

1 Article

2 Improving Dormancy and Germination of Piquín 3 Chili Pepper (*Capsicum annuum* var. *glabriusculum*) by 4 Priming Techniques

5 **Maria Fernanda Quintero C^{1,*}, Oscar Guillen Castillo¹, Pablo Delgado Sánchez¹, José Marín
6 Sánchez¹, Ana Isabel Guzmán² and José Miguel Guzmán^{2*}**

7 ¹ Faculty of Agronomy and Veterinary, University of San Luis Potosí. Km. 14.5 Carretera San Luis Potosí,
8 Matehuala, Ejido Palma de la Cruz, Soledad de Graciano Sánchez, San Luis Potosí, S.L.P. CP. 78321.
9 maria.quintero@uaslp.mx (MFQ); oscarguillen_castillo@hotmail.com (OG); pablo.delgado@uaslp.mx (PD);
10 jose.marin@uaslp.mx (JM)

11 ² Departamento de Agronomía, Universidad de Almería, Campus Excelencia Internacional Agroalimentaria
12 (cei A3). España. anais_9333@hotmail.com (AGC); mguzman@ual.es (MG)

13 * Correspondence: maria.quintero@uaslp.mx; Tel.: +5214443797715

14 **Abstract:** The effects of different priming techniques were evaluated to improve the dormancy and
15 germination of wild seeds of "Piquín" chili pepper. Three experiments were designed for pre-
16 sowing treatment of seeds: a) chemical seeds digestion; b) haloprimeing (with K⁺ or NH₄⁺ of NO₃⁻,
17 SO₄²⁻ or Cl⁻) at different priming times (24, 48 or 72 h) and osmotic potential (-5, -10 or -15 atm) and
18 c) previously selected haloprimeing (KNO₃ and NH₄NO₃) + Gibberellic acid (GA₃, at 100 or 200 ppm)
19 were tested. Digestion treatments did show a negative effect on seed germination. Recommended
20 values of osmotic potential (Ψ), to improve Piquín chili seed germination, must be between -10 and
21 -15 atm (-1.0 and -1.5 MPa) and the priming time must be between 48 and 72 hours. Priming
22 techniques can considerably reduce Capsaicinoids content on seeds, improve dormancy, seed
23 germination performance, and increase the rate and uniformity of seedling establishment. KNO₃
24 and secondly GA₃ treatments may improve rapid and uniform germination and seedling
25 emergence. The results provide basic information to develop guidelines for commercial
26 establishment of Piquín pepper crops.

27 **Keywords:** Wild chili pepper; domestication; seed germination; capsaicinoids content; haloprimeing;
28 gibberellic acid.

30

31 **1. Introduction**

32 Chili "Piquín" or "chiltepín", [*Capsicum annuum* var. *glabriusculum* (Dunal) Heiser & Pickersgill; syn.
33 *C. annuum* var. *aviculare* (Dierb.) D'Arcy & Eshbaugh], is distributed from Colombia, Central America,
34 and Mexico to the southwestern United States. The natural populations of "chiltepín" are considered
35 an important genetic resource for pepper crop improvement [1]. This species is of great significance
36 in the culture and identity of indigenous peoples of Mexico who usually harvested its fruits of wild
37 plants [2]. The heat of chili pepper is due to the accumulation of capsaicinoids, a group of related
38 alkaloids unique to *Capsicum*. Capsaicinoids are produced in the fruit placenta and transferred to the
39 seeds during fruit maturation [3]. In highland regions where it occurs, is an important part of the
40 local economy, especially in the time of harvest, generating employment and income for rural

41 communities. This activity might threaten the genetic diversity in this species, affecting habitat
42 degradation of natural populations of wild pepper [4]. This problem could be solved by limiting the
43 collection of wild populations and increasing their cultivation as a crop, in turn generating economic
44 resources derived from this activity [5,6]. While there is basic information that allows for developing
45 guidelines for its cultivation [7], more research, related to germination, stand establishment and crop
46 development and productivity, is necessary to develop commercial Piquín pepper crops.

47 Domestication of Piquín pepper plants have not been fully developed because problems are
48 encountered related to low and erratic seed germination, morphologic and genetic variability, and
49 limited environmental physiology information [7–9]. Some authors suggest that germination of its
50 seeds is restricted by physiological dormancy [10] and is achieved after passing through the digestive
51 tract of certain birds [11]. Seeds of many species remain viable after passing through the digestive
52 tracts of animals, with varying effects on germination [12]. Seed dormancy is generally an undesirable
53 characteristic in agricultural crops, where rapid germination and growth are required. Extensive
54 domestication and breeding of crop species have ostensibly removed most dormancy mechanisms
55 present in the seeds of their wild ancestors. Studies have reported a myriad of methods to break seed
56 dormancy, including chemical, mechanical, thermal, and hormonal seed treatments [13,14].

57 The beneficial effects of priming on the vigor, germination of seeds and establishment of the seedlings
58 is known since the times of Pliny the elder (A.D. 23-79) [15]. Seed priming is a presowing treatment
59 involves the controlled hydration of seeds, sufficient to allow pregerminative metabolic events to
60 take place but insufficient to allow primary root protrusion through the seed coat [14,16]. It also
61 involves complex physiological and biochemical process which offers an effective means to improve
62 seed quality [17], seed germination and vigor [18]. Priming treatments are widely applied by seed
63 companies to increase the germination rate and uniformity of seedling establishment of commercial
64 vegetable and flower seeds [19,20]. Primed seeds are equipped with advanced germination and
65 exhibit improved germination rate and uniformity [21]. The benefits, associated with certain
66 physiological, biochemical, cellular and molecular changes [19], include rapid, uniform and increased
67 germination, improved seedling vigor and growth under a broad range of environments resulting in
68 better stand establishment [22–25]. Different priming treatments such as hydropriming (soaking in
69 water), halopriming (soaking in inorganic salt solutions), osmopriming (soaking in solutions of
70 different organic osmotic molecules), thermopriming (treatment of seed with low or high
71 temperatures) or solid matrix priming (treatment of seed with solid matrices) can be effectively
72 employed to prime a large number of hot pepper seeds at one time [14,26,27]. Halopriming can affect
73 osmoregulation in seeds by the active uptake of inorganic ions, promoting K^+ and Ca^{2+} absorption
74 and decreasing Na^+ and Cl^- accumulation. Potassium plays an important role in balancing membrane
75 potential and turgor, activating enzymes, and regulating osmotic pressure in cells [19]. Some authors
76 hypothesized that capsaicinoids could have some allelopathic effect on pepper seed germination [3].
77 Capsaicinoids are a well-established allelochemical and has been shown to reduce root and shoot
78 growth or suppress germination in several plant species [28]. The effects of incorporating plant
79 growth regulators into the priming solution have also been indicated to improve the germination and
80 the growth of pepper seedlings [29–32], and other vegetables [33,34].

81 The objective of this study was to evaluate both the response rate of wild seeds of Chili Piquín
82 (*Capsicum annuum* var. *glabriusculum*) to break dormancy and improve germination rate through seed
83 priming and halopriming integrated with gibberellic acid (GA_3) treatments. This information is

84 needed to help in the development of sound and reliable guidelines for seedling production of Piquín
85 pepper and contribute to its domestication.

86 **2. Materials and Methods**

87 *2.1. Plant materials:*

88 Fruit of Chili Piquín were collected from different wild population in the States of Tamaulipas and
89 San Luis Potosí, in Northeastern Mexico. Seed extraction was carried out manually, macerating fruits
90 of each wild population and dipping them in water to separate the pure seed from impurities. Seeds
91 from different wild population were disinfected, as separate seed lot, in 1% sodium hypochlorite
92 solution for 15 min. to eliminate seed borne microorganisms [35,36].

93

94 *2.2. Seed treatments:*

95 To achieve the proposed objective, a series of three consecutive experiments were designed for pre-
96 sowing treatment of seeds. Following every treatment all seeds were rinsed under running tap water
97 for 3 minutes and then with distilled deionized water (ddH₂O) for 1 min. After rinsing, seeds were
98 surface dried by placing them between paper towels for 30 min. at room temperature. The seeds were
99 then slowly dried at 25 °C for 2 days until they reached their original moisture content (~7–9%) and
100 stored until capsaicinoids content determinations and germination test were carried out. [36,37].
101 Untreated seeds were used as control and subjected to the same disinfection, rinsing and drying
102 conditions.

103 *2.2.1. Digestion treatments.*

104 To simulate the effect of the digestive tract of birds on breaking dormancy on Piquín chili seeds, a
105 group of seeds were subjected to a chemical digestion process using HCl and H₂O₂. Seeds were
106 dipped in 0.2 N HCl for 5 min., and rinsed with distilled deionized water (ddH₂O) for 2 min.
107 Subsequently were oxidized with 0.5 N hydrogen peroxide for 5 min and newly rinsed with ddH₂O
108 for 2 min.

109 *2.2.2. Priming treatments.*

110 Factorial halopriming was accomplished by imbibing 5 g of seed at 25 °C in darkness for (24, 48 or 72
111 h) under an aerated solution of (KNO₃, K₂SO₄, NH₄NO₃, KCl, (NH₄)₂SO₄ or NH₄Cl) at -5, -10 or -15
112 atm (-0.5; -1.0 or -1.5 MPa respectively) of osmotic potential (Ψ_s) to prevent seeds from entering the
113 phase III of hydration (growth) [19,36,38]. Solutions were prepared by dissolving different salts in
114 250 ml Erlenmeyer glasses containing 100 mL of distilled water [39]. Untreated seeds were used as
115 control.

116 *2.2.3. Priming integrated with gibberellic acid treatments.*

117 Priming, integrated with GA₃ treatment [40], was performed using two of the priming treatments
118 [KNO₃(-15 atm) and NH₄NO₃(-10 atm)], which further increased the germination parameters of the previous
119 experiments. These priming treatments were supplemented with gibberellic acid (GA₃) at 100 or 200
120 ppm. Both controls (unprimed and without GA₃) were used as absolute and relative control
121 respectively. Indices were calculated referring to absolute control (untreated seeds) and to their
122 respective relative control (priming treatments) and these denoted with the subscript.

123

124 *23. Capsaicinoids determination:*

125 To test whether seeds capsaicinoids contents could be a contributor to seed germination,
126 capsaicinoids content was determined on all seeds (primed and untreated) after treatments. Five-
127 gram whole dry seeds were ground with a home blender for 3 minutes and then a fivefold volume
128 of acetone was added, respectively, to the extract at 50 °C for 1 hour in triplicate. Centrifuged
129 supernatant was taken for colorimetric analysis, following the methods proposed by Wang-Kyun *et*
130 *al* [41].

131

132 *2.4. Germination tests:*

133 These were carried out in darkness in a temperature-controlled incubator held at 25 ± 0.5 °C and 100%
134 RH [42]. Seeds were placed on two layers of filter paper moistened with 3 mL of distilled water in
135 covered 10 cm petri dishes. Germination values were recorded daily for 28 days to establish statistical
136 data. From the total number of germinated seeds, Final Germination Percentage (FGP) was
137 calculated. For ungerminated seeds, tetrazolium chloride tests were conducted to differentiate
138 between dormant and dead seeds [43]. Final latent percentage (FLP) and final mortality percentage
139 (FMP) of seeds were calculated accordingly.

140 Primary root protrusion to 1 mm was scored as germination. To evaluate root growth, a network of
141 fiberglass of 1 mm² was placed under seeds. Primary root length (PRL) was measured in mm.
142 Development germination index (DGI) allows to quantify effects (including FGP and PRL) of
143 treatments (t) respect to control (o) on germination development. DGI was calculated by Zucconi tests
144 by following the formula: [DGI = 100·(FGP_(t)/FGP_(o)·(RL_(t)/RL_(o))] [45,46].

145 Days to 50% of FGP (G₅₀) and days between 10% and 90% of FGP (G₁₀₋₉₀) were also calculated. G₅₀ is
146 an inverse measure of mean germination rate, while G₁₀₋₉₀ is an estimate of the spread of germination,
147 the inverse of germination synchrony [47]. To contrast the behavior of treatments_(t) to control_(o), these
148 parameters were transformed in their respective indices, according to the following formulas: Rate
149 germination index [RGI = 100·(G_{50(o)}/G_{50(t)})]; synchrony germination index [SGI = 100·(G_{10-90(o)}/G_{10-90(t)})].
150 After germination testing, germinated seeds were transplanted to conventional seedling trays inside
151 a greenhouse to evaluate the number of abnormal seedling generated by each treatment. Abnormal
152 seedling percentage (ASP) and its corresponding abnormality seedling index [ASI=100·(ASP_(t)/ASP_(o))], were calculated from abnormal plantlets.

153

154

155 *2.5. Experimental design and statistical analysis.*

156 Treatments were arranged in completely randomized design with four replications of 25 seeds. Data
157 were subjected to multifactorial ANOVA test. Mean separation was performed by Fisher's least
158 significant difference (LSD_{0.05}) test if F test was significant at p < 0.05 (*).

159 **3. Results**

160 Capsaicinoids contents, germination parameters, primary root growth and transplant abnormality
161 for each seed treatment are shown in Tables 1, to 3 respectively. No differences were found between
162 seeds lot or replications. The corresponding relative indexes, contrasting the behavior of each
163 treatment with their control are also shown on Tables 1 to 3. The average daily percent germination
164 values for treatments and control over a 28-day germination period are shown in Figure 1.

165 *3.1. Digestion Treatments*

166 Table 1 shows germination parameters of seeds digested with HCl and H₂O₂. Average values show
167 no significant difference for CC, FLP, FMP, FGP, PRL, G₅₀, G₁₀₋₉₀, or ASP, while significant differences
168 for DGI, RGI, SGI and ASI indices were found, indicating that these indices, are more sensitive to
169 detect the treatment effects referred to control than the proper parameters. The chemical digestion of
170 Piquín pepper seeds does not affect capsaicinoids content (CC) on seeds. The lower FGP and PRL of
171 digested seeds lead to a strong reduction on DGI (-33%) indicating a marked detrimental effect on
172 germination development. Digestive treatments only increase mean germination rate (+11% RGI) and
173 could contribute to break dormancy or latency reducing FLP (Table 1), but also reduces synchrony (-
174 9% SGI), increases FMP, does not improve FGP, and strongly worsen early developmental stage of
175 seedling and abnormality of transplants (+9% ASI).

176 *3.2. Priming treatments*

177 Average values of germination parameters and their indices are presented on Table 2. Significant
178 differences were found in all factor of priming treatment (salt, time and Ψ_s) for all parameters and
179 indices. As in previous analysis, indices are better to interpret and quantify the effect of treatments.
180 Different behavior was observed for different salts, showing differences between K⁺- and NH₄⁺- salts
181 on FGP (Fig 1.) and between NO₃⁻ and SO₄²⁻or Cl⁻ on synchrony (Table 2). All treatment reduces
182 capsaicinoids content on primed seeds. Highest CC reduction were obtained (Table 2) on seeds
183 primed with NO₃⁻ salts (more than SO₄²⁻ or Cl⁻) and at -10 or -15 atm (more than -5), for 48 or 72 h
184 (more than 24).

185 FGP was increased 4-5 times and MGI reduced 44% for Cl⁻ and SO₄²⁻. NO₃⁻ salts (of NH₄⁺ or K⁺)
186 increased FGP (6 times) and reduced to 1/4 seeds mortality (Table 2). A higher final percent of
187 germinated seeds was also obtained for K⁺ rather than NH₄⁺ containing salts (Fig. 1). Highest FGP
188 (together with low effect on PRL reduction) of NO₃⁻ primed seeds lead to a strong increase on DGI,
189 indicating a clear improvement on germinative process. DGI increases 3-4 times for Cl⁻ and SO₄²⁻ and
190 by 5 times for NO₃⁻. KNO₃ increased more than NH₄NO₃, not only DGI, but also RGI and SGI, whereas
191 NH₄NO₃ reduced ASI more than KNO₃. An incremental effect was observed for priming time and Ψ_s
192 on FGP, DGI and RGI. Increments on germination rate were 6-12% higher using K⁺ than NH₄⁺
193 containing salts (Table 2). Latent seeds were only significantly reduced for K₂SO₄ or NH₄Cl salts at -
194 10 or -15 atm for 48 or 72 h. Radicle length was only significantly reduced on KCl primed seeds under
195 -5 atm of Ψ_s for 24 or 48 h.

196 A differential effect was observed on germination synchrony for different factors. Germination
197 synchrony increases on nitrate primed seeds, whereas was reduced on seeds primed with sulfate or
198 chloride SGI. Priming times shorter than 72 h, or lower than -10 atm of Ψ_s on priming solution,
199 reduces synchrony (Table 2). Figure 1 shows the average percentage germination values over time
200 for all priming and digestion treatments. A different behavior appears on the germination process
201 for each treatment during 28 days of germination. Germination synchronies (G₁₀₋₉₀ and SGI on Table
202 2) were expanded by Cl⁻ and SO₄²⁻ whereas reduced by NO₃⁻, Seeds primed with nitrate containing
203 salts clearly increases germination synchrony and mean germination speed, but the effect is not
204 indicted to be responsible for breaking of dormancy. Seeds latency (FLP) could probably be improved
205 by including GA₃ in priming solutions (Fig. 1).

206 Abnormality of plantlets reduced as priming time increases and was lower for -10 atm of Ψ_s . ASI
207 reduced 38% for Cl⁻, 62% for SO₄²⁻ and 70% for NO₃⁻. Graphic analysis of interactions (data not shown)

208 indicated that 72 h priming treatments with NH_4NO_3 (-15atm) and KNO_3 (-10atm) are optimum regarding
209 the improvement of PGI, MGI, DGI and ASI by adding AG_3 to priming solutions.

210 *3.3. Priming integrated with gibberellic acid treatments.*

211 Average values of germination parameters and indices are presented on Table 3. All treatment
212 significantly reduces capsaicinoids content on primed seeds. Highest CC reduction were obtained on
213 seeds primed with NO_3^- salts and at 200 ppm of AG_3 . Combined effects of nitrate priming and AG_3
214 reduces initial capsaicinoids contents to 10%. An exponential correlation between CC and DGI were
215 found (data not shown).

216 Pre-sowing with gibberellic acid treatments (Control +100 or +200ppm GA_3) also shows (Fig. 1) a
217 positive effect on germination respective to absolute control for all evaluated parameters (Table 3),
218 except PRL (100 and 200ppm) and G_{10-90} (100ppm).

219 GA_3 significantly reduces latency (FLP) in Piquín chili seeds (Table 3) referred to the absolute control
220 and maintains this effect when it is added to priming solutions (Fig. 1). The addition of GA_3 (at 100
221 or 200 ppm) activates dormant seeds to a rate between 73 and 84% respectively. This latency
222 inhibition causes an increase in PGI of between 30 and 60%. However, GA_3 additions to priming
223 solutions increases FMP respect to their relative to controls.

224 GA_3 significantly increases germination rate (RGI on Table 3) in respect of absolute or relative
225 controls. At 200 ppm this RGI increase by 2.5 times. However, the effect of GA_3 on synchrony is
226 different. While 100ppm has no effect, additions of 200 ppm double the synchrony, reducing intense
227 germination time from 12 to 8 days. These synergic effects of the addition of GA_3 to priming solutions
228 is clearly show for germination percentages on Figure 1. Conversely, 200 ppm GA_3 has no effect on
229 ASI, while 100 ppm GA_3 significantly increases the presence of abnormal seedlings in primed seeds.
230 Gibberellic acid applied alone, significantly reduces the length of the primary root with respect to the
231 absolute control. However, the integrated priming treatment with GA_3 , practically duplicate PRL for
232 GA_3 (200 ppm) and increases it by between 50 and 70% for GA_3 (100 ppm). These increases in PRL together
233 with the originated in FGP lead to double or triple values of DGI (associated with GA_3) compared to
234 their respective relative controls. On the other hand, the reduction in PRL (associated with the
235 application of GA_3) regarding the absolute control, neutralizes the positive impact generated on FGP
236 and originates DGI increases, on relative control, like those produced by the halopriming without
237 GA_3 .

238

239

240 *3.4. Figures, Tables and Schemes*241 **Table 1.** Average values, ANOVA significance and LSD_{0.05} values of *Capsicum annuum* var. *glabriusculum* seeds
242 and seedless, germinated in darkness at 25 °C following digestion treatments.

	CC ($\mu\text{g}\cdot\text{g}^{-1}$)	FLP (%)	FMP (%)	FGP (%)	PRL (mm)	DGI	G ₅₀ (d)	RGI	G ₁₀₋₉₀ (d)	SGI	ASP (%)	ASI
Significance	NS	NS	NS	NS	NS	*	NS	*	NS	*	NS	*
Control seeds	973	46.3	43.9	8.1	25.4	100b	25.2	100a	14.1	100b	15.1	100a
Digested seeds	1007	45.0	46.4	7.7	17.5	66a	23.5	111b	14.3	91a	15.9	114b
LSD _{0.05}	260	3.63	4.01	0.66	10.98	13.9	2.04	5.91	1.18	4.71	1.20	9.84

243 Capsaicinoids Content (CC); Final Latent Percentage (FLP); Final Mortality Percentage (FMP); Final Germination
244 Percentage (FGP); Primary Root Length (PRL); Development Germination Index (DGI); Days to 50% of FGP
245 (G₅₀); Rate Germination Index (RGI); Days between 10% and 90% of FGP (G₁₀₋₉₀); Synchrony Germination Index
246 (SGI); Abnormal Seedless Percentage (ASP); Abnormality Seedless Index (ASI).

247 Means within the same column followed by the same letter are not different at $p \leq 0.05$ per Fisher's least
248 significant difference test.

249 NS, * Nonsignificant or significant differences at $p \leq 0.05$.

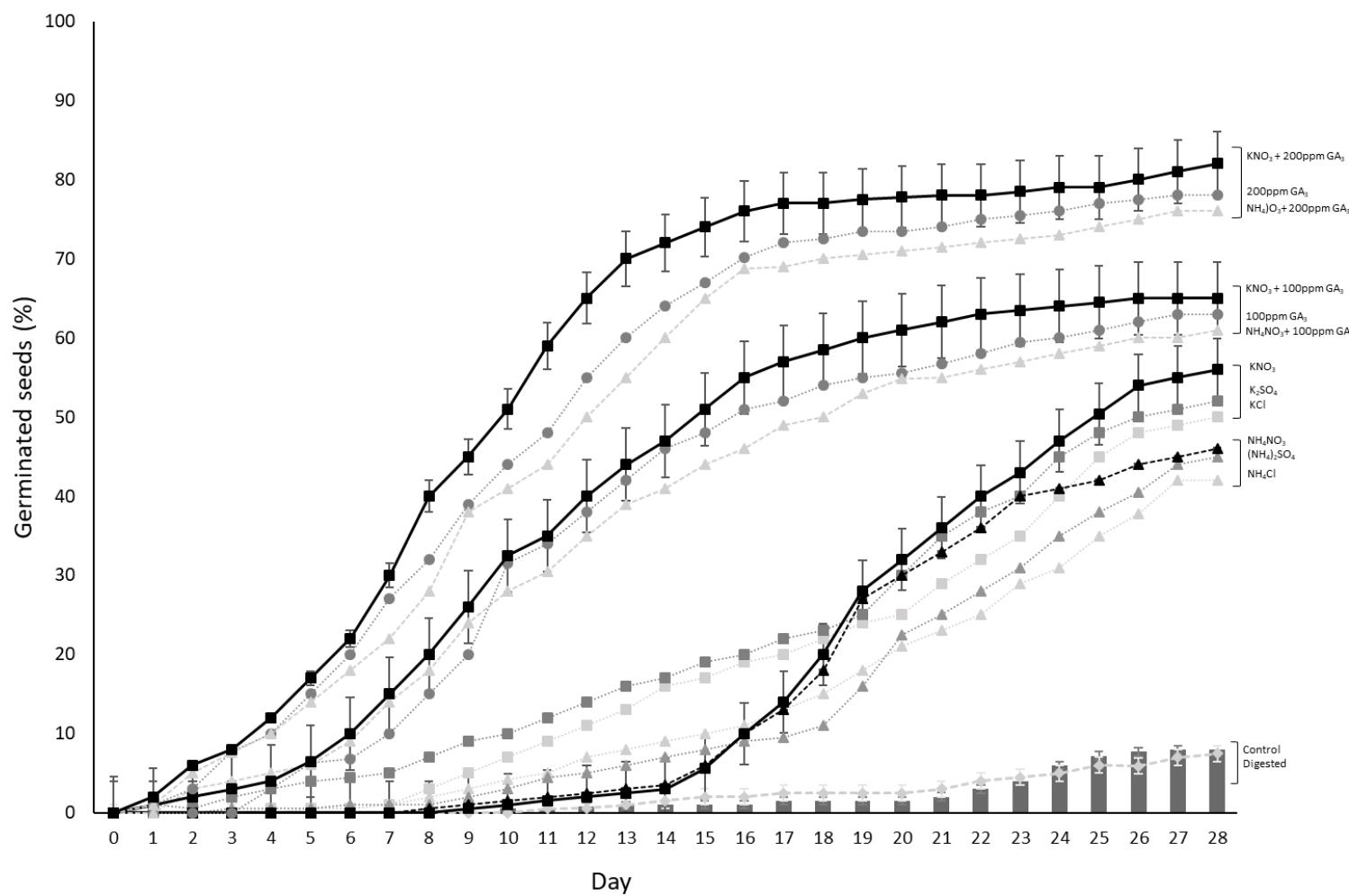
250

251 **Table 2.** Average values, ANOVA significance and LSD_{0.05} values of *Capsicum annuum* var. *glabriusculum* seeds
252 and seedless, germinated in darkness at 25°C following priming (Pr) treatments.

	CC ($\mu\text{g}\cdot\text{g}^{-1}$)	FLP (%)	FMP (%)	FGP (%)	PRL (mm)	DGI	G ₅₀ (d)	RGI	G ₁₀₋₉₀ (d)	SGI	ASP (%)	ASI
Pr salt	*	*	*	*	*	*	*	*	*	*	*	*
Control	957d	44.7c	48.8c	7.9a	18.3c	100a	25.5e	100a	14.6c	100d	14.8c	100c
NH ₄ Cl	638c	39.2ab	26.2b	36.5c	17.1abc	421bc	22.4d	113b	21.1f	67a	12.9bc	87bc
(NH ₄) ₂ SO ₄	469b	39.9abc	28.0b	32.4b	16.8abc	366bc	22.1cd	115bc	22.1g	64a	11.4b	77b
NH ₄ NO ₃	319a	43.2bc	11.9a	45.0d	16.8abc	501de	21.0b	120cd	12.0b	120e	8.6a	58a
KCl	579c	39.7ab	28.2b	32.7bc	16.0a	360b	21.1bc	120cd	17.1d	83c	12.8bc	86bc
K ₂ SO ₄	441b	36.8a	27.2b	35.3bc	17.6abc	437cd	20.8b	121d	18.9e	75b	11.7b	79b
KNO ₃	309a	40.2abc	13.5a	46.1d	17.8bc	565e	19.0a	132e	11.0a	132f	10.1ab	72ab
Pr time (h)	*	*	*	*	*	*	*	*	*	*	*	*
0	957c	44.7c	48.8d	7.9a	18.3c	100a	25.5d	100a	14.6a	100c	14.8c	100c
24	607b	49.7d	16.9a	33.7b	15.2a	353b	22.7c	112b	18.9c	78a	13.8c	93c
48	420a	38.3b	23.7b	38.5c	16.6b	433c	21.3b	118c	17.2b	89b	11.6b	80b
72	350a	31.5a	26.8c	41.8d	19.2c	538d	19.2a	131d	15.0a	103c	8.4a	57a
Pr Ψ_o (atm)	*	*	*	*	*	*	*	*	*	*	*	*
0	957c	44.7c	48.8c	7.9a	18.3b	100a	25.5d	100a	14.6a	100b	14.8c	100c
-5	555b	46.2c	20.9a	34.0b	15.5a	368b	22.2c	117b	18.2c	83a	14.3c	97c
-10	395a	38.7b	21.8ab	39.7c	17.3b	462c	21.2b	118b	17.0bc	91ab	8.8a	55a
-15	428a	34.5a	24.8b	40.3c	18.1b	496c	19.8a	126c	16.0ab	96b	10.8b	77b

253 Capsaicinoids Content (CC); Final Latent Percentage (FLP); Final Mortality Percentage (FMP); Final Germination
254 Percentage (FGP); Primary Root Length (PRL); Development Germination Index (DGI); Days to 50% of FGP
255 (G₅₀); Rate Germination Index (RGI); Days between 10% and 90% of FGP (G₁₀₋₉₀); Synchrony Germination Index
256 (SGI); Abnormal Seedless Percentage (ASP); Abnormality Seedless Index (ASI).

257 Means within the same column followed by the same letter are not different at $p \leq 0.05$ per Fisher's least
258 significant difference test.


259 * Significant differences at $p \leq 0.05$.

260

261
262
263
264**Table 3.** Average values, ANOVA significance and LSD_{0.05} values of *Capsicum annuum* var. *glabriusculum* seeds and seedless, germinated in darkness at 25 °C following presowing with gibberellic acid treatments and priming integrated with gibberellic acid treatments.

Treatment	CC ($\mu\text{g g}^{-1}$)	FLP (%)	FMP (%)	FGP (%)	PRL (mm)	DGI	G_{50} (d)	RGI	G_{10-90} (d)	SGI	ASP (%)	ASI
Control	824e	47.0d	45.4f	7.6a	21.4c	100a	26.7f	100a	14.9de	100a	32.0f	100f
+100 ppm GA ₃	491d	11.9b	27.1e	60.1d	13.4a	545b	10.8bc	214b	15.6e	168a	21.4e	71e
+200 ppm GA ₃	384c	7.1a	16.9c	76.0f	13.7a	674c	8.2a	245c	8.8a	297c	15.7d	52d
NH ₄ NO ₃ (- 10atm)	461d	43.4c	8.2ab	48.4b	18.0b	579b	22.8e	94a	12.9c	202b	6.9a	23a
+100 ppm GA ₃	201b	12.0b	23.4d	64.6e	30.9d	1331d	11.3c	192b	15.5e	168a	20.6e	69ec
+200 ppm GA ₃	74a	12.2b	16.4c	76.9f	39.8e	2036e	8.0a	262c	8.0a	328d	7.0a	23a
KNO ₃ (-15atm)	402c	42.4c	5.4a	52.3c	19.1b	665c	18.4d	119a	10.2b	254b	11.2b	37b
+100 ppm GA ₃	209b	6.7a	21.6d	66.3e	28.9d	1276d	10.1b	210b	14.2d	183a	13.2c	44c
+200 ppm GA ₃	72a	6.8a	11.5b	81.8g	38.4e	2096e	8.1a	269c	8.1a	323d	11.1b	37b

265 Capsaicinoids Content (CC); Final Latent Percentage (FLP); Final Mortality Percentage (FMP); Final Germination
266 Percentage (FGP); Primary Root Length (PRL); Development Germination Index (DGI); Days to 50% of FGP
267 (G₅₀); Rate Germination Index (RGI); Days between 10% and 90% of FGP (G₁₀₋₉₀); Synchrony Germination Index
268 (SGI); Abnormal Seedless Percentage (ASP); Abnormality Seedless Index (ASI).
269270 Means within the same column followed by the same letter are not different at $p \leq 0.05$ per Fisher's least
271 significant difference (LSD) test.272 * Significant differences at $p \leq 0.05$.

273

274 Figure 1. Germination percentage of Piquin pepper after seeds treatments (digested or primed) monitored for 28 days. Error bars are presented only for control,
275 digested and KNO₃ treatments.

276 **4. Discussion**277 *4.1. Digestion Treatment.*

278 While some authors argue that Piquín chili seed germination increases after passage through the
279 digestive tract of birds, evidence of this fact has not been provided [2,11]. Digestive treatments could
280 contribute to breaking dormancy, increasing mean germination speed, but do not improve
281 germination percentage or synchrony and strongly worsen early developmental stage of seedlings.
282 The positive effects seen on germination related to birds appear to be more associated to the dispersal
283 and deposition of seeds in favorable environments that stimulate further germination [7,48,49].
284 Digestion treatments have not shown any positive effect on the germination of Piquín chili seeds of.
285 Authors have presented both similar results [50], and have also found large differences [12,42,51–53]
286 in the behavior of different accessions of plants.

287

288 *4.2. Priming treatments.*

289 Priming has been proposed as a mechanism of invocation of different stress tolerance of germinating
290 seeds [21,54]. Seed priming treatments have been applied to various crops under saline conditions
291 [19,55–57]. Some authors find that a specific ion or salt is not essential in priming pepper seed [58],
292 and other horticultural crop species [17]. Nitrate enhanced germination and seedling establishment
293 rates, under adverse conditions, of onion [59] tomato and asparagus [16], melon [60], watermelon
294 [61,62], husk tomato [39] and pepper [63–66]. Our results also indicate that nitrate-containing salts
295 are more efficient than nitrate-free salts at promoting germination (except breaking dormancy) of
296 primed seeds. In addition, the effects of priming with KNO_3 seem to be more positive than NO_4NO_3
297 on main germination and establishment of seedling parameters (except for seed mortality and
298 seedling abnormality). Seed priming stimulates the pre-germination metabolic processes and
299 prepares the seed for primary root protrusion. It increases the antioxidant system activity and the
300 repair of membranes, moreover, the reduction of capsaicinoids on seeds during priming, could
301 contribute to break dormancy and stimulate germinative process on primed seeds. These changes
302 promote seed vigour during germination and emergence [19].

303 Time-course experiments show that effective priming is strongly dependent on both the osmotic
304 potential of the priming solution and the duration of the treatment to avoid “overpriming” [58,67,68].
305 Accordingly, the recommended values of osmotic potential to improve the Piquín chili seed
306 germination must be between -10 and -15 atm (-1.0 and -1.5 MPa), the treatment time must be between
307 48 and 72 h.

308 A small number of Piquín pepper studies, very heavily dependent on the origin of seeds accessions
309 and genetic diversity, presented conflicting results [9,35,40,42,69,70]. Authors do not find positive
310 effects of KNO_3 priming, whereas only see positive effects with GA_3 at extremely high doses (5000
311 ppm). However, none of these studies combine priming with GA_3 at low doses. The undesirable
312 observed effects of seed latency (LGI), mean germination rate (RGI) and synchrony (SGI), could be
313 improved by including gibberellic acid (GA_3) in priming solutions (as shown in Figure 1).

314

315 *4.3. Priming integrated with gibberellic acid treatments.*

316 Halopriming with the addition of plant growth regulators may be an effective way to shorten
317 emergence time and increase stand establishment in watermelon [34] and pepper at low temperatures

318 [47]. Halo-priming using KNO_3 or a growth regulator like GA_3 improves the rate of germination and
319 reduces the mean germination time in endive and chicory [33].
320 The integration of priming with GA_3 was effective in improving germination and establishment of
321 pepper and tomato seeds. Priming, during which germination is suspended, provides an unique way
322 to rapidly and efficiently digest the endosperm by GA-induced enzymes and reduce the mechanical
323 restraints of endosperm thus providing energy to start and sustain embryo growth [30]. Studies of
324 genetics and physiology have shown the important roles of the plant hormones such as abscisic acid
325 and gibberellin in the regulation of seed dormancy and germination [71].
326 Considerable improvements in seed germination performance, an increase in rate and uniformity,
327 and emergence and establishment of seedlings are shown for KNO_3 and GA_3 treatments, in
328 agreement with Tzortzakis [33]. The lowest values of capsaicinoids found on KNO_3 primed seeds
329 together with AG_3 could reduce the allelopathic effect on pepper seed germination. Since high
330 concentrations of capsaicin inhibit the germination of chili seeds [3], the positive effects on
331 germination may be due to the elimination of these as germination inhibitors [10,35]. Finally, our
332 results provide essential information needed for the development of guidelines for the domestication
333 and cultivation of Piquín chili plants.

334 5. Conclusions

335 This study showed that it is possible to improve dormancy and germination processes on Piquín chili
336 seeds by priming techniques. Wild Piquín chili seed primed with KNO_3 (-10atm; 72h) integrated with GA_3
337 (200ppm) reduced time to germination start (dormancy) and improved germination parameters.
338 Moreover, the study results provide essential information needed for the development of guidelines
339 for the domestication and cultivation of Piquín chili plants.
340

341 Author Contributions:

342 MFQ and MG. conceived and designed the experiments; OG and AGC performed the experiments; MFQ, PD,
343 JM and MG. analyzed the data; MFQ., PD, JM AGC and MG. contributed reagents/materials/analysis tools; MFQ
344 and MG wrote the paper.

345 **Conflicts of Interest:** The authors declare no conflict of interest.

346

347 References

- 348 1. Hayano, C.; Gamez, N.; Medina, L. A. Wild Pepper *Capsicum annuum* L. var. *glabriusculum*:
349 Taxonomy, Plant Morphology, Distribution, Genetic Diversity, Genome Sequencing, and Phytochemical
350 Compounds. *Crop Science* **2016**, *56*, 1–11, doi:10.2135/cropsci2014.11.0789.
- 351 2. Bañuelos, N.; Salido, P. L.; Gardea, A. Etnobotánica del Chiltepín. Pequeño gran señor en la cultura de
352 los sonorenses. *Estudios Sociales: Revista de investigación científica*. **2008**, *16*, 177–206.
- 353 3. Derek, W.; Barchenger, D. W.; Bosland, P. W. Exogenous applications of capsaicin inhibits seed
354 germination of *Capsicum annuum*. *Scientia Horticulturae* **2016**, *203*, 29–31,
355 doi:10.1016/j.scienta.2016.03.009.
- 356 4. Medina-Martínez, T.; Villalón-Mendoza, H.; Pérez Hernández, J. M.; Sánchez-Ramos, G.; Salinas-
357 Hernández, S.; Medina M., T.; Villalón M., H.; Pérez H., J. M.; Sánchez R., G.; Salinas H., S. Avances y
358 perspectivas de investigación del chile piquín en Tamaulipas, México. *Ciencia UAT* **2010**, *4*, 16–21.
- 359 5. Nabhan, G. P.; Slater, M.; Yarger, L. New crops for small farmers in marginal lands? Wild chiles as a

360 case study. In *Agroecology and small farm development*; Altieri, M. A., Ed.; 1989; pp. 19–26.

361 6. Kim, H. J. Opportunities and Challenges of Alternative Specialty Crops: The Global Picture. *HortScience*
362 2016, 51, 1316–1319, doi:10.21273/HORTSCI10659-16.

363 7. Valiente-Banuet, J. I.; Gutierrez-Ochoa, A. Effect of Irrigation Frequency and Shade Levels on Vegetative
364 Growth, Yield, and Fruit Quality of Piquin Pepper (*Capsicum annuum* L. var. *glabriusculum*).
365 *Hortscience* 2016, 51, 573–579.

366 8. Demir, I.; Ellis, R. H. Development of pepper (*Capsicum annuum*) seed quality. *Annals of Applied Biology*
367 1992, 121, 385–399, doi:10.1111/j.1744-7348.1992.tb03452.x.

368 9. Rodriguez-Uribe, L.; Hernandez, L.; Kilcrease, J. P.; Walker, S.; O'Connell, M. A. Capsaicinoid and
369 Carotenoid Composition and Genetic Diversity of Kas I and Ccs in New Mexican *Capsicum annuum* L.
370 Landraces. *HortScience* 2014, 49, 1370–1375.

371 10. Cano-Vazquez, A.; Lopez-Peralta, M.; Zavaleta-Mancera, H. A.; Cruz-Huerta, N.; Ramirez R., I.; Gardea
372 B., A.; Gonzalez H., V. A. Variation in seed dormancy among accessions of chile piquin (*Capsicum*
373 *annuum* var. *glabriusculum*). *Botanical Sciences* 2015, 93, 175–184.

374 11. Araiza Lizarde, N.; Araiza Lizarde, E.; Martínez Martinez, J. G. Evaluación de la Germinación y
375 Crecimiento de Plántula de Chiltepín (*Capsicum annuum* L. var. *glabriusculum*) en invernadero. *Rev.*
376 *Colomb. Biotecnol.* 2011, 13, 170–175.

377 12. Baskin, C. C.; Baskin, J. M. Germinating Seeds of Wild flowers, an Ecological Perspective. *Perspective*
378 2004, 14, 467–473.

379 13. Bewley, J. D. Seed Germination and Dormancy. *The Plant cell* 1997, 9, 1055–1066, doi:10.1105/tpc.9.7.1055.

380 14. Paparella, S.; Araujo, S. S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: state
381 of the art and new perspectives. *Plant Cell Reports* 2015, 34, 1281–1293, doi:10.1007/s00299-015-1784-y.

382 15. Gaius, P. S. *Naturalis historia*, vol. IV–VII, Books 12–27 (trans: Rackham H, Jones WHS, Eichholz DE).
383 1949.

384 16. Pill, W. G.; Frett, J. J.; Morneau, D. C. Germination and seedling emergence of primed tomato and
385 asparagus seeds under adverse conditions. *HortScience* 1991, 26, 1160–1162.

386 17. Siri, B.; Vichitphan, K.; Kaewnaree, P.; Vichitphan, S.; Klanrit, P. Improvement of quality, membrane
387 integrity and antioxidant systems in sweet pepper (*Capsicum annuum* Linn.) Seeds affected by
388 osmopriming. *Australian Journal of Crop Science* 2013, 7, 2068–2073.

389 18. Singh, H. B.; Bisen, K.; Keswani, C.; Mishra, S.; Saxena, A.; Rakshit, A. Unrealized Potential of Seed
390 Biopriming for Versatile Agriculture. In *Nutrient Use Efficiency: From Basics to Advance*; Springer India,
391 2015; pp. 193–206 ISBN 9788132221692 | 9788132221685.

392 19. Ibrahim, E. A. Seed priming to alleviate salinity stress in germinating seeds. *Journal of Plant Physiology*
393 2016, 192, 38–46, doi:10.1016/j.jplph.2015.12.011.

394 20. Lanteri, S.; Portis, E.; Bergervoet, H. W.; Groot, S. P. C. Molecular markers for the priming of pepper
395 seeds (*Capsicum annuum* L.). *Journal of Horticultural Science and Biotechnology* 2000, 75, 607–611.

396 21. Chen, K.; Arora, R. Priming memory invokes seed stress-tolerance. *Environmental and Experimental*
397 *Botany* 2013, 94, 33–45, doi:10.1016/j.envexpbot.2012.03.005.

398 22. Manonmani, V.; Junaithal, M. A.; Jayanthi, M. Halo Priming of Seeds. *Research Journal of Seed Science*
399 2014, 7, 1–13, doi:10.3923/rjss.2014.1.13.

400 23. Zhang, Q.; Rue, K.; Mueller, J. The effect of glycinebetaine priming on seed germination of six turfgrass
401 species under drought, salinity, or temperature stress. *HortScience* 2014, 49, 1454–1460.

402 24. Davis, A. R.; Perkins, P.; Hassell, R.; Levi, A.; King, S. R.; Zhang, X. Grafting effects on vegetable quality.

403 403 HortScience **2008**, *43*, 1670–1672.

404 25. Zhang, Q.; Rue, K. Glycinebetaine seed priming improved osmotic and salinity tolerance in turfgrasses.

405 HortScience **2012**, *47*, 1171–1174.

406 26. Pandita, V. K.; Anand, A.; Nagarajan, S. Enhancement of seed germination in hot pepper following

407 presowing treatments. *Seed Science and Technology* **2007**, *35*, 282–290.

408 27. Ashraf, M.; Foolad, M. R. Pre-Sowing Seed Treatment-A Shotgun Approach to Improve Germination,

409 Plant Growth, and Crop Yield Under Saline and Non-Saline Conditions. *Advances in Agronomy* **2005**, *88*,

410 223–271, doi:10.1016/S0065-2113(05)88006-X.

411 28. Kato-Noguchi, H.; Tanaka, Y. Effects of Capsaicin on Plant Growth. *Biologia Plantarum* **2004**, *47*, 157–159,

412 doi:10.1023/A:1027317906839.

413 29. Albuquerque, K. S.; Guimarães, R. M.; Gomes, L. A.; Vieira, A. R.; Jácome, M. Condicionamento

414 osmótico e giberelina na qualidade fisiológica de sementes de pimentão colhidas em diferentes estádios

415 de maturação. *Revista Brasileira de Sementes* **2009**, *31*, 100–109, doi:10.1590/S0101-31222009000400012.

416 30. Andreoli, C.; Khan, A. A. Matricconditioning integrated with gibberellic acid to hasten seed germination

417 and improve stand establishment of pepper and tomato. *Pesquisa Agropecuaria Brasileira* **1999**, *34*, 1953–

418 1958, doi:10.1590/S0100-204X1999001000023.

419 31. Barboza da Silva, C.; Marcos-Filho, J.; Jourdan, P.; Bennett, M. A. Performance of bell pepper seeds in

420 response to drum priming with addition of 24-epibrassinolide. *HortScience* **2015**, *50*, 873–878.

421 32. García F., A.; Montes H., S.; Rangel L., J. A.; García M., E.; Mendoza E., M. Respuesta fisiológica de la

422 semilla chile piquín [Capsicum annuum var. glabriusculum (Dunal) Heiser & Pickersgill] al ácido

423 giberélico e hidrotermia. *Revista mexicana de ciencias agrícolas* **2010**, *1*, 203–216.

424 33. Tzortzakis, N. G. Effect of pre-sowing treatment on seed germination and seedling vigour in endive and

425 chicory. *HortScience* **2009**, *36*, 117–125.

426 34. Korkmaz, A.; Tiryaki, I.; Nas, M. N.; Ozbay, N. Inclusion of plant growth regulators into priming

427 solution improves low-temperature germination and emergence of watermelon seeds. *Canadian Journal*

428 of *Plant Science* **2004**, *84*, 1161–1165, doi:10.4141/P04-028.

429 35. Cano-Vazquez, A. Germinación en semilla de chile piquín (Capsicum annuum var. aviculare)., Tesis.

430 Colegio de Postgraduados Montecillo Mx., 2013.

431 36. Aloui, H.; Souguir, M.; Hannachi, C. Determination of an optimal priming duration and concentration

432 protocol for pepper seeds (Capsicum annuum L.). *Acta agriculturae Slovenica* **2014**, *103*, 213–221,

433 doi:10.14720/aas.2014.103.2.6.

434 37. Schwember, A. R.; Bradford, K. J. Drying rates following priming affect temperature sensitivity of

435 germination and longevity of lettuce seeds. *HortScience* **2005**, *40*, 778–781.

436 38. Bewley, J.; Black, M. Seeds: physiology of development and germination. *PlenumPress, New York*, 445p

437 1994.

438 39. Marín Sánchez., J.; Mejía Contreras, J. A.; Hernández Livera, A.; Peña Lomeli, A.; Carballo Carballo, A.

439 Osmotic Conditioning of Husk Tomato seeds. *Agricultura Técnica en México* **2007**, *33*, 115–123.

440 40. Mireles-Rodriguez, E.; Moctezuma-Balderas, N.; Castro-Nava, S.; Salazar-Hernandez, R.; Lucio-Castillo,

441 H.; Pérez-Jasso, C. Preaccondicionamiento en la germinación de cuatro colectas de chile piquín (

442 Capsicum annuum var. aviculare) de Tamaulipas, México. *Acta agrícola y pecuaria* **2015**, *1*, 99–106.

443 41. Wang-Kyun, R.; Hee-Woong, K.; Geun-Dong, K.; Hae-Ik, R. Rapid determination of capsaicinoids by

444 colorimetric method. *Journal of Food and Drug Analysis* **2017**, *25*, 798–803, doi:10.1016/J.JFDA.2016.11.007.

445 42. Guerrero, R. Niveles de dormancia en semillas de chiles silvestres de diferentes ecorregiones y desarrollo

446 de protocolos para la germinación y regeneración de accesiones., Tesis; U. A. Aguascalientes, Mx., 2015.

447 43. ISTA *Changes to the ISTA Rules for 2016*; Zurich, Switzerland., 2016; Vol. 2016;.

448 44. Zucconi, F.; Monaco, A.; Forte, M.; Bertoldi, M. de. Phytotoxins during the stabilization of organic

449 matter. In *Composting of agricultural and other wastes*; Gasser, J. K. R., Ed.; Elsevier: London, 1985; pp. 73–

450 85.

451 45. Ortega, M. C.; Aguado, M. T. Propuesta de bioensayos para detectar factores fitotoxicos en sustratos y

452 enmiendas. *Actas de Horticultura* **2000**, 363–377.

453 46. Selim, S. M.; Zayed, M. S.; Atta, H. M. Evaluation of Phytotoxicity of compost during Composting

454 Process. *Nature and Science* **2012**, 12, 69–77.

455 47. Korkmaz, A. Inclusion of acetyl salicylic acid and methyl jasmonate into the priming solution improves

456 low-temperature germination and emergence of sweet pepper. *HortScience* **2005**, 40, 197–200.

457 48. Rodríguez del Bosque, L. A.; Sánchez de la C., R.; Silva S., M. M. Effect of sunlight regimes on growth

458 and yield of piquin pepper (*Capsicum annuum* L. var. *aviculare*). *Revista Chapingo Serie Hortícola* **2005**,

459 11, 357–359.

460 49. López Valdez, A. Efecto de un Gradiente de Elevación, Procedencia y Temperatura en la Germinación

461 de chile Piquín (*Capsicum annuum* L. var. *glabnriuscum* (Dunal) Heiser y Pickersgill), Tesis Mestría;

462 U. A. Nuevo Leon, 2013.

463 50. Reid, S.; Armesto, J. J. Avian gut-passage effects on seed germination of shrubland species in

464 Mediterranean central Chile. *Plant Ecol* **2011**, 210, 1–10, doi:10.1007/s11258-010-9796-8.

465 51. Jaganathan, G. K.; Yule, K.; Liu, B. On the evolutionary and ecological value of breaking physical

466 dormancy by endozoochory. *Perspectives in Plant Ecology, Evolution and Systematics* **2016**, 22, 11–22,

467 doi:10.1016/j.ppees.2016.07.001.

468 52. Brochet, A. L.; Guillemain, M.; Gauthier-Clerc, M.; Fritz, H.; Green, A. J. Endozoochory of Mediterranean

469 aquatic plant seeds by teal after a period of desiccation: Determinants of seed survival and influence of

470 retention time on germinability and viability. *Aquatic Botany* **2010**, 93, 99–106,

471 doi:10.1016/j.aquabot.2010.04.001.

472 53. Barnea, A.; Yom-Tov, Y.; Friedman, J. Does Ingestion by Birds Affect Seed Germination? *Functional*

473 *Ecology* **1991**, 5, 394, doi:10.2307/2389811.

474 54. Akers, S. W.; Sardar, R.; Motes, J. E. Osmoconditionig Vegetable seed as a Synchronization Treatment

475 for germination prior to Fluid Drilling. *HortScience* **1983**, 18, 567–568.

476 55. Shim, J. S.; Moon, J. C.; Jang, C. S.; Raymer, P.; Kim, W. Effect of potassium nitrate priming on seed

477 germination of seashore paspalum. *HortScience* **2008**, 43, 2259–2262.

478 56. Abdalla, E.; Osman, A.; Maki, M.; Nur, F.; Ali, S.; Aune, J. The Response of Sorghum, Groundnut,

479 Sesame, and Cowpea to Seed Priming and Fertilizer Micro-Dosing in South Kordofan State, Sudan.

480 *Agronomy* **2015**, 5, 476–490, doi:10.3390/agronomy5040476.

481 57. Ruttanaruangboworn, A.; Chanprasert, W.; Tobunluepop, P.; Onwimol, D. Effect of seed priming with

482 different concentrations of potassium nitrate on the pattern of seed imbibition and germination of rice

483 (*Oryza sativa* L.). *Journal of Integrative Agriculture* **2017**, 16, 605–613, doi:10.1016/S2095-3119(16)61441-7.

484 58. Smith, P. T.; Cobb, B. G. Accelerated Germination of Pepper Seed by Priming with Salt Solutions and

485 Water. *HortScience* **1991**, 26, 417–419.

486 59. Marín Sanchez, J.; Mejía Contreras, J. A.; Hernández Hernandez., A.; Carballo Carballo., A.; Peña

487 Lomeli, A. Acondicionamiento osmótico de semillas de cebolla (*Allium cepa* L.). *Agricultura Técnica en*

488 *Méjico* **2007**, 33, 63–71.

489 60. Guzmán, M.; Olave, J. Effects of N-form and saline priming on germination and vegetative growth of
490 galia-type melon (*Cucumis melo* L. cv. Primal) under salinity. In *Proc. ViIIh Int. Symp. on Protected*

491 Cultivation in Mild Winter Climates; 2004; Vol. 2, pp. 253–260.

492 61. Demir, I.; Ozuaydin, I.; Yasar, F.; Van Staden, J. Effect of smoke-derived butenolide priming treatment
493 on pepper and salvia seeds in relation to transplant quality and catalase activity. *South African Journal of*
494 *Botany* **2012**, *78*, 83–87, doi:10.1016/j.sajb.2011.05.009.

495 62. Loehrlein, M.; Dennis, T. R. Seed Priming of Triploid Watermelon Seed. In *96th Annu. Int. Conf. Amer.*
496 *Soc. Hort. Sci.*; Minneapolis, 27–31 July 1999, 1999; Vol. 34, p. 481.

497 63. Barbosa B., T.; Ferreira S., F.; Duarte C., E.; Martins B., E.; Costa, E. Aspectos fisiológicos e qualidade de
498 mudas da pimenteira em resposta ao vigor e condicionamento das sementes. *Bragantia* **2015**, *74*, 367–373,
499 doi:10.1590/1678-4499.0133.

500 64. Garruña H., R.; Latournerie M., L.; Ayala G., O.; Santamaría, J. M.; Pinzón-L., L. Acondicionamiento pre-
501 siembra: Una opción para incrementar la germinación de semillas de chile habanero (*Capsicum chinense*
502 Jacq.). *Agrociencia* **2014**, *48*, 413–423.

503 65. Marín Sánchez, J.; Rivas Jacobo, M.; Flores Cano, J.; Rojas Velazquez, A.; Jarquin Gálvez, R. Efecto del
504 priming sobre la calidad fisiológica de semilla criolla de chile ancho (*Capsicum annuum* L.). *Ciencia y*
505 *Tecnol. Agrop.* **2013**, *1*, 1–6.

506 66. Saleh, M. M.; Abou-Hadid, A. F.; El-Beltagy, A. S. Sweet Pepper Emergence and Seedling Growth After
507 Seed Pre-Germination. *Acta Horticulturae* **1996**, *434*, 335–340, doi:10.17660/ActaHortic.1996.434.41.

508 67. Bodsworth, S.; Bewley, J. D. Osmotic priming of seeds of crop species with polyethylene glycol as a
509 means of enhancing early and synchronous germination at cool temperatures. *Canadian Journal of Botany*
510 **1981**, *59*, 672–676, doi:10.1139/b81-094.

511 68. Heydecker, W.; Higgins, J.; Gulliver, R. L. Accelerated germination by osmotic seed treatment. *Nature*
512 **1973**, *246*, 42–44, doi:10.1038/246042a0.

513 69. Cano-Vázquez, A.; López-Peralta, M. C.; Zavaleta-Mancera, H. A.; Cruz-Huerta, N.; Ramírez-Ramírez,
514 I.; Gardea-Béjar, A.; González-Hernández, V. A. Variación en grados de latencia en semillas entre
515 colectas de chile piquín (*Capsicum annuum* var. *glabriusculum*). *Botanical Sciences* **2015**, *93*, 175,
516 doi:10.17129/botsci.138.

517 70. Medina M., T.; Villalón M., H.; Pérez H., J. M.; Sánchez R., G.; Salinas H., S. Avances y perspectivas de
518 investigación del chile piquín en Tamaulipas, México. *Ciencia UAT* **2010**, *4*, 16–21.

519 71. Koornneef, M.; Bentsink, L.; Hilhorst, H. Seed dormancy and germination. *Current Opinion in Plant*
520 *Biology* **2002**, *5*, 33–36, doi:10.1016/S1369-5266(01)00219-9.

521