ‘B1’~'B4" and ‘E4'~El’ to tag targets from the
377 beginning and the ending of a sentence and use ‘M’ to tag the other intermediate words in a
378 sentence.
379 3. Ifsentence lengthis <9 words and even, we use ‘B1’~‘Bk’ and ‘E1’~'Ek’ to tag targets from the
380 beginning and the ending of a sentence for k=1~4 and k= (length of sentence in word)/2.
381 4. If sentence length is <9 words and odd, we use ‘B1’~‘Bk’ and ‘E1'~'Ek’ to tag targets from the
382 beginning and the ending of a sentence for k=1~4 and k= (length of sentence in word)/2. The rest
383 of the words are labeled with ‘I" to indicate the intermediate words in a sentence.
384  Figure 4(c) shows an exemplary tag labeling for the iPCst training,.
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385 The idea of the prediction of the iPCef is to enforce inserting an MPM in a sentence. This
386  enforced MPM may provide informative cues for inserting a pause or exhibit a pre-boundary
387  syllable duration lengthening for word junctures in a long sentence. To realize this enforced MPM
388  insertion, the prediction targets are designed to learn to insert an MPM given instances of two
389  consecutive sentences whose sandwiched MPM are removed. The target set for iPCef is similar to
390  the one for iPCst shown in Table 6 but using upper- and lower-case letters for the distinction
391  between tags respectively for first and second sentences. This idea is motivated by observing
392  frequent pause insertions in long sentences as shown in Section 2. Figure 4(d) shows an example of
393  prediction target labeling for iPCef. Noted that in the training of iPCef, two consecutive sentences
394  are taken as one training instance for an enforced MPM insertion.

395 Table 6. Targets for iPCst

target tag: position in a sentence

E4: 4th last word
E3: 3rd last word
E2: 2nd last word
E1: 1st last word
S: single word

B1: 1st word
B2:2nd word  |I: intermediate word if sentence length in word is odd and less than 9

B3:3rd word  |M: intermediate word if sentence length in word is equal or more than 9
B4: 4th word,

396  3.3. Design of Features and Templates

397 The linguistic features used in the CRF training are lexical words (W, ), POSs (S,) and word
398  length (L,). Therefore, the linguistic feature sequence for the CRF model is

399 X={X;, X, X;} and X, ={W,,S,, L} )
400  The linguistic features are generated by the NCTU Chinese parser [43,44]. The significance of these
401  linguistic features is summarized in Table 7.

402 Table 7. The significance of the linguistic features
Feature Definition Description
W, t-th lexical word The smallest meaningful linguistic unit
S, Part of speech (POS) of t-th lexical word ~ Basic syntactic role of ¢-th lexical word; 47 categories [45]

L. Length of t-th lexical word in syllable Longer words are more likely to be followed by PMs

403

404 The feature templates for the training of the CRF-based MPM generators for PCs considered
405 the contextual word, POSs, length of the word, and the combinations of the above features. In this
406  study, we design four templates for the PC generation as shown in Table 8. All the templates
407  consider the same POS, lexical word-POS and word length contexts. The difference between the
408  templates 1 and 2 is that the template 2 considers wider word contexts. The templates 3 and 4 are
409  similar to the template 1 and 2 but different in that the templates 3 and 4 add a combination of the
410  previous target Y,, (i.e., bigram templates) and the POS of the current word ;. The reason for this
411  combination is that we observe that the types of the current PM, Y,, depend on the joint factor of the

412  previous PM type, Y,,, and the current POS, §,.

413  3.5. The Experiment of PC Generation and Evidence

414 The CRF models were trained by the ASBC [34] training set with 6,625,277 words, and the best
415  feature templates were tuned by the results on the training set with 2,817,785 words. The tool for the
416  training is CRF++: Yet Another CRF toolkit [36]. Table 9 shows precisions and recalls of predicted
417  MPM insertions trained by setting prediction targets of bPC, iPCst and iPCef with the templates 1 to
418 4. Tt is observed that the best precision and recall are achieved by the template 4, followed by the
419  templates 3, 2 and 1, indicating that the wider feature contexts and joint factors of (Y,,,S,) could
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improve the MPM prediction. The best precision/recall of MPM generations on the test set for bPC,
iPCst and iPCef are respectively 94.1%/93.1%, 96.9%/96.1%, and 95.7%/95.5%. We choose the results
made by the template 4 for the following analysis and prosody generation experiments. The results

d0i:10.20944/preprints201802.0108.v1

were reasonably high to model the characteristics of MPM insertion and sentence structures.

Table 8. Feature templates for PC. The notation represents a sequence: W, ,, W, ... W, ... W, , W,

B s T eV

template 1 template 2 template 3 template 4
. {\Ntﬂ}fz,l.-q 7 t‘:ﬁr }rﬂ),l {\Nlﬂ}r:—kﬂ 4 t:ir }T:O,l
Lexical word context W, » W, -
W W
POS context {St+r}r:—3~+3 ’ {83111}7:0,1 ’ {Sttjzrﬂ}r:oa ’ {Stljf;r}r:0~3 ’ {Sffiﬁ | I {Stti:}r:tm
. {(Vvt 1 St+r )}1:73~+3 4 {(VVI 1 Stljlrﬂ' )}rd),l ’ {(Vvt 1 Sllj;ﬂ)}rﬂkz 4 {(Vvt ’ Sttji;r)}rzoﬁ 4
Lexical word and POS context
{W, S5 o
Lexical word length Lt
Previous Target & POS context Y Yoy (s S) (Y S)

Table 9. The precisions and recalls of the MPM generations by target labeling methods for bPC,

iPCst, and iPCef.
bPC iPCst iPCef
Precision Recall Precision Recall Precision Recall
Template 1 0.902 0.867 0.961 0.949 0.940 0.937
Template 2 0.919 0.890 0.962 0.951 0.942 0.938
Template 3 0.905 0.869 0.967 0.959 0.955 0.953
Template 4 0.941 0.931 0.969 0.961 0.957 0.955

We then examine the interplay between the proposed PC values, i.e., ¢, (X), and distributions

of prosodic-acoustic features on the training set of the treebank speech corpus in Figures 5, 6 and 7.
Figure 5 shows the average syllable logFOs corresponding to the prediction targets for bPC (a),
iPCst (b) and iPCef (c) in different levels of PC values. Note that the PC values are divided into ten
even intervals from 0 to 1 for the bPC in Figure 5(a). As can be seen from Figure 5(a), the average
syllable logF0 decrease as the bPC for MPM, i.e., ¢, ,(X) for the prediction target y1, increases while

the bPC for yo exhibits a contrary trend. This indicates that a syllable would have lower logF0 value
as the syllable is more likely to be followed by an MPM. Figure 5(b) shows the average syllable
logFO of the prediction targets in the three representative levels of iPCst values, i.e., the high level:
iPCst = 0.9~1.0, the median level: iPCst = 0.5~0.6, and low level: iPCst = 0.0~0.1. Note that the
prediction targets are listed in a forward position order in a sentence on the x-axis, i.e., ‘B1’, ‘B2,
‘B3, ‘B4’, ‘I'/'M/, "E4’, ‘E3’, ‘E2’, and “E1’. A clear trend of logF0 declination can be found for the
high-level iPCst. On the contrary, the average syllable logFOs are flat for the low-level iPCst. The
average syllable logF0Os for the median-level iPCst shows a moderate logF0 declination trend.
Figure 5(c) shows the average syllable logF0 of the prediction targets in the three representative
levels of iPCef values. The prediction targets in Figure 5(c) are also listed in a forward position
order in a sentence on the x-axis. The logF0 declination effects are also clearly observed for the cases
of the high and median levels of iPCef values. These findings may indicate that the proposed PCs
could provide informative cues for modeling logF0 declination effect in prosody generation. Besides,
iPCst and iPCef (especially iPCef) exhibited a higher and lower logF0s in the beginning and end of a
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449  sentence, respectively, indicating the proposed iPCst and iPCef may provide more significant cues
450  than bPC for prosody generation.

545 — T T T T T T T T T T 545
—&—y
54¢ H o4t
—=—Y
— ju}
E535f £ 535}
= =
= &3l = 53|
= o
& B
w 5261 w 5261
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—&—iPCst =09~1.0
| —=—iPCst=05~086
—&—iPCst = 0.0~0.1
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£ 53 :
% 831 s
g 5251 B
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£ gl | O iPCeR0E~06 h
' —&—iPCef0.0~0.1
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453 Pradiction Targets
454 (c)
455 Figure 5. Average syllable logF0s corresponding to the prediction targets for bPC (a), iPCst (b) and
456 iPCef (c) in different levels of PC values.
457 Figure 6 shows the average syllable duration corresponding to the prediction targets for bPC (a),

458  iPCst (b) and iPCef (c) in different levels of PC values. It is found in Figure 6(a) that the average
459  sgyllable durations are shortened for the two extreme cases: bPC for y1 < 0.1 and bPC for yo > 0.9. This
460  result indicated that the bPC could provide cues to shorten or lengthen the syllable durations when
461 it is very unlikely or likely to insert an MPM following the target syllable. Figure 6(b) shows the
462  average syllable durations of the prediction targets in the high, median and low levels of iPCst.
463  Note that the prediction targets are also listed in a forward position order in a sentence on the x-axis.
464  Significant long average syllable durations can be found at the prediction target of ‘E1” which
465  represents a syllable followed by an MPM for the high and median iPCst levels. It is reasonable to
466  observe a slightly longer average syllable duration for the target ‘M’ because the target ‘M’
467  represents an intermediate location in a long sentence where is more likely to be inserted with a
468  prosodic break. The average syllable durations for all the prediction of the low-level iPCst are
469  almost in the same level. These results indicate that the proposed iPCst can model the pre-boundary
470  syllable duration lengthening effect with various degrees of the iPCst values. It is also found that in
471  the case of the prediction target ‘S” which represent a word sandwiched by preceding and following
472  MPMs, the syllable is lengthened as the iPCst value is high. The prediction targets ‘B1” (the first
473  syllable in a sentence) and ‘I’ (the intermediate syllable in a short sentence) have shortened average
474  syllable durations compared with their nearby syllable locations in a sentence. These results
475  coincide the findings in the previous studies [46] about syllable durations in a PPh. In the paper [46],
476 it was found that first syllable in a PPh and intermediate syllable in a short PPh is shortened. The
477  shortened syllable duration for the target ‘E2’ (the second last syllable in a sentence) manifested a
478  significant contrast for the following pre-boundary syllable duration lengthening cue by the
479  prediction target ‘E1’. In Figure 6(c), the trends of average syllable durations of the prediction
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targets for the first sentence and the ones of the second sentence are similar. It is also reasonable to
observe a slightly longer average syllable duration for the targets of ‘B4, ‘M’, ‘b4’, and ‘m’ because
these targets are distant to the beginning and the ending of a sentence, resulting in a more probable
insertion of a prosodic break. Note that the CRF-based MPM generator for the iPCef predicts an
enforced MPM for each sentence. Words of each sentence are therefore labeled with the prediction
targets of {‘B1’, ‘B2’, ... ‘E2’, ‘E1’, 'S/, ‘b1’, 'b2’, ..."e2’, ‘el’, ’s’} to represent delimiting one sentence
into two (the first and second sentences). The prediction target ‘E1” in this case indicates that there
exists an enforced inserted MPM in a sentence. The similar trends for the average syllable durations
of the first and second sentences indicated that the proposed iPCef could more sophisticatedly
model syllable duration patterns for a long sentence which may be delimited into two PPhs. Recall
that as stated in Section 2.2, 40% of prosodic phrase boundaries (B3s) come from non-PM inter-word
junctures. It is, therefore, encouraging to observe this syllable duration patterns made by the
enforced insertion of MPM by modeling of iPCef. The superiority of the proposed iPCef over the
proposed iPCst and bPC in the prediction of syllable duration is partially confirmed by the prosody
generation experiment shown later in this paper (Section 5.3).
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Figure 6. Average syllable durations corresponding to the prediction targets for bPC (a), iPCst (b)
and iPCef (c) in different levels of PC values.

Figure 7 shows the pause durations corresponding to the prediction targets for bPC (a), iPCst (b)
and iPCef (c) in different levels of PC values. Figure 7(a) shows a trend that the average pause
durations increase as the bPC for MPM, i.e., ¢, (X) for the prediction target y1, increases while the

bPC for yo exhibits a contrary trend. Long pause durations can be found for the prediction targets of
‘E1” and ‘S’ for the high and median levels of iPCst. We may conclude from the mentioned-above
observations that the higher bPC or iPCst values would result in longer pause durations for the
predicted MPM locations. In Figure 7(c), the trend of pause durations for the prediction targets of
the second sentence is similar to the ones in Figure 7(b). The prediction target ‘E1" for the first
sentence only shows a slightly longer pause duration compared with the nearby targets. The pause
durations for ‘E1’ is at the same level for the prediction targets that represent intermediate locations
of a long sentence, i.e.,, ‘B4’, ‘M’, and ‘m’. This result indicates that the iPCef features would not
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512  provide as salient cues for pause duration prediction as the iPCst features would. The objective
513  evaluations of the prosody generation experiment shown later in this paper (Section 5.3) partially
514  confirm this indication.
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519 Figure 7. Average pause durations corresponding to the prediction targets for bPC (a), iPCst (b) and
520 iPCef (c) in different levels of PC values.
521 4. The Quotation Confidence
522 4.1. The Design of Prediction Targets
523 The prediction of QPs is also developed by the CRF model as described in Section 3. The target,

524y is the k-th possible tag representing word position in a QP. The optimal QPs, Y,’,...,Y;, can be
525  predicted by Eq. (3), and the marginal probability for the k-th tag of the t-th word, ¢, (X), is called

526  the Quotation Confidence (QC) generated by Eq. (4). Two types of QCs are designed in this study:
527 basic QC (bQC) and sentence structure QC (sQC). The bQC is generated by predicting structures of
528  QPs while sQC is generated by predicting both structures of QPs and their position in a sentence. As
529  shown in Table 10, an 8-tag set is designed for modeling bQC. Besides, an additional tag ‘O’ is used
530  to represent non-QP words. Figure 8(b) shows a target labeling example for the training of the bQC
531  whose original word/PM tokens are shown in Figure 8(a). The sQC can be regarded as an improved
532 version of bQC that use additional tags to represent positions of non-QP words in a sentence. These
533  additional tags are designed in a two-alphabet format: xy where xe{B,M,F} represents a word

534  string before a QP (B), in-between two QPs (M), or following a QP (F); ye{bm,es} represents
535  beginning (b), intermediate (m), the last (e), or a single word in a word string (s). Figure 8(c) shows a
536  tagexample for the sQC training. The complete set of the prediction target for sQC is shown in Table

537 1L
538 Table 10. Tag format for labeling of target QP for bQC.
Length in word Tag format Length in word Tag format
1 S 4 BB2ME
2 BE 5 BB2MME

3 BIE 6 BB2B3MME
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539
540 Figure 8. (a) Original word/PM tokens, (b) an exemplary tag labeling for the bQC training, and (c) an
541 exemplar for the sQC training
542 Table 11. Tag format for labeling of target QP for bQC
Target Description
Pb presence the first word in a word string which is before a quoted phrase
Pm presence of the middle word in a word string which is before a quoted phrase
Pe presence of the end word in a word string which is before a quoted phrase
Ps presence of the single word in a word string which is before a quoted phrase
Mb presence of the first word in a word string which is between two quoted phrases
Mm presence of the middle word in a word string which is between two quoted phrases
Me presence of the end word in a word string which is between two quoted phrases
Ms presence of the single word in a word string which is between two quoted phrases
Fb presence of the first word in a word string which is after a quoted phrase
Fm presence of the middle word in a word string which is after a quoted phrase
Fe presence of the end word in a word in the word string which is after a quoted phrase
Fs presence of the single word in a word string which is after a quoted phrase
B/B2/B3/I/M/E/S The same definitions as shown in Table 10

543  4.2. Design of Features and Templates

544 As shown in Table 12, the features used for the prediction of QP are similar to the ones used for
545  the prediction of PC. The newly-added PM features are used to indicate information about sentence
546  boundaries. Table 13 shows the five templates for the QP prediction in this study. In the template 1,
547  we use a 3-POS context, i.e., from (t-1)-th to (t+1)-th in the POS field. The word-and-POS field
548 contains the combined features of a 3-POS context and current word (W, ). The templates 2 and 3
549  respectively use a 5-POS context and a 7-POS context, and their combination with the current word.
550  The templates 4 and 5 are identical to the templates 2 and 3 respectively in all feature fields except
551  for the lexical word context field. We use a five-lexical word context for the templates 4 and 5.

552 Table 12. The significance of the linguistic features
Feature Definition Description
W, t-th lexical word The smallest meaningful linguistic unit
S, Part of speech of t-th lexical word Basic syntactic role of t-th lexical word; 47 categories [45]
R Major PM following ¢-th lexical word Major PM as sentence boundary

The structure of a QP is related to word length
combinations

I

Length of t-th lexical word in syllable

553
554
555
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556 Table 13. Feature templates for bQC and sQC
template 1 ‘ template 2 ‘ template 3 | template 4 ‘ template 5
{\Nt+z}r:—2~+2 4 t_+;}r= 17
Lexical word context {\Nl-v-r}r=71~+1’ t:ir}r:().l’ thﬁl e - o
I72+T}1:0.1,2
{ } {Sl+r}r:—3~+3 4
S 7
e {85 dons
FE T {85 dons )
L The same as| The same as
POS context {0 {577} 0ss LZH o
g 5y {8 5. o0s s template 2 template 3
t-1 t=2+z47=017 St+1+1
St+2 { 1*3+T}T:0“3 ’
t—2

{8501
{(\Nt ’ Sl+r )}r:71~+l 4 {(\Nt ’ Sl+r )}r:71~+l 4
LS | TGS ons | AW S ) s

Lexical word and POS thr o e The same as| The same as
WG ST mon | AW S5 oe | AW S5 ) o
context template2 | template 3

4 (vvt 1 Sttrll) {(Vvt ) S:;:Z)}T:OA 4 {(Vvl ’ Sltr?:r—#r )}r:0~3 4
W..S7) {W, 8500} 0

PM R
Lexical word length L
Previous Target You

557 4.3. The Experiment of QC Generation and Evidence

558 Notice that only 0.69% of the ASBC text corpus contributed instances of QPs, i.e., only 65,723
559 QP token examples. To make the CRF models for QC concentrate more on predicting QPs, we only
560  selected the sentences with QPs for training and testing. The numbers of QP tokens for training and
561  testing are respectively 57,824 and 8,439. Table 14 shows the precisions and recalls for bQC and sQC.
562 It can be seen from the tables that the five templates result in similar precisions and recalls. The best
563  results are achieved by the template 5 for bPC and the template 4 for sQC. We, therefore, choose the
564  best models trained by the templates 4 and 5 for the following analysis and prosody generation
565  experiments. The precision and recall for predicting bQC are respectively around 60.7% and 39.0%
566  while the precision and recall for sQC are respectively around 55.6% and 52.2%. These results show
567  that modeling both structures of QPs and their position in a sentence could improve the prediction
568  of QPs. Though the precision and recall are relatively much lower than the ones of the prediction of
569  the PC, it is more interesting to analyze the interplay between the prosodic-acoustic features and the
570  QCvalues, ie, ¢, (X).

571 Table 14. QC model predictions results
bQC sQC

Precision Recall Precision Recall
template 1 0.603 0.369 0.557 0.520
template 2 0.603 0.380 0.552 0.520
template 3 0.597 0.389 0.548 0.518
template 4 0.606 0.384 0.556 0.522
template 5 0.607 0.390 0.551 0.518

572

573 Figure 9(a) shows the average syllable logF0 of the prediction targets in the three
574  representative levels of bQC values, i.e. the high level: bQC = 0.9~1.0, the median level: bQC =
575  0.4~0.5, and the slow level: bQC = 0.0~0.1. Note that the prediction targets are positioned in a
576 forward order in a quoted phrase on the x-axis, i.e., ‘B’, ‘B2’, ‘B3, ‘I'/'M’, and ‘E’. We can observe a
577  clear logF0 declination trend for the high and median bQC levels within a QP. The average logFOs


http://dx.doi.org/10.20944/preprints201802.0108.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2018 d0i:10.20944/preprints201802.0108.v1

18 of 25

578  for the single-word QP and non-QP are at around the average levels. On the contrary, the average
579  syllable logFOs are flat for the low-level iPCst. We may conclude from the mentioned-above
580  observation that a string of words may have logF0 reset at the beginning of the string and then
581  decline gradually as the string is more likely to be labeled as a QP. The logF0 declination within a
582 QP can also be observed in Figure 9(b) for the median and high levels of sQC values. Note that
583 some of the average logF0 of the prediction targets for the high-level sQC, i.e., ‘Mb’, ‘Mm’, ‘Me’,
584 ‘B3 and ‘Ms’, are missing because the high sQC values were not generated by the CRF-based
585  quotation generator for these prediction targets. Besides, 1ogF0 declination can also be observed for
586  the word string preceding to (‘Pb’, ‘Pm’ and ‘Pe’) and following (‘Fb’, ‘Fm’ and ‘Fe’) a quoted phrase.
587  We, therefore, expect the sQC features provide more informative cues for logF0 generation than the
588  bQC features d. The objective evaluations of the logF0 generation experiment shown later in this
589  paper (Section 5.3) partially meet this expectation.

540 .
54 o
] L = i
ug" 535 55.35
® 53 2 597 1
= o
o - - -
< 525 555
w o
% 52 = 52} 4
] Z = I
3 515] —=—bPC=09~10 ] 2515f —&—s0C=0.9~1.0 / |
< £ 5 BPC=04+50 £l —&—50C =0.4~05 7 |
C | —e—bPC=00-10 ] ' —&—sQC=00~0.1
505 n n n n n " " " 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B B2B | M E 8 O PbPmPe MbMmMe B B2 B3 | M E 5 FbFmFe Ps Ms Fs
590 Prediction targets Prediction targets
591 (a) (b)
592 Figure 9. Average syllable logF(Os corresponding to the prediction targets for bQC (a), sQC (b) in
593 different levels of QC values.
594 Figure 10 shows the average syllable durations of the prediction targets in the three

595  representative levels of bQC values. The prediction targets are also positioned in a forward order in
596  a quoted phrase on the x-axis. The pre/post-boundary duration lengthening effect may be modeled
597 Dby the trends of the QCs shown in Figures 10(a) and (b) because the average syllable durations for
598  prediction targets of ‘B’, ‘B2’, and ‘E’ increase as the QCs increases. It is also interesting to find that
599  the syllable durations for the target ‘S’ which represent a single-word QP are longer as the
600  corresponding QC values increase. Note that some of the average syllable durations of the
601  prediction targets for the high and median level QCs are missing because we do not have syllable
602  duration samples corresponding to those cases. For the non-QP cases, significant syllable
603  shortening and lengthening are observed for the first (‘Fb’) and the last words (‘Fe’) in a word string
604  which is followed by a QP, respectively. The objective evaluations of the syllable duration
605  generation experiment shown later in this paper (Section 5.3) show that these QC features can make
606  the RMSE of the synthesized prosody lower than the RMSE by the conventional linguistic features,
607  confirming the QC features are useful in prosody generation.

0.22 0.22 1
= =
=2 i)
g 02 £ 02f 1
=3 =3
o o
2 018 & 048} .
B B
= 016 = 0161 _
2 —&—bAC=09~10 B —&—s0C=09~1.0
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BE B2B | M E S O Ph PmPe MboMmMe B B2 B3 | M E S FbFmFe Ps Mz Fs
608 Prediction targets Prediction target
609 Figure 10. Average syllable durations corresponding to the prediction targets for bQC (a), sQC (b) in

610 different levels of QC values.
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611 Figures 11(a) and (b) shows the trends that a word which is more likely to be the end of QPs,
612  ie, the tags ‘E’ and ‘S’, is more tentative to be followed by a long pause while the other tags except
613  for the tag ‘Fe’ exhibit a contrary trend. Because the sQC features provide more sophisticated

614  structures of QPs and their contexts, we expect that the sQC features generate pause durations with
615 lower RMSEs than the bQC features do.

T T T T T T T T T T T T T T T T T T T
] Z o
025 —&—bQC =0.9~1.0 o 0250 | —5—s0C=05~1.0 1
2 —&—bAC=04~05 & —&—s0QC=04~05 R
c 02 —&—hQC =0.0~0.1 |1 5 D2t —e—sQC =00~01 -
E E
= 015 = 015¢ :
Z o7 = o1p .
E 0.05 T oost .
z ) Z
i T L = L L L i T S T | % 7 L
B B2BI | M E S O Pb Pm Pe MbMmMe B B2B3 | M E S FhFmFe Ps Ms Fs
616 Pradiction targets Pradiction target
617 Figure 11. Average pause durations corresponding to the prediction targets for bQC (a), sQC (b) in
618 different levels of QC values.
619 5. Prosody Generation Experiments
620 Figure 12 shows the flowchart for the experiments of prosody generation. First, the texts are fed

621  into the text analysis modules to generate the linguistic feature sets for the following prosody
622  generation and speech synthesis. Here, the text analysis modules include the conventional linguistic
623  processors commonly used in MTTS and the proposed advanced PC and QC generators. Next, the
624  four independent MLPs are trained with the conventional linguistic feature sets and the proposed
625  PC and QC features to predict syllable logFO contour (1f0), syllable duration (Dur), syllable energy
626  level (Eng), and inter-syllable pause duration (Pau). Then, we conduct some objective tests to
627  evaluate the RMSEs between the predicted prosodic-acoustic features and the true prosodic-acoustic
628  features. Here, the predicted prosodic-acoustic features are generated by the given different settings
629  of linguistic features to prove the usefulness of the proposed PC and QC features. Last, we utilize an
630 HMM-based speech synthesizer with the predicted prosodic-acoustic features to generate
631  synthesized speeches. These synthesized speeches are used to conduct subjective tests, showing that
632  the proposed PC and QC features could improve the naturalness of the synthesized speeches.

633
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636 Figure 12. The flowchart for the experiments of prosody generation.
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637 5.1 Text Analysis and Linguistic Feature Sets

638 Figure 12 also shows the linguistic processors used and the associated linguistic features
639  generated in this study. To set up various settings of experiments, the processors are categorized
640 into two classes: 1) baseline processor and 2) the proposed advanced processor. The baseline
641  processor contains functions of word segmentation, POS tagging, and grapheme to phone (G2P).
642  Basically, features generated from the baseline processor cover linguistic information of phonetics,
643  lexical word, and POS. Since the features extracted by the baseline processor are prevalent in most
644 MTTSs [4,12-14,17,22,24-27], we regard the features generated from the baseline processor as the
645  base linguistic features for prosody generation. In this study, we adopt NCTU Speech Lab
646  Traditional Chinese Parser [43,44] as the baseline processor. It is an online CRF-based word tagger
647  and generates information about word boundaries and the associated categories of POS. The
648  F-measure of 96.72% for the word segmentation and the accuracy of 94.16% for the POS tagging are
649  reported [44]. This study includes two advanced processors: the CRF-based MPM generator and the
650  CRF-based quotation generator which were described in Section 3 and Section 4, respectively. These
651  two advanced processors are cascaded after the baseline processor. The features used in the prosody
652  generation experiments are organized into several sets according to the corresponding linguistic
653  processors. They are summarized as follows:

654 5.1.1. Raw

655 The features in subset Raw can be simply extracted from raw texts. The most obvious feature
656  from araw text is the type of PM. PM is the most salient feature for predicting pause break because
657 PMs serve as a delimiter in both syntax and intonation in Mandarin Chinese. Since sentence
658  boundaries in Chinese can be identified by types of PMs, a contextual feature of syllable position in a
659  sentence can also be extracted from the raw text. The positional features are highly related to
660  rhythmic patterns of syllable duration and syllable FO contour, e.g., syllables at the end of a sentence
661  usually exhibit both syllable duration lengthening and F0 declination.

662  5.1.2. WordSeg

663 The features in subset WordSeg are extracted after the word segmentation, including word
664  length, syllable position in a word, and word position in a sentence. For the feature of word length, it
665  is conventional to include lengths of neighboring words because PWs are usually composed of
666 several words with some length constraints. Most studies consider a window of five words [16,25]
667  with the current word, two words to the left and the right. In this study, we extend the window to
668 seven words, i.e., the current word, three words to the left and the right. The positional features in
669  this subset are also essential to syllable duration patterns. The most significant evidence is that
670  syllable position in a word affects the degree of syllable duration lengthening [4].

671 5.1.3. WordPos

672 The features in subset WordPos are POS tags for the associated words and are obtained after the
673  POS-tagging process. It was found that PWs were generally composed of 1-3 words with some POS
674  combinations [12,13,38] given by word length constraints. Also, it is generally agreed that prosodic
675  breaks or pause insertion were related to some POS pairs on word junctures [12,13,38]. Therefore,
676  POS and word length are the most frequently used and important features for predicting prosody
677  structures from texts. In this study, we adopt a 47-POS tag set [45] which is used by the NCTU
678  Speech Lab Traditional Chinese Parser. Similar to the usage of word length, the analysis window
679 size for POS is set to at most seven words, i.e., the current word, three words to the left and the right.

680 5.14.G2pP

681 G2P set comprises important features characterizing properties of Mandarin prosody: tone, and
682  base-syllable type, or initial-final type. There are five tones in Mandarin Chinese. To account for
683  more prosodic variation that resulted from contextual tones, the tones of the current, following and
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684  previous syllables are considered for prosody generation. There are around 411 base-syllable types
685  in Mandarin Chinese, and a base-syllable can be further decomposed into two parts: an initial and a
686  final. To reduce numbers of features, we take initial and final types as features to account for
687  information of base-syllable type. In this study, we define 23 initial types and 40 final types. Besides
688  theinitial and final types of the current syllable, initial type of the following syllable and final type of
689  the previous syllable are also considered for prosody generation.

690  5.1.5 Advanced Feature Set — PCs and QCs

691 The set comprises PC and QC generated correspondingly by the proposed CRF-based MPM
692  generator and the proposed CRF-based quotation generator. The subset PC consists of the predicted
693  punctuation sequence by Eq. (3), i.e. Y, ,Y,,--Y;, and the PC by Eq. (4), i.e. ¢, (X), with target
694  settings of bPC, iPCst, and iPCef. The subset QC consists of the predicted quotation label sequence,
695 ie. Yl*,Yz*, . ~,YT*, and the QC, i.e. ¢, (X), with target settings of bQC and sQC.

696  5.2. MLP-based Prosody Generation

697 The prosody generation experiments were conducted by four independent MLPs to train
698  prediction models for syllable logFO contour (1f0) represented by 4-dimensional discrete orthogonal
699  expansion coefficients [47], syllable duration (Dur) in sec, syllable energy level (Eng) in dB, and
700  inter-syllable pause duration (Pau) in second. The feature vectors for the input layer of the MLPs can
701  be categorized into three main categories for comparison: (1) baseline (BSL), (2) the proposed bPC,
702  iPCst and iPCef (PCset), and (3) the proposed bQC and sQC (QCset). The BSL contains the most basic
703  linguistic feature sets: Raw, G2P, WordSeg and WordPos. There are 28 and 67 features in the set Raw
704  and G2P, respectively. The feature sets bPC, iPCst, iPCef, bQC, and sQC respectively are composed
705  of 4, 22, 44, 16, and 38 numerical features representing the marginal probabilities ¢,,(X) and the

706  predicted MPMs/quotations for some k-th target tags of PC or QC at the t-th word. The optimal
707  numbers of nodes in the hidden layer of the MLPs and contextual analysis windows for the features
708  of WordSeg/WordPos were tuned by the development set.

709  5.3. Objective Tests

710 Table 15 shows RMSEs for the prosodic-acoustic features by various linguistic feature sets.
711  Generally, the proposed PCSet and QCset can generally improve the RMSEs w.r.t. BSL. For the 1f0
712 prediction, the feature sets with the proposed PCs or QCs generally performed better than the ones
713  without the PCs/QCs. The best RMSE for 1f0 was achieved by using the set QC2=BSL3+sQC. This
714 result may be contributed from the properties of the sQC that models syntactic structures of base
715  phrases or word chunks that are highly correlated with structures of prosodic words (PWs). It is also
716  found that the feature sets with sQC could improve more RMSE than the ones with bQC did because
717  sQC not only describe structures of QPs but also structures of their contexts. The proposed iPCst and
718  iPCef can generally outperform the proposed bPC because they could model structures of sentences
719  that are highly correlated with structures of PPhs or intonation phrases (IPs).

720 For the predictions of Dur and Pau, the feature sets with WordPos could generally outperform
721  the ones without WordPos. This partially confirms that the POS combination features are essential for
722  the predictions of the structures of PWs, PPh, and IPs. When adding the proposed QCs and PCs,
723  further improvements were achieved because the QCs and the PCs may provide information that
724  may correlate with structures of PWs, PPh, and IPs. The iPCef could slightly perform better than the
725  iPCst, bQC, and sQC in the prediction of Dur. This is maybe because the iPCef models a forced
726  insertion of an MPM in a sentence to provide more information for pre-boundary syllable duration
727  lengthening. Besides, it is reasonable to see that iPCst gave the best performance in the prediction of
728  Pau since iPCst models structures of sentences which highly correlates with PPhs or IPs.

729

730

731
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732 Table 15. RMSEs for the four prosodic-acoustic features.
Feature set combinations 1f0(logHz) Dur(ms) Eng(dB) Pau(ms)
BSL1= Raw+G2P 191 43.77 3.72 71.73
BSL BSL2= BSL1+WordSeg 182 39.93 3.53 64.62
BSL3=BSL2+WordPos 186 39.23 3.50 59.56
PC1=BSL3+bPC 185 38.33 3.48 58.29
PC2= BSL3+iPCst 175 37.82 3.43 57.29
PCset PC3= BSL3+iPCef 174 37.34 3.47 58.72
PC4= BSL2+iPCst 173 38.39 3.46 63.93
PC5= BSL2+iPCef 174 38.05 3.48 62.56
QC1=BSL3+bQC 170 37.70 3.52 58.66
s QC2= BSL3+sQC .169 37.83 3.52 57.95
QC3=BSL2+bQC 176 39.83 3.44 64.50
QC4= BSL2+sQC 172 39.30 3.54 63.33
733 5.4 Subjective Tests
734 Mean opinion score (MOS) test and preference test were performed simultaneously by 15

735  subjects given with 15 synthesized long utterances with lengths from 64 to 125 syllables (99 in
736  average) for each prosody generation method. The feature combinations resulting in the smallest
737  RMSEs for BSL/QCset/PCset in Table 5 were chosen to generate prosodic-acoustic features for speech
738  synthesis by an HMM-based synthesizer [7-10]. There are three types of the proposed feature sets to
739 be compared with the baseline (BSL): QCset, PCset, and QCset+PCset. As shown in Table 15, the best
740 feature combination for the BSL is the combination of BSL2 for 1f0, BSL3 for Dur, Eng, and Pau. The
741  best combination for QCset is the one of QC2 for 1f0 and Pau, QC1 for Dur, and QC3 for Eng while the best
742 combination for PCset is the one of PC4 for 1f0, PC3 for Dur, and PC2 for Eng and Pau. The feature sets
743 for QCset+PCset are QC2 for 1f0, PC3 for Dur, and PC2 for Eng and Pau. Before listening to the
744 synthesized utterances by BSL and the ones by the proposed method, subjects were asked to listen to
745  the true utterances in the test speech corpus corresponding to the synthesized speeches for reference.
746  The order of the synthesized utterances in the preference test was randomly set. It is found from
747  Table 16 that proposed QCset, PCset, and QCset+PCset generally could yield slightly more natural
748  speech than BSL. The synthesized utterances with prosody generated by QCset+PCset achieved the
749  most significant MOS difference to BSL. These results again confirm the usefulness of the proposed
750  PC and QC features.

751
752 Table 16. Preferences (%) and MOSs (numbers in brackets + standard deviation) for the two subjective tests.
pairs The proposed BSL No prefer.
QCset vs. BSL 34% (3.45+0.42) 25% (3.40 + 0.45) 41%
PCset vs. BSL 37% (3.55+0.41) 21% (3.34+0.48) 42%
QCset+PCset vs. BSL 38% (3.57 + 0.41) 22% (3.29+ 0.48) 40%

753 6. Conclusions and Future Works

754 This paper proposes two fully-automatic machine-extracted linguistic features from an
755  unlimited text input for Mandarin prosody generation. One is the PC which measures the likelihood
756  of inserting an MPM at a word boundary. Another is the QC which measures the likelihood of a
757  word string to be quoted as a meaningful or emphasized unit in text. The rationale of these proposed
758  punctuation generation inspired linguistic features was illustrated by analyses of the relationship
759  between the prosodic structures and PM types, and structures of QPs. The usefulness of the
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760  proposed PC and QC features in Mandarin prosody generation was proved by both objective and
761  subjective tests. It is encouraging to see that the proposed features could improve the performances
762  of Mandarin prosody generation. With the fast growth of deep learning technologies, in the near
763  future, it is worthwhile to transplant CRF-based punctuation generation models to neural
764  network-based models, e.g., long short-term memory recurrent neural network (LSTM-RNN) [48].
765  The neural network-based punctuation models can be easily integrated with the followed neural
766  network-based prosody generator or speech synthesizer in the training phase. Under this integrated
767  framework, it is also interesting to apply the transfer learning technique [49] to make a neural
768  network learn prosody generation based on a neural network that generates punctuations.

769
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