In this paper, we investigate p-adic q-integral (q-Volkenborn integral) on Zp of p-adic gamma function via their Mahler expansions. We also derived two q-Volkenborn integrals of p-adic gamma function in terms of q-Daehee polynomials and numbers and q-Daehee polynomials and numbers of the second kind. Moreover, we discover q-Volkenborn integral of the derivative of p-adic gamma function. We acquire the relationship between the p-adic gamma function and Stirling numbers of the first kind. We finally develop a novel and interesting representation for the p-adic Euler constant by means of the q-Daehee polynomials and numbers.
Keywords:
Subject: Computer Science and Mathematics - Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.