

1 Article

2

Local and Global Approaches for Damage Detection

3

in Composite Structures by Fiber Optic Sensors[†]

4 **Alfredo Güemes^{1,*}, Antonio Fernández-López¹, Patricia F. Díaz-Maroto¹, Angel Lozano¹, Julian**
5 **Sierra-Perez²**6 ¹ Dpt Aeronautics, Polytechnic University of Madrid, SPAIN7 ² Ingeniería Aeroespacial, Universidad Pontificia Bolivariana, Medellín, Colombia.

8 * Correspondence: alfredo.guemes@upm.es; Tel.: +34913366327

9 [†] The work was an extended version in Proceedings of the 11th International Workshop on Structural Health
10 Monitoring, Stanford, CA, USA, 12–14 September, 2017.

11 **Abstract:** Fiber optic sensors cannot measure damage; for getting information about damage from
12 strain measurements, additional strategies are needed, and several alternatives have been
13 proposed. This paper discuss two independent concepts: the first one is based on detecting the new
14 strains appearing around a damage spot; the structure does not need to be under loads; the
15 technique is very robust, damage detectability is high, but it requires sensors to be located very
16 close to the damage, so it is a local technique. The second approach offers a wider coverage of the
17 structure, it is based on identifying the changes caused by the damage on the strains field in the
18 whole structure for similar external loads. Damage location does not need to be known a priori,
19 detectability is dependent upon the sensors network density, damage size and the external loads.
20 Examples of application to real structures are given.

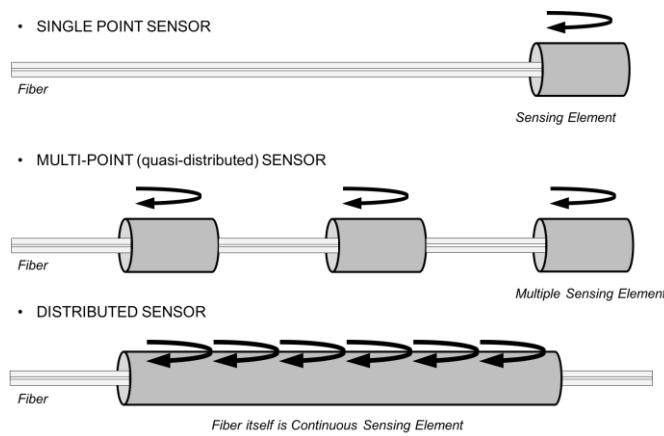
21 **Keywords:** Structural Health Monitoring (SHM), distributed sensing, Principal Component
22 Analysis (PCA)

24

1. Introduction

25 It is important to recognize that measuring strains is not the same as detecting damage. Damage
26 is not a physical parameter, it is just a local change of the material's properties or at the structure
27 boundaries (a crack is simply a new boundary), which degrades their structural performances [1]. A
28 crack may be the failure initiation point, may drop by a large percentage the strength of the
29 structure, but before the catastrophic failure, it produces negligible changes in most of the
30 parameters of the structure (natural frequencies, global strain fields, and so on). Damage can only be
31 detected by comparing the responses of the structure, acquired by sensors, before and after damage
32 occurrence. Consequently, we cannot expect to have 'damage sensors', only we can get information
33 about damage by processing and comparing the raw signals received from the sensors before/after
34 damage, trying to identify the 'features', or parameters that are sensitive to minor damages, and
35 that can be distinguished from the response to natural and environmental disturbances. In this
36 sense, Structural Health Monitoring (SHM) is always sensors + Damage Detection algorithms, even
37 in some cases, like for CVM (Comparative Vacuum Monitoring) the algorithm may be quite simple
38 (loss of vacuum in some channels).

39 First attempts for damage detection with optical fibres dated back to 1990, under the heading
40 'structures with nerves of glass', by checking the continuity of the optical fiber [2]. The approach was
41 not robust enough, and this research line was discontinued. The FBG (Fiber Bragg Grating) started to
42 be used as strain sensors embedded in composite structures around 1995, and a few other articles
43 appeared around year 2000, looking for the changes at the spectrum of the reflected peak, as an
44 indicator of damage, when the damage was happening just onto the position of the embedded FBG.
45 Again the procedure cannot be extended to a general case of damage detection in structures.


46 Fiber Optic sensors (FOS) offer a very low size, the optical fiber has a diameter of 150 microns,
47 so it can be embedded within a ply into the composite material during manufacturing. Other

48 benefits for FOS are EMI/RFI immunity, wide temperature range, very long cabling if needed,
 49 because of the low attenuation, and the multiplexing capability (several sensors on the same optical
 50 fiber). As sketched at figure 1, three topologies are possible:

51 • Point sensor: detect measurand variation only in the vicinity of a single sensor. Example:
 52 micromirror at fiber tip. This is mostly used for chemical sensors, but also for EFPI.

53 • Multiplexed sensor: Multiple localized sensors are placed at intervals along the fiber length.
 54 i.e . FBG (sensor length 10 mm typical). About 10 sensors/fiber if multiplexed by
 55 wavelength, up to 1000 sensors by using OFDR (Optical Frequency Domain Reflectometry).

56 • Distributed sensor: Sensing is distributed along the length of the fiber, the optical fiber
 57 works simultaneously for transmitting the information and for sensing the local external
 58 variables (temperature, strain).

59
 60

Figure 1. Topology of Fiber Optic Sensors

61 Fiber optic sensors (FOS) have reached a maturity as strain/temperature sensors, it can be said
 62 that its TRL (technology readiness level) is about 8-9, they have already been demonstrated in real
 63 aircrafts, and are routinely used in many other industrial applications, like monitoring oil wells. An
 64 excellent 50 pages review on FOS technologies has recently been done [3], including more than 170
 65 references; so a long introduction describing FOS is not needed, readers are referred to it or to other
 66 similar documents [4, 6].

67 In spite of the very large number of publications dealing on it, the Damage Detection with FOS
 68 is far less mature than strain sensing, corresponding to a TRL 2-3 (physical principles clarified and
 69 exploratory trials, but still far from validation on realistic structures).

70 Currently the most widely known approach is based on embedding FBGs sensors for detecting
 71 the ultrasonic waves travelling through the laminates, either in a passive mode (acoustic emission),
 72 or in a active mode, combined with piezoelectric wafers as Lamb waves emitters. Ref [7] gives a
 73 quite clear explanation of the technique. Several authors have also worked on this concept,
 74 developing advanced interrogation systems, some of them now commercially available. This
 75 hybrid PZT/FBG technique has the same limitations as the “all PZT” technique: it deals with elastic
 76 waves propagating through the structure. It works very well on flat laminates, or very simple
 77 structures as pipes, but real structures use to have stiffeners and local reinforcements, which
 78 produce multiple reflections of the travelling waves, limiting the range of inspection and adding
 79 complexity to the received signals.

80 A review on strain based damage detection strategies, mainly oriented to civil structures
 81 applications, was done at Ref. [8], but was limited to vibration-based methods, which inherently
 82 have the advantage of a global survey of the whole structure, and the limitation that damage needs
 83 to be large enough to modify the modal shapes. They concluded that, at least for beam-like and
 84 trusses structures, the strain modal shapes are more sensitive to damage than modal displacements

85 [9]; damage indexes were proposed, but few experimental results were presented. A similar
 86 approach was applied to composite stiffened panels, including numerical simulations and
 87 experimental tests [10,11], but the accuracy of that strategies for damage quantification has yet to be
 88 verified.

89 First approach to be discussed in this paper deals with the detection of the new internal strains
 90 that appears in a composite structure as a consequence of a damage; these new strains are
 91 concentrated around the damaged area, and will be detected if some strain sensors were located just
 92 there. A few centimeters away from the damaged area there will not be any strain changes, and
 93 consequently nothing would be detected. The approach is quite robust, a delamination always
 94 produces a local strong change of strains, but the area under supervision is limited to the area
 95 covered by the strain sensors, so the technique is quite local, similar to the CVM. It may be done with
 96 FBGs, but even with a very dense array of sensors, only a small area could be supervised. The new
 97 available techniques for high spatial resolution distributed sensing (OFDR) may get the strain
 98 reading all along the optical fiber, allowing a wider coverage. Results of application to the
 99 surveillance of a composite door surroundings is given. We will call this approach 'Detection of
 100 damage-induced strains'.

101 The former technique may be applied to unloaded structures, so the strain readouts are zero
 102 everywhere (baseline) except at the damage area. For the second approach, when the structure is
 103 submitted to an external load, each strain sensor existing at the structure will give a readout for the
 104 local strain at that sensor position, with a linear dependence on the external load. A local damage
 105 will produce a change at the local stiffness, and consequently a change at the load paths, and on the
 106 readouts at each strain sensors (for the same external loads); nevertheless, the changes will be so
 107 small that they can hardly be detected, very precise algorithms are needed to distinguish them. This
 108 is the basic principle for the second approach to be discussed in this paper, sometimes referred as
 109 'strain mapping'.

110 At this paper we include results obtained by our group; some of them have been formerly
 111 published, but isolated; by merging the results, a clearer understanding of possibilities and
 112 limitations may be get.

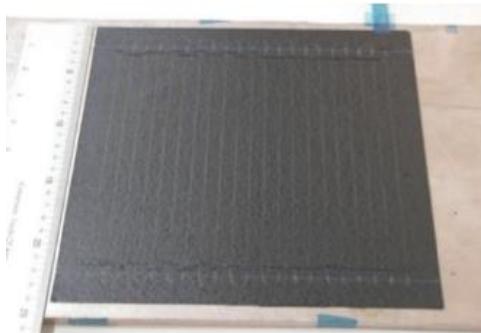
113 2. Detection of damage-induced strains

114 To be effective, this technique requires of distributed sensing, meaning getting the strains all
 115 along the optical fibre. Several kinds of Fiber Optic Distributed sensing systems are available, in
 116 dependence of the wavelength they are working with [12]. Table 1 summarizes its performances.
 117 Rayleigh system working with OFDR (Optical Frequency Domain Reflectometry) is the only one to
 118 offer spatial resolution in the range of mm, as needed for aeronautic applications; for civil
 119 engineering applications, a long measurement range may be the preferred quality, which may drive
 120 to other choices. Performances are quickly evolving, so this table must be taken with caution.

121 Distributed sensing has opened new possibilities for the instrumentation of structural tests,
 122 particularly for very large structures, like civil engineering structures [13-15], wind turbine blades
 123 [16]. Again, getting strains is not the same as getting damage information, even though at concrete
 124 structures, cracks are easily identified as the points with very high strains readouts.

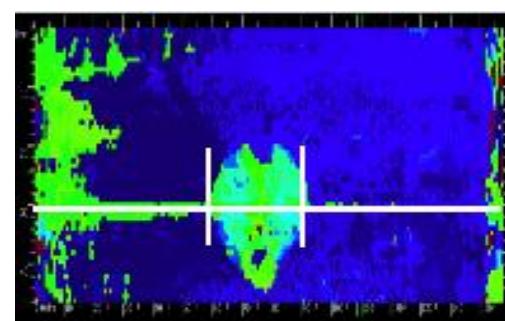
125 **Table 1.** Comparison of Distributed Fiber Optic sensor systems.

	Rayleigh	Raman	Brillouin	Distributed Acoustic Sensing (DAS)
Domain	OFDR	OTDR	BOTDR, BOTDA	ϕ -OTDR
Sensing Parameter	Strain, Temperature	Temperature	Strain, Temperature	Vibrations, Acoustic signals

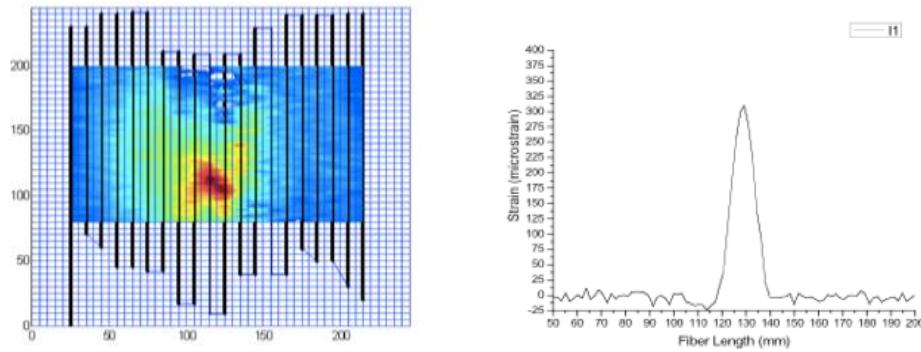

Maximum Distance	70 – 100 m	20 km	10 km	40 km
Spatial Resolution	5 mm	1-2 m	10 cm	1-2 m
Strain Accuracy	1 $\mu\epsilon$	1 $\mu\epsilon$	25 $\mu\epsilon$	None
Suppliers	LUNA, 4DSP	Halliburton Co. Sensornet Ltd. AP Sensing	OZ Optics, Omnisens SA, Neubrex	OptaSense, Xilinx

126 *2.1. Detection of delaminations caused by impacts*

127 Impact damage is considered to be the highest threat for composite structures during its service
 128 life. Low/medium energy impacts (called BVID = Barely Visible Impact Damage) do not leave any
 129 external visible marks, but cause internal delaminations that drop the compressive strength by
 130 nearly 50 %. They need to be identified and repaired as soon as possible to avoid the growth of the
 131 damaged area under repeated loads.


132 A sixteen plies crossply CFRP laminate was built from UD prepreg material by OOA (Out of
 133 Autoclave) procedures. A poliimide coated optical fiber was embedded inside the laminate during
 134 layup (Figure 3 a).

135 The laminate was impacted by a drop weight test, and a delamination was produced, as was
 136 verified by ultrasonic C-Scan (Figure 3 b, green spot). The white line show the position of the optical
 137 fibre, and the lower image (figure 3 c) show the strains measured by the optical fiber along this line.
 138 It can be seen the appearance of residual strains at the delaminated area. Worthy to mention strains
 139 caused by damage are significant, with a peak of 300 microstrains, and the delaminated length is
 140 perfectly depicted, 25 mm. In fact, the delaminated area can nearly be plotted if the optical fiber
 141 follows a crooked path, with parallel fibers every 5 mm. The strain field map of the area can be
 142 obtained with relatively high accuracy (Figure 3 d).


143

(a)

144

(b)

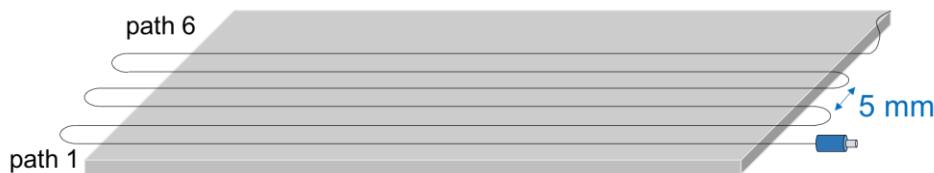
145

146

(d)

(c)

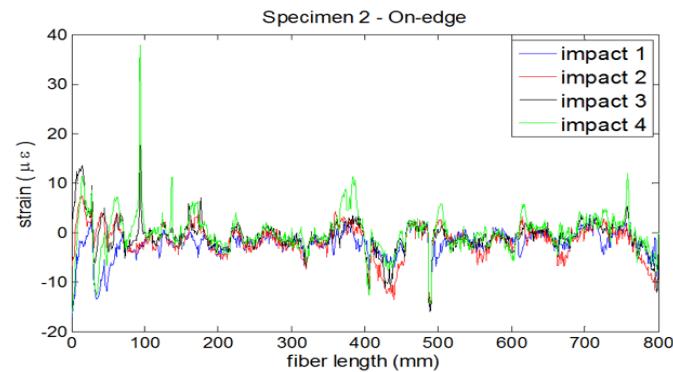
147 **Figure 2.** Detection of the delamination caused by an impact. (a) Composite laminate with an optical
 148 fiber following parallel paths; (b) Ultrasonic C-Scan of the impacted laminate; (c) Strains measured
 149 along the white line of the upper figure by an O.F. (d) Strain plotting at the delaminated area,
 150 obtained by parallel optical fibers.


151 *3.2. Detection of delaminations at laminate edges*

152 The former approach may be used for SHM of similar structures, like small cylindrical pressure
 153 vessels [17], or for structural details, like monitoring stringer debondings [18]; it has also been used
 154 to monitor bonded and bolted joints [19 and 20, respectively]. But for practical reasons the whole
 155 surface of the aircraft can not be covered with a continuous optical fiber, the maximum inspectable
 156 length is about 100 meters. This concept is useful by reducing the covered area to critical regions
 157 with a higher risk of damage.

158 Laminate edges, like surroundings of cargo doors and man holes, are areas of high risk for
 159 accidental impacts, and consequently require a more frequent inspection; a permanent automated
 160 inspection system is highly desirable. The following experiments were done to demonstrate the
 161 validity and reliability of the approach, full details are given at Ref. [21].

162 Several identical CFRP 16 plies laminates were built from UD prepreg material, by OOA
 163 procedures, with the lay-up (0₄, 90₄)s. This special layup sequence was used for simplicity, to have
 164 only two delaminations interfaces; nevertheless the concept is also working for any other general
 165 laminate. Dimension of the cured laminate was 200 mm X 100 mm. An optical fiber was bonded at
 166 the surface of the cured laminate, as sketched at figure 3.


167 The laminates were submitted to impacts of controlled energy, by using a drop weight test
 168 machine, both perpendicular to the laminate and on-edge direction. The energy was gradually
 169 increased until a visible damage was produced (figure 4), and the residual strains were recorded
 170 after every impact (figure 5).

171

172

Figure 3. Laminate with an optical fiber bonded at the surface, for the edge delamination tests.

173
174**Figure 4.** Delamination caused at a (0₄, 90₄)s CFRP laminate after a 5 J on-edge impact.175
176
177
178**Figure 5.** Strains recorded by the optical fiber after successive impacts of increasing energy, from 2 to 5 joules. The two identifiable peaks recorded at 100 and 400 mm are for the first and second loops of the optical fiber, at a distance to the edge of 5 and 10 mm, respectively.179
180
181
182
183
184

Similar findings were obtained when impacts were done at the direction normal to the laminate. For these tests, an embedded O.F. was used, located at the second ply of the surface opposed to the impact. The energy needed to cause a BVID was slightly higher than in the former case. These results show the high reliability of the technique, as far damage happen on the optical fiber path, and a system is available to get the strains all along the fiber with adequate spatial resolution.

185

3. Detection of damage by strain mapping

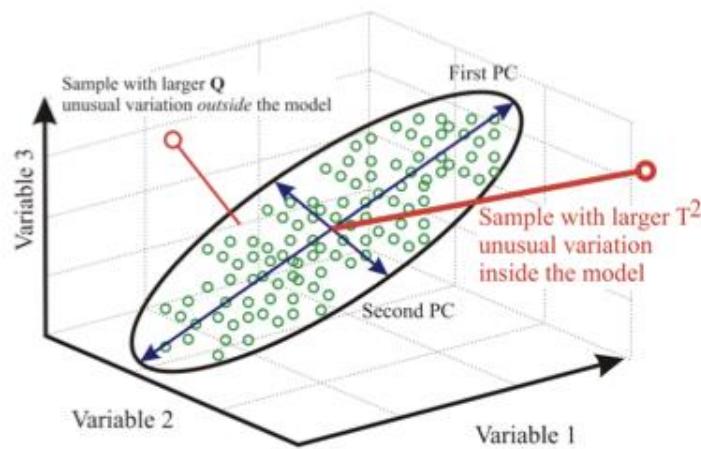
186
187
188
189
190
191
192

There have been different attempts to use the strain data collected after static or dynamic loadings of the structure to derive damage information. It is suspected, and Finite Element Models (FEM) may confirm it, that a local damage may change slightly the strain readouts, more significantly at those sensors more closely located to the damage region. As it will be shown below, for realistic structures, a large number of sensors are needed, each sensor producing one data for each load case or load increment; so even for simple experiments, huge data sets, ranging Gigabits, will be generated, which contains redundant and repeated information, accompanied with noise.

193
194
195
196
197
198
199
200
201

Many algorithms are available to handle large data sets [22], one of the simplest and more effective approach is called Principal Component Analysis (PCA). PCA is a simple and non-parametric method of extracting relevant information from confusing data sets. It provides hints on how to reduce a complex data set to a lower dimension, revealing some hidden structure/patterns or abnormal data. This is done by converting a set of data of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. Textbooks and software tools are available explaining the use of PCA [23], and also related articles dealing with application of PCA to SHM [24], so only a brief explanation is given here. The steps to follow are:

202 1. Organize the data set as $n \times m$ matrix, where n is the number of tests (each load case or load
203 increment is a new test) and m is the number of measured variables (sensors) . X


204 2. Normalize the data to have zero mean and unity variance

205 3. Calculate the eigenvectors-eigenvalues of the covariance matrix. $C = X X^T$

206 4. Keep only the first eigenvectors as the principal components. Baseline

207 5. Project any new collected data into the former Baseline

208 6. Identify if new data follow global trends (Damage Index)

209
210
211
212

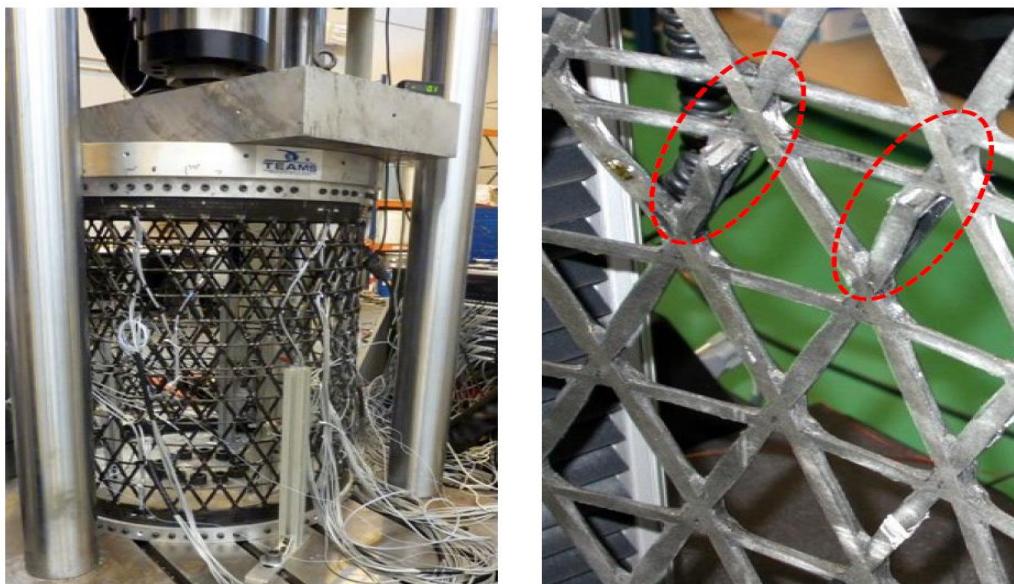
Figure 6. Schematics of the PCA algorithm. Firstly identify a new coordinate system which reduce the dimensionality of the data set. Secondly, identify if new data fits or not inside the former reference system.

213 PCA belongs to the group of 'data driven' SHM methods, so at difference to 'model based'
214 methods, like vibration analysis, an understanding of the physical meaning of the new variables is
215 not needed, neither a detailed modeling of the structure. Also, it must be point out that among the
216 five levels for Structural Health Monitoring,

217 1- Identification of damage occurrence
218 2- Localization
219 3- Identification of damage type
220 4- Quantification of damage,
221 5- Prediction of residual strength.

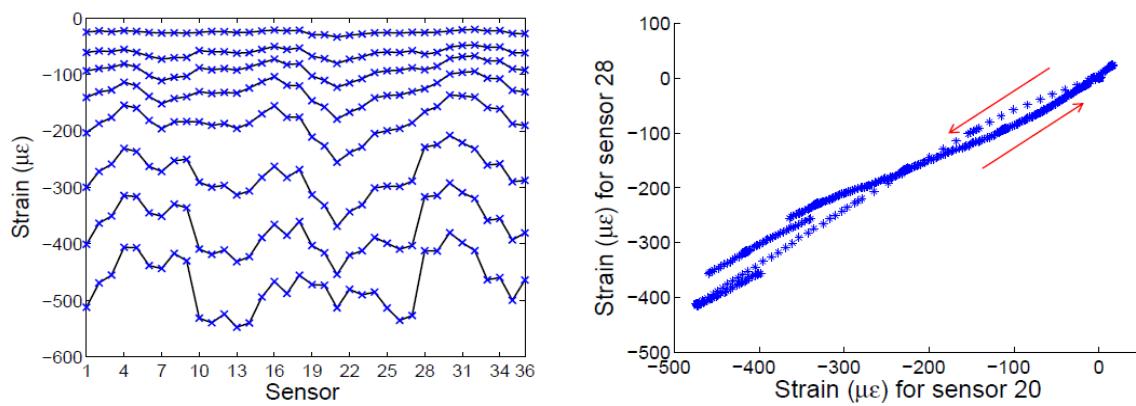
222
223 This technique only may afford an alert for damage occurrence; it does not seems a main
224 limitation, once damage is known to happen, it may be located by checking which area has the
225 largest strain changes.

226 Two examples are given with the application of this method to realistic structures.


227 *3.1. Damage detection for a CFRP Isogrid structure*

228 The concept of isogrid or lattice structures has been widely explored for space applications,
229 both with and without attached skins. This kind of structure has an inherent high mechanical
230 efficiency, particularly to withstand compressive loads.

231 A large size structure, 1100 mm height and 800 mm diameter, has been manufactured by
232 automatic tape laying process using high modulus graphite fiber and out of autoclave curable resin
233 system. It was instrumented with 36 FBGs and tested to failure under compressive loads (figure 7).


234 First failure happened at -330 kN, with some broken bars, but still the structure retained its load
 235 carrying capability. Figure 8 show the strains acquired during the test, which gives evidence that
 236 slight manufacturing imperfections cause an uneven strain distribution, and a nonlinear response
 237 under load/unload conditions.

238 The application of the PCA algorithm to the former data set is straightforward, with quite good
 239 results (figure 8). Worthy to mention that there is no need to prepare the data, neither a FEM model.
 240 It is only needed to arrange the X matrix (36 X 800), there were 36 sensors, and 800 measurements
 241 were taken to generate the baseline. Next measurements, projected on this baseline, easily
 242 discriminate the load which produce the first failure, and after that, next measurements have a
 243 clearly detectable damage index.

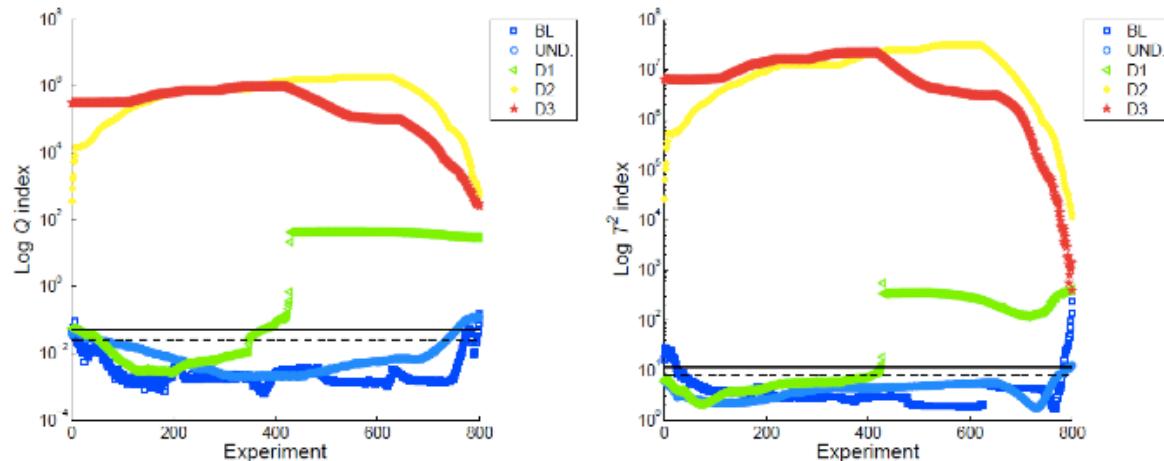

244
 245
 246

Figure. 7. Isogrid structure under compression test. Detail of broken bars after exceeding the max. load.

247
 248
 249

Fig. 8. Isogrid structure under compression test. Detail of a broken bars after exceeding the first failure load.

250
251
252
253
254

Figure 9. PCA algorithm applied to isogrid strain data. Blue lines are damage indexes calculated from strains acquired on the undamage structure, each experiment means a new data acquisition (load level); green line correspond to data taken under increasing loads, first failure happened at test 400.

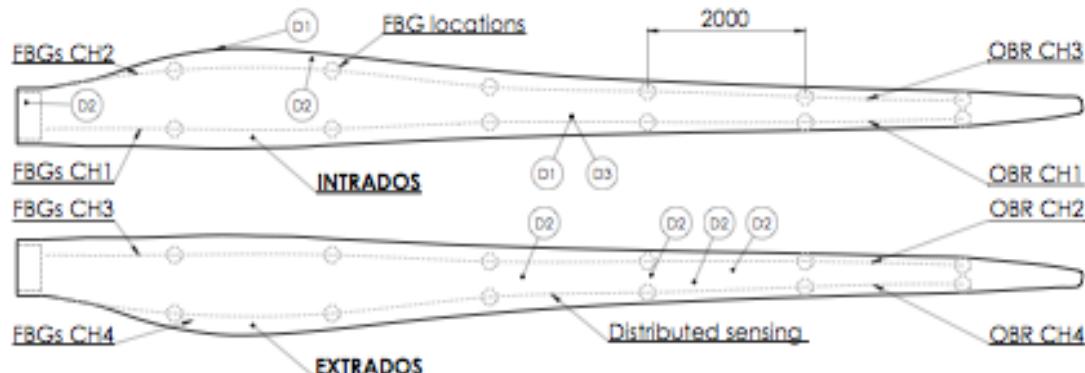
255

3.2. Damage detection for a wind turbine blade (WTB)

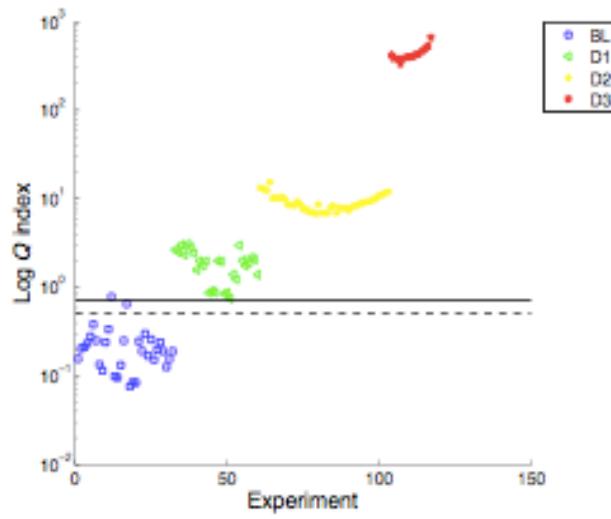
256
257
258
259
260

Compared to the former case, this experiment has two added difficulties: Firstly, the load cases are not as simple as it was for the isogrid structure, always uniformly distributed compressive loads of increasing values. As shown at Figure 10, different load cases, or distribution of weights were loads were applied, may be done; as a consequence, it will be found that there is not a single dominant Principal Component, the first three components play a similar role.

261
262


Figure 10. PCA algorithm applied to isogrid strain data.

263
264
265
266
267
268


The second difficulty comes from the nature of the inflicted damage. To do a representative experiment, the typical damages that happen in WTB were reproduced, that is a partial debonding of the shells at the trailing edge, as marked at figure 11. The blade 13,5 mt long, manufactured in the conventional way as a long spar with two bonded shells, was instrumented with 4 optical fibres, with 6 FBGs each, regularly spaced. For a cantilever beam under flexural loads, a partial trailing edge debonding changes the torsional stiffness, but do not alter strongly the bending stiffness.

269
270
271

As before, the structure was submitted to loads of increasing levels, and strains were recorded, first without any damage, to obtain the baseline, and next after artificial damages. The damage index was calculated, and it was found that when debonding was 100 mm long, it was clearly detectable.

272

273 **Figure 11.** Blade sketch with indication of the sensors and damage positions.274 Results are shown at figure 12, green dots. Obviously when new damages were inflicted at the
275 main spar, as load carrying member, they were more easily detectable.

276

277 **Figure 12.** PCA algorithm applied to the Wind turbine blade.278 Further details on this and the former experiment can be found at the Thesis report from Dr.
279 Sierra [25], including improvements on the PCA algorithm, such as the non-linear-PCA, the use of
280 neural networks to classify the load cases, and the results obtained for the same experiment when a
281 strain distributed sensing system was used instead of multipoint FBGs (a much larger number of
282 strain measurements were collected, consequently a higher resolution was achieved).283 **4. Discussion**284 Two independent approaches have been described and experimentally validated. The first one
285 is based on detecting the new strains appearing as consequence of a damage, it requires a sensor to
286 be located just there; it is a very robust technique, and very simple to apply, but the area of damage
287 detection is limited to the fiber path. It should not be misconsidered, it has similar qualities for
288 damage detection as CVM, which currently is the only certified SHM technology for aircraft
289 structures. The examples given demonstrate the high resolution of the technique, being able to
290 detect delaminations as small as 5 mm (twice the resolution of the OFDR distributed interrogation
291 systems).292 The second approach offers a full coverage of the whole structure. Two examples are given to
293 demonstrate that the algorithm PCA is easy to apply, and that the damage index Q consistently
294 identifies the damaged structure. Nevertheless, it is recognized that the minimum detectable

295 damage size is still too large, so it need to be improved. As it is said, we were using one of the most
296 basic tools for multivariate analysis. Currently we are working on more elaborated tools to improve
297 the resolution, and also in other realistic applications.

298 **Acknowledgments:** This work was partially supported by the Spanish Ministry of Economy, Industry and
299 competitiveness (grant number TRA2014-58263-C2-2-R), including funds for covering the costs to publish in
300 open access.

301 **Author Contributions:** Prof. Güemes is the leader of the group, and the supervisor of the PhD Thesis for the
302 other four authors. At this paper he did the approach, and on the elaboration of hypothesis and conclusions.
303 Dr. Fernandez-Lopez did the PhD on SHM for composite structures in 2009, and he is currently Assistant
304 Professor and responsible of the laboratory of SHM. At this paper he contributes with the setup for the
305 experimental facilities and the analysis of distributed sensing measurements. Angel Lozano has done his
306 research on detecting Lamb waves with PZT and FBGs. P.F. Diaz-Maroto did the experiments with the fiber
307 optic distributed sensing systems, and Dr. Sierra is responsible for the analysis with PCA, the topic for his
308 Doctoral Thesis, presented in 2014.

309 **Conflicts of Interest:** "The authors declare no conflict of interest." The founding sponsors had no role in the
310 design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in
311 the decision to publish the results.

312 References

- 313 1. Farrar, C. R.; Worden, K. An introduction to structural health monitoring. *Philos. Trans. R. Soc. A Math.*
314 *Phys. Eng. Sci.* **2007**, *365*, 303–315, doi:10.1098/rsta.2006.1928.
- 315 2. Glossop, N. D. W.; Dubois, S.; Tsaw, W.; Leblanc, M.; Lymer, J.; Measures, R. M.; Tennyson, R. C.
316 Optical fibre damage detection for an aircraft composite leading edge. *Composites* **1990**, *21*, 71–80,
317 doi:10.1016/0010-4361(90)90100-B.
- 318 3. Di Sante, R. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures:
319 Recent Advances and Applications. *Sensors* **2015**, *15*, 18666–18713, doi:10.3390/s150818666.
- 320 4. Guemes, A. Fiber Optic Strain Sensors NATO-STO Lect. Ser. **2014**, 1–16,
321 doi:10.14339/STO-EN-AVT-220-04(2014).
- 322 5. Measures, R.; Abrate, S. Structural Monitoring with Fiber Optic Technology. *Appl. Mech. Rev.* **2002**, *55*,
323 B10, doi:10.1115/1.1445327.
- 324 6. Glišić, B.; Inaudi, D. *Fibre Optic Methods for Structural Health Monitoring*; John Wiley & Sons, Ltd:
325 Chichester, UK, 2007; ISBN 9780470517819.
- 326 7. Guo, H.; Xiao, G.; Mrad, N.; Yao, J. Fiber optic sensors for structural health monitoring of air platforms.
327 *Sensors* **2011**, *11*, 3687–3705, doi:10.3390/s110403687.
- 328 8. Ren, P.; Zhou, and Z. A Review on Strain Based Damage Detection Strategies for Structural Health
329 Monitoring. *Pacific Sci. Rev.* **2013**, *15*, 1–7.
- 330 9. Li, Y. Y. Hypersensitivity of strain-based indicators for structural damage identification: A review.
331 *Mech. Syst. Signal Process.* **2010**, *24*, 653–664, doi:10.1016/j.ymssp.2009.11.002.
- 332 10. Grooteman, F. P. Damage detection and probability of detection for a SHM system based on optical
333 fibres applied to a stiffened composite panel. *Proc. Int. Conf. Noise Vib. Eng. ISMA 2012* **2012**, 3317–3330.
- 334 11. *Smart Intelligent Aircraft Structures (SARISTU)*; Wölcken, P. C., Papadopoulos, M., Eds.; Springer
335 International Publishing: Cham, 2016; ISBN 978-3-319-22412-1.
- 336 12. Güemes, A.; Fernández-López, A.; Soller, B. Optical Fiber Distributed Sensing - Physical Principles and
337 Applications. *Struct. Heal. Monit. An Int. J.* **2010**, *9*, 233–245, doi:10.1177/1475921710365263.
- 338 13. Leung, C. K. Y.; Wan, K. T.; Inaudi, D.; Bao, X.; Habel, W.; Zhou, Z.; Ou, J.; Ghandehari, M.; Wu, H. C.;
339 Imai, M. Review: optical fiber sensors for civil engineering applications. *Mater. Struct.* **2015**, *48*, 871–906,

340 doi:10.1617/s11527-013-0201-7.

341 14. Barrias, A.; Casas, J.; Villalba, S. A Review of Distributed Optical Fiber Sensors for Civil Engineering
342 Applications. *Sensors* **2016**, *16*, 748, doi:10.3390/s16050748.

343 15. Ye, X. W.; Su, Y. H.; Han, J. P. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber
344 Sensing Technology: A Comprehensive Review. *Sci. World J.* **2014**, *2014*, 1–11, doi:10.1155/2014/652329.

345 16. Jaaskelainen, M. Fiber optic distributed sensing applications in defense, security, and energy. In; Udd,
346 E., Du, H. H., Wang, A., Eds.; 2009; p. 731606.

347 17. Ortyl, N. E. Damage evaluation and analysis of composite pressure vessels using fiber Bragg gratings to
348 determine structural health. In *Proceedings of the SPIE The International Society for Optical Engineering*;
349 Marcus, M. A., Culshaw, B., Dakin, J. P., Eds.; 2005; Vol. 6004, p. 60040D.

350 18. Güemes, A.; Fernandez-lopez, A.; Lozano, A. Fiber Optic Distributed Sensing. *NATO-STO Lect. Ser.*
351 **2014**, 1–16, doi:10.14339/STO-EN-AVT-220-04(2014).

352 19. Murayama, H.; Wada, D.; Igawa, H. Structural health monitoring by using fiber-optic distributed strain
353 sensors with high spatial resolution. *Photonic Sensors* **2013**, *3*, 355–376, doi:10.1007/s13320-013-0140-5.

354 20. Minakuchi, S.; Takeda, N. Damage monitoring of CFRP bolted joints using Brillouin strain distribution.
355 *Photonic Sensors* **2013**, *3*, 345–354.

356 21. Guemes, A.; Fernandez-Lopez, A.; F.Díaz-Maroto, P. A permanent inspection system for damage
357 detection at composite laminates, based on distributed fiber optics sensing. In *8th International
358 Symposium on NDT in Aerospace*; 2016.

359 22. Sierra-Pérez, J.; Güemes, A.; Mujica, L. E. Damage detection by using FBGs and strain field pattern
360 recognition techniques. *Smart Mater. Struct.* **2013**, *22*, 25011, doi:10.1088/0964-1726/22/2/025011.

361 23. Goodall, C.; Jolliffe, I. T. Principal Component Analysis. *Technometrics* **1988**, *30*, 351,
362 doi:10.2307/1270093.

363 24. Mujica, L.; Rodellar, J.; Fernández, A.; Güemes, A. Q-statistic and T2-statistic PCA-based measures for
364 damage assessment in structures. *Struct. Heal. Monit. An Int. J.* **2011**, *10*, 539–553,
365 doi:10.1177/1475921710388972.

366 25. Sierra Perez, Julián. Smart Aeronautical Structures: Development and Experimental Validation of a
367 Structural Health Monitoring System for Damage Detection. PhD Thesis dissertation UPM, Spain, 2014.

368