

1 Article

2 **Effect of potassium chlorate on the treatment of
3 domestic sewage by achieving shortcut nitrification
4 in constructed rapid infiltration system**5 **Qinglin Fang¹, Wenlai Xu^{1,2,*}, Zhijiao Yan² and Lei Qian²**6 ¹ State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of
7 Technology, Chengdu, China 610059; txgsfy@163.com8 ² State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &
9 Water Pollution, Chengdu University of Technology, Chengdu, China 610059; yanzhijiaocdt@126.com,
10 qianleicdt@yeah.net

11 * Correspondence: xuwenlai1983@163.com; Tel.: +86-135-510-29646

12

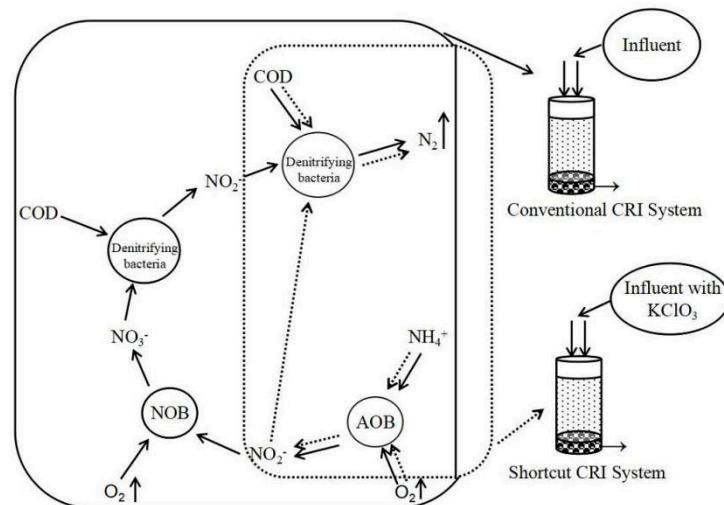
13 **Abstract:** Constructed rapid infiltration system (CRI) is a new type of sewage biofilm treatment
14 technology, but due to its anaerobic zone lacks of the carbon sources and the condition for nitrate
15 retention, its nitrogen removal performance is very poor; However, shortcut nitrification-
16 denitrification process presents distinctive advantages, as it saves oxygen, requires less organic
17 matter and needs less time for denitrification compared to conventional nitrogen removal method.
18 Thus, if the shortcut nitrification-denitrification process could be applied to CRI system properly,
19 the simpler, more economic and efficient nitrogen removal method will be obtained. But, as its
20 reaction process shows that the first and the most important step of achieving shortcut nitrification-
21 denitrification is to achieve shortcut nitrification. Thus, in this study, we explored the feasibility to
22 achieve shortcut nitrification, which produces nitrite as the dominant nitrogen species in effluent,
23 by addition of potassium chlorate (KClO₃) to the influent. In an experimental CRI model system, the
24 effects on nitrogen removal, nitrate inhibition and nitrite accumulation were studied, and the
25 advantages of achieving shortcut nitrification-denitrification were also analysed. The results
26 showed that shortcut nitrification was successfully achieved and maintained in a CRI system by
27 adding 5 mM KClO₃ to the influent at a constant pH of 8.4. Under these conditions nitrite
28 accumulation rate was increased, while a lower concentration of 3 mM KClO₃ had no obvious effect.
29 The addition of 5 mM KClO₃ in influent presumably allowed sufficient activity of ammonia-
30 oxidizing bacteria (AOB) but inhibited nitrite-oxidizing bacteria (NOB) strongly enough to result in
31 a maximum nitrite accumulation rate of up to over 80%. As a result, nitrite became the dominant
32 nitrogen product in the effluent. Moreover, if the shortcut denitrification will be achieved in the
33 subsequent research, it could save 60.27 mg carbon source (CH₃OH) consumption when treatment
34 of per liter sewage in CRI system compared with full denitrification process.35 **Keywords:** shortcut nitrification; constructed rapid infiltration system; potassium chlorate
36 inhibition; domestic sewage

37

38 **1. Introduction**39 Sewage treatment technology for domestic sewage and polluted surface water treatment in small
40 towns—Constructed rapid infiltration system (CRI) is a new sewage biofilm treatment technology
41 put forwarded by professor Zhong zuoshen[1], due to it presents the both advantages of sewage
42 rapid infiltration land treatment system and constructed wetland system, attracted
43 increasing attention in recent years[2]. CRI system is mainly composed of feeding tank, grille,
44 preliminary sedimentation tank, rapid infiltration tank and outlet system, adopts the dry-wet

45 alternating operation mode and uses natural river sand, coal gangue, natural gravel, etc., to replace
 46 natural soil as filling medium to improve hydraulic load to 1.0-1.5m/d[3], the pictures of practical
 47 engineering of CRI system are shown in Fig.1. The removal mechanism of CRI system is to use the
 48 filling medium and microorganisms grown on the filling medium to adsorb, intercept and
 49 decompose the pollutants in sewage[4]. Especially, due to CRI system has the unique structure and
 50 feeding mode, its filling medium has the aerobic, facultative and anaerobic environment to grow
 51 abundant microorganism to make efficient sewage treatment[5]. As the previous practice showed,
 52 CRI system has a significant effect on the treatment of domestic sewage in small towns[6], whose
 53 removal rates of CODcr, NH₄⁺-N, suspended solid (SS) and linear alkylbenzene sulfonates (LAS)
 54 could reach to above 85%, 90%, 95% and 95%, respectively and has the advantages of less energy-
 55 intensive, more environment-friendly and has a remarkable economic benefit compared with the
 56 conventional treatment systems[7]. Although, CRI system has a good removal effect of NH₄⁺-N, due
 57 to its anaerobic zone lacks of the carbon sources for denitrification and the condition for nitrate
 58 retention[8], the concentration of nitrate in effluent is so high that total nitrogen (TN) removal rate
 59 only can reach to 10-30%[9].

60


61 **Figure1.** Practical engineering of Phoniex River CRI system operated successfully for 12 years in
 62 Chengdu, China.

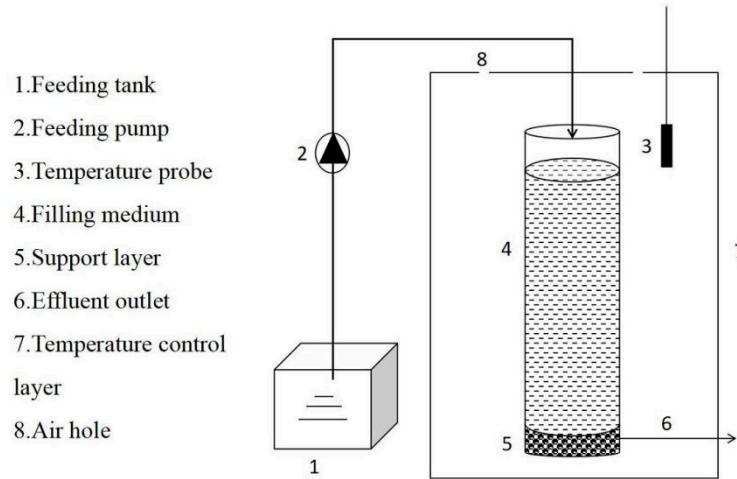
63 To enhance the nitrogen removal performance of CRI, the methods of adding extra carbon
 64 sources, optimizing the packing structure[10] and changing the water feeding patterns[1] were
 65 adopted, but those methods were all rely on the full nitrification- denitrification process which were
 66 difficult to overcome the problem of carbon source consumption and reduction of denitrifying
 67 bacteria activity during the long-term operation, and were also difficult to be popularized in the
 68 actual engineering ,due to their complex operating process.

69 Shortcut nitrification-denitrification is a novel biofilm nitrogen removal process which allows
 70 oxidation of ammonia to nitrite but no further oxidation to nitrate and reduces nitrite into nitrogen
 71 gas directly to achieve nitrogen removal in the system (Fig.2). Shortcut nitrification-denitrification
 72 presents distinctive advantages, as it saves oxygen and requires less organic matter compared to full
 73 nitrification-denitrification. But, as the Fig.2 shows, for shortcut nitrification-denitrification to be
 74 employed, the key point is to achieve shortcut nitrification, in other word, is to accumulate and
 75 maintain enough nitrite, which is produced by ammonium-oxidizing bacteria (AOB), and at the same
 76 time to inhibit or wash out nitrite-oxidizing bacteria (NOB), which would oxidize the produced nitrite
 77 to nitrate[11]. The conditions required to inhibit nitrite oxidization can be established with high
 78 concentrations of ammonium, a low concentration of dissolved oxygen, a high concentration of free

nitrous acid and a permissive temperature. So far, shortcut nitrification has been achieved in various systems, such as aerated constructed wetland[12], a sequencing batch reactor (SBR)[13]and submerged biofilters[14], all of which resulted in high nitrite accumulation rates. The use of specific inhibitors can further improve shortcut nitrification. For example, Xu et al[13] studied the effect of hydroxylamine addition on shortcut nitrification in SBR, and Chen et al[15] used this same inhibitor in CRI; both found nitrite accumulation rates reaching more than 90%. Sukru and Erdal[14] and Cui et al[16] found that increasing salinity could further promote the accumulation of nitrite. Moreover, Ge et al[17] showed that low concentrations (4mg/L) of chlorine could improve the nitrite accumulation rate to reach 60-70%. Already in 1957, chlorate was described as a specific inhibitor of NOB: chlorate could inhibit the growth of autotrophic nitrite oxidizers at low concentration and completely inhibit nitrite oxidation at high concentrations[18]. Subsequent studies reported that addition of chlorate could result in nitrite to become the dominant product of NO_x in effluent, by allowing AOB activity while inhibiting NOB. For instance, Xu et al[11] showed that addition of chlorate to aerobic granules resulted in a 90% increase of nitrite accumulation in the effluent. Other studies showed that chlorate inhibited the oxidation of nitrite to nitrate, but it did not affect the oxidation of NH_4^+ to NO_2^- [19]; likewise, Xu et al[11] found that oxidation NH_4^+ to NO_2^- was not severely inhibited by chlorate. Such studies showed that shortcut nitrification can be achieved effectively by addition of specific inhibitors including chlorate, but the effect of adding potassium chlorate (KClO_3) in CRI has not yet been studied in detail.

Here, we tested whether potassium chlorate could improve performance of shortcut nitrification and removal efficiency of pollutants in a CRI system under experimental conditions and prospected the benefits of achieving shortcut denitrification.

101


102 **Figure 2.** Comparison of full nitrification-denitrification process and shortcut nitrification-
103 denitrification process ("→"represents the process of full nitrification-denitrification; "→" "represents the process of shortcut nitrification-denitrification;)

105 2. Materials and methods

106 2.1 Experimental design

107 Four separate CRI columns were constructed using PVC (diameter 8 cm, height 30 cm) in the
108 laboratory under controlled conditions. The temperature was kept constant at $34.2\pm1.1^\circ\text{C}$. The filling
109 medium of the columns consisted of two functional layers: a 5 cm deep supporting layer consisting
110 of pebbles (5.0-10.0mm) and gravel (3.0-4.0mm) 2mm at the bottom, covered by a 20 cm deep
111 treatment layer filled with 90% river sand (0.25 - 0.30 mm), 5% marble sand (1.0 - 2.0 mm) and 5%
112 zeolite sand (1.5-1.7mm) on the top of the supporting layer (Fig.3). The influent sewage was circulated

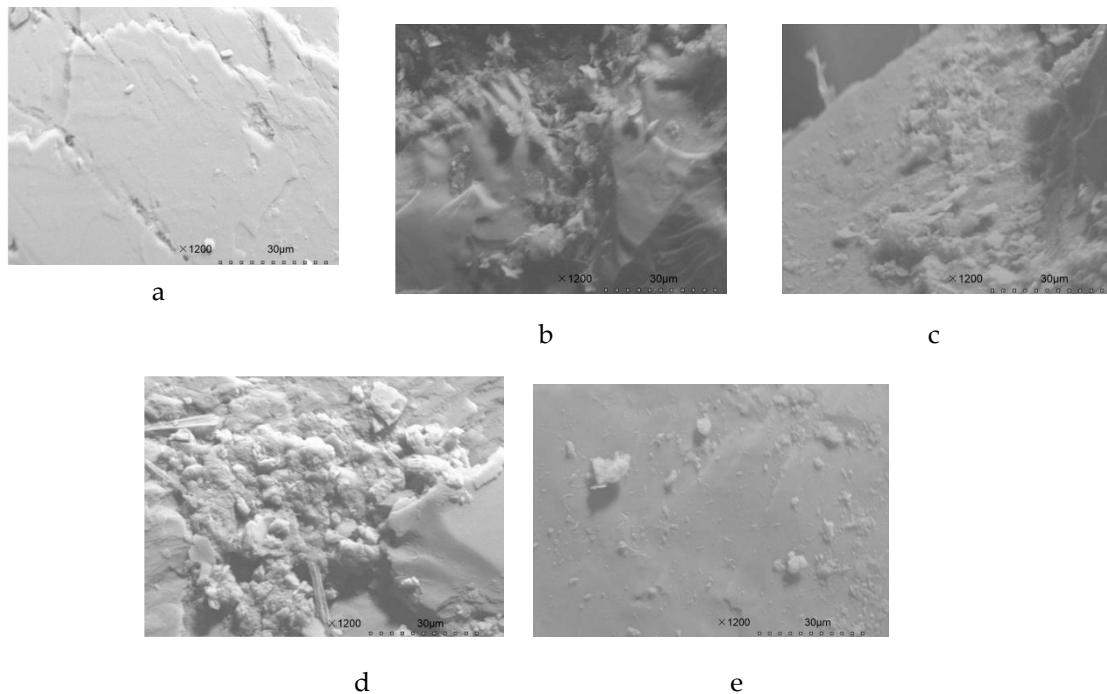
113 by a water pump so that it entered at the top of the column, moved through the packing medium
 114 vertically, and left by the outlet where water quality was measured.

115

116

Figure 3. Experimental CRI system

117 *2.2. Sewage and operational conditions*


118 The influent sewage used in this study was a mixture of synthetic sewage and domestic sewage,
 119 with water quality parameters as shown in Table 1. The water was fed into the system by a dry-wet
 120 alternating operation mode as follows: water feeding was allowed twice daily with a hydraulic load
 121 of 0.6 m/d and a hydraulic retention time of 1.5 h. The system was run for 70 days of continuous
 122 operation, by which time the removal rates of ammonium nitrogen ($\text{NH}_4^+ \text{-N}$) in the effluent reached
 123 88%, indicating biofilms had formed successfully in the CRI and the scanning electron microscope
 124 pictures of filling medium of each columns are shown in Fig.4. In order to investigate the effect of
 125 potassium chlorate addition, the experimental columns were used as individual Models. Model 1
 126 was the control treatment not receiving additions, and the pH of influent of Models 2-4 was adjusted
 127 to 8.4 by addition of NaOH solution. Moreover, in Model 3 KClO_3 was added to the influent at a final
 128 concentration of 5 mM, while in Model 4 a concentration of 3 mM KClO_3 was used.

129

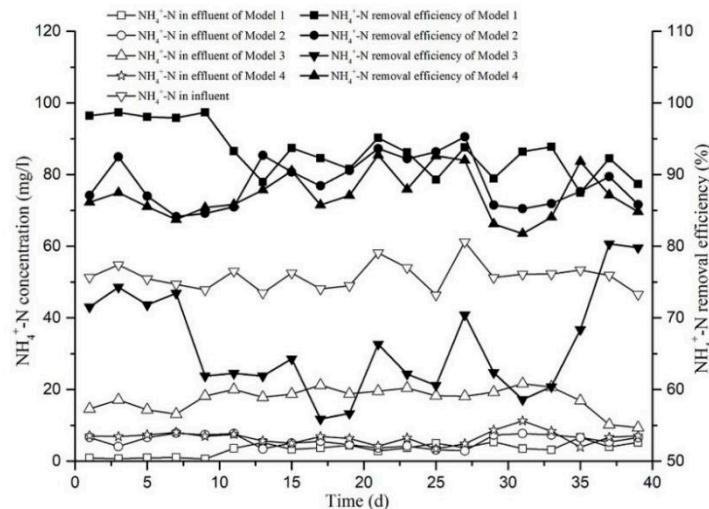
Table 1. Water quality parameters of influent.

Water quality parameters	Concentration (mg/L)
Chemical Oxygen Demand (COD)	245.22 \pm 30.51
$\text{NH}_4^+ \text{-N}$	53.93 \pm 7.31
$\text{NO}_3^- \text{-N}$	1.15 \pm 0.92
$\text{NO}_2^- \text{-N}$	0.14 \pm 0.12
Total Nitrogen (TN)	55.35 \pm 7.14
pH	7.3 \pm 0.2 (control), 8.4 (Models 2-4)
Temperature (°C)	34.2 \pm 1.1

130

131 **Figure 4.** SEM images of filling medium. (a) blank filling medium;(b-e) filling medium (formed with
132 biofilm) of Model 1-4

133 **2.3. Analytical methods**

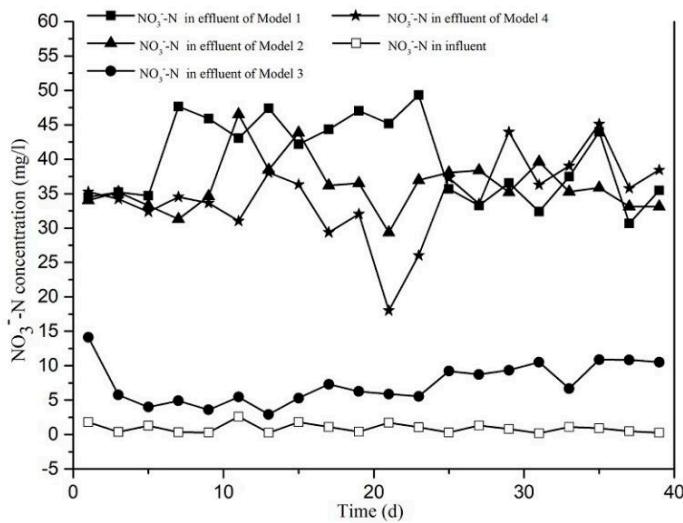

134 Water samples from influent and effluent were collected every 2 days, filling medium samples
135 were collected after biofilm formed successfully. Concentration of COD in the water was determined
136 using the potassium dichromate method; concentration of nitrogen in the form of ammonium was
137 determined by Nessler's Reagent Colorimetric Method, nitrate (NO_3^- -N) by UV-spectrometry, nitrite
138 (NO_2^- -N) by molecular absorption spectrophotometry, and total nitrogen (TN) by UV-spectrometry,
139 using standard procedures[20]. The biofilm of the filling medium was prepared by the
140 glutaraldehyde fixation method[21] and observed by using scanning electron microscope (SEM). The
141 nitrite accumulation rate was calculated as the ratio of NO_2^- /(NO_2^- + NO_3^-)[12].

142 **3. Results and Discussion**

143 **3.1. Effect of potassium chlorate on removal efficiency of ammonium nitrogen**

144 The removal efficiency of nitrogen in the form of ammonium in CRI system was compared
145 between the controls (with and without pH adjustment) and after the addition of two concentrations
146 of KClO_3 to the influent. Removal efficiency was calculated as the difference in concentration between
147 influent and effluent (influent concentration minus effluent concentration) divided by the
148 concentration in influent.

149 Adjustment of the influent pH to 8.4 only had a minor effect on ammonium nitrogen removal
150 during the first 10 days (Fig. 5). There was no difference in removal efficiency between Model 4 (with
151 addition of 3mM KClO_3) and Model 2 (without KClO_3 addition), as both reached approximately 87%
152 removal on average (Fig. 5). However, in presence of 5mM KClO_3 (Model 3), the NH_4^+ -N removal
153 efficiency was reduced, though it still reached 66% on average. This is most likely the chlorate has a
154 slight inhibition of AOB activity, as a result of which NH_4^+ -N oxidation efficiency was less efficient.



155

156 **Figure 5.** The ammonium-nitrogen removal efficiency (in %) and the absolute concentration of NH₄⁺-N in the four experimental models of CRI
157

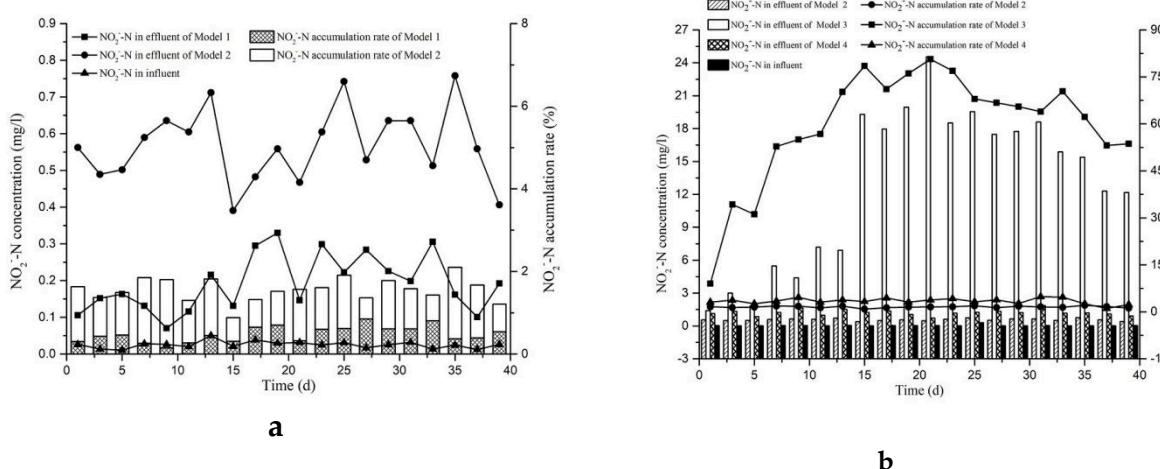
158 3.2. Effect of potassium chlorate on nitrate accumulation in CRI system

159 Accumulation of nitrogen in the form of nitrate was next assessed. As can be seen in Fig. 6, there
160 was no significant difference between Model 2, resulting in a nitrate concentration of on average 36.24
161 mg/L, and Model 4, resulting in 34.51 mg/L. Very similar results were obtained for the control in
162 which the pH of the influent had not been adjusted (Model 1). In contrast, Model 3 resulted in much
163 lower nitrate concentrations of approximately 7.39 mg/L on average, which represented an 80%
164 reduction compared to the control. As shown, the nitrate concentration in effluent of Model 3 was
165 reduced within 48 hr after addition of 5 mM KClO₃ and reached a minimum of 2.92 mg/L on day 13.
166 This result shows that addition of 5 mM KClO₃ in influent was able to strongly prevent the oxidation
167 of nitrite, a condition that favors the accumulation of nitrite and is desired for shortcut nitrification
168 achievement.

169

170 **Figure 6.** The nitrate-nitrogen concentration in influent and effluent in the four experimental models
171 of CRI

172 3.3 Effect of potassium chlorate and pH on nitrite accumulation in CRI system


173 Previous studies have described that the pH of the influent is a decisive factor for inhibiting
174 NOB activity. For instance, Banashri[19] described that nitrite accumulation can be improved at high
175 pH. We also observed (Fig. 7a) that adjustment of the influent water pH to 8.4 slightly improved the

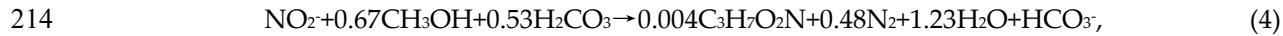
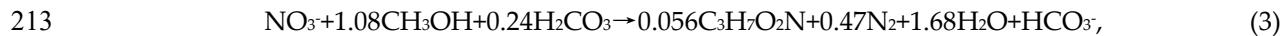
176 average nitrite accumulation rate, from 0.50% in Model 1 (unadjusted pH) to 1.5% in effluent of Model
 177 2 (pH 8.4). Nevertheless, this increase was too weak to support shortcut nitrification. Thus, a
 178 controlled pH of 8.4 is by itself insufficient to enable effective shortcut nitrification in CRI.

179 The average nitrite accumulation rates in our models are shown as curves in Fig. 7b. As can be
 180 seen, these rates were very low in Model 2 (1.56% on average) and Model 4 (3.43%), but much
 181 increased in Model 3, resulting in 59.80% accumulation rates on average. Thus, the addition of 5mM
 182 KClO_3 strongly supported accumulation of nitrite in the model CRI system. Combined with the data
 183 presented in Figures 6 and 7, it can concluded that, whereas nitrate was the dominant product in
 184 effluent of Models 1, 2 and 4, nitrite was the dominant nitrogen product of Model 3, as a result of
 185 effective nitrite oxidation inhibition.

186 As apparent in Fig. 7b, the nitrite accumulation rate in effluent of Model 3 increased sharply
 187 during the first 7 days (from initially 9.02% to 52.76%) and further increased to reach a plateau of up
 188 to 80% during days 15-23. The nitrite concentration peaked at day 21 at 24.54mg/L. After this, the
 189 nitrite accumulation rate slightly decreased, still maintaining 53% at day 39. This indicates that
 190 shortcut nitrification can be not only achieved but also maintained in the tested CRI system by
 191 addition of 5mM KClO_3 in the influent at a pH of 8.4.

192

193 **Figure 7.** Nitrite accumulation in effluent. Panel a: Effect of pH on nitrite accumulation in the effluent of
 194 Model 1 (unadjusted pH) and Model 2 (pH 8.4). Panel b: The nitrite accumulation rate (curves) and
 195 concentration (bars) in effluent.



196 3.4 Prospects for the achievement of shortcut nitrification-denitrification in CRI system

197 In 1975, the concept of shortcut nitrification-denitrification biological nitrogen removal process
 198 was put forwarded for the first time by Votes after he finding the phenomenon of NO_2^- -N
 199 accumulation during nitrification process[22]. Then, this new nitrogen removal process has attracted
 200 increasing attention from experts and researchers. The equations of nitrification(Eq1) and shortcut
 201 nitrification (Eq2) are shown as follows:

204 As we can see from Fig.6 and Fig.7, the average nitrate concentration of Model 2 and Model 3
 205 are about 36.24mg/l and 7.39mg/l, respectively, the average nitrite concentration of Model 2 and
 206 Model 3 are about 0.57mg/l and 12.98mg/l, respectively. Therefore, according to the Eq1 and Eq2,
 207 Model 3 reduced about 21.77 mg (treatment of per liter sewage) oxygen consumption during the
 208 process of nitrification compared with Model 2. Most of the denitrifying bacteria are facultative and
 209 use organic matters as carbon sources under the anoxic condition to provide energy. Gómez et al[23]
 210 found that CH_3OH is an ideal carbon source for denitrification. Thus, if CH_3OH is chosen as carbon

211 source, the equations of full denitrification (Eq3) and shortcut denitrification (Eq4) are shown as
212 follows:

215 According to Eq3 and Eq4 and the data from Fig.6 and Fig.7, if the subsequent shortcut
216 denitrification will be achieved, the dosage of CH_3OH used for Model 2 denitrification will consume
217 98.38 mg (treatment of per liter sewage) during operating period, but, the Model 3 only needs
218 38.11mg (treatment of per liter sewage) CH_3OH for denitrification and shortcut denitrification, which
219 was only 38.73% of the consumption of Model 2. Thus, achievement of shortcut nitrification-
220 denitrification in CRI system will not only improve denitrification rate, simplify reaction process, but
221 also save oxygen and carbon source consumption, as well as operating costs significantly.

222 Conclusions

223 (1) The addition of 3 mM KClO_3 to influent at a constant pH of 8.4 is not sufficient to support the
224 activity of AOB and inhibit that of NOB so that shortcut nitrification does not take place in CRI.

225 (2) Adjusting the pH of influent to 8.4 alone did not contribute much to establish shortcut
226 nitrification in CRI.

227 (3) The addition of 5 mM KClO_3 in influent (pH=8.4) supported efficient shortcut nitrification by
228 supporting the activity of AOB and inhibiting that of NOB, whereby the inhibition of NOB was more
229 significant and much stronger. This resulted in nitrite to become the dominant product of NO_x in
230 effluent, and stable, long-term shortcut nitrification was successfully achieved in the CRI system.

231 (4) Compared with full nitrification, shortcut nitrification saved more than 21.77 mg (treatment
232 of per liter sewage) oxygen consumption during reaction process. In addition, according to the data
233 of nitrate and nitrite in Fig.6 and Fig.7, the consumption of carbon source (CH_3OH) for subsequent
234 denitrification was calculated and analyzed by using Eq3 and Eq4, the results showed that the
235 consumption of carbon source (CH_3OH) of Model 3 was only 38.73% of the consumption of Model
236 2. Therefore, compared with conventional sewage treatment methods, achievement of shortcut
237 nitrification and denitrification process in CRI system will both taking the advantages of CRI system
238 which has the unique structure and feeding mode to construct aerobic, facultative and anaerobic
239 environment for microorganism enriching in the filling medium, and the shortcut nitrification-
240 denitrification process which could improve denitrification rate, save oxygen and carbon source
241 consumption, as well as operating costs.

242 **Acknowledgments:** This research is funded by Chinese National Natural Science Foundations (41502333),
243 Sichuan science and technology support project (2017JY0141), China Postdoctoral Science Foundation
244 (2017M610598), and the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection
245 Foundation (SKLGP2016Z019). We received above funds for covering the costs to publish in open access.

246 **Author Contributions:** Wenlai Xu conceived and designed the experiments; Qinglin Fang performed the
247 experiments; Zhijiao Yan analyzed the data; Lei Qian contributed reagents and analysis tools; Wenlai Xu wrote
248 the paper.

249 **Conflicts of Interest:** The authors declare no conflict of interest.

250 References

1. Fan, X.J., Fu, Y.S., Liu, F., Xue, D., Xu, W.I. Total nitrogen removal efficiency of improved constructed rapid infiltration system. *Technol Water Treat.* 2009, 10(35),70-72,85.
2. Ronald, W. C., Sherwood, C. R., Robert K.B. Applying treatment wastewater to land. *Bio Cycle.* 2001, (4), 32-35.
3. He, J.T., Zhong, Z.S., Tang, M.G. New method of solving contradiction of rapid infiltration system land using. *Geosci.* 2001, 15(13),339 - 345.
4. Xu, W. L.; Zhang, W.; Jian, Y. Analysis of nitrogen removal performance of constructed rapid infiltration system (CRIS). *Appl Ecol Env Res.* 2017, 15(1),199-206.

- 259 5. Xu, W. L.; Yang, Y.N.; Cheng, C. Treat Phoenix River water by constructed rapid Infiltration system. *J Coastal*
260 Res. 2015, 73(s), 386-390.
- 261 6. Liu, G.Y., Zhang, H.Z., Zhang, X., Li, W. Development of total nitrogen removing technology in constructed
262 rapid infiltration systems. *Ind Water Treat.* 2013, 33(3), 1 - 4.
- 263 7. Ling, Y., Fan, L.K., Min, X., Yue, L., Sen, W. Environmental economic value calculation and sustainability
264 assessment for constructed rapid infiltration system based on emergy analysis. *J Clean Prod.* 2017, 167, 582
265 - 588.
- 266 8. Wang, L., Yu, Z.P., Zhao, Z.J. The removal mechanism of ammoniac nitrogen in constructed rapid
267 infiltration system. *China Environ Sci.* 2006, 26(4), 500 - 504.
- 268 9. Zhang, J.B. Study on constructed rapid infiltration for wastewater treatment. Doctoral thesis, University of
269 Geosciences, Beijing: China, 2002.
- 270 10. Song, Z.X., Zhang, H.Z., Wang, Z.L., Ping, Y.H., Liu, G.Y., Zhao, Q. Treating sewage by strengthened
271 constructed rapid infiltration system. *Chinese J Environ Eng.* 2016, 10(7), 3491-3495.
- 272 11. Xu, G.J., Xu, X.C., Yang, F.L., Liu, S.T. Selective inhibition of nitrite oxidation by chlorate dosing in aerobic
273 granules. *J. Hazard. Mater.* 2011, 185, 249-254.
- 274 12. Hou, L., Xia, L., Ma, T., Zhang, Y.Q., Zhou, Y.Y., He, X.G. Achieving short-cut nitrification and
275 denitrification in modified intermittently aerated constructed wetland. *Bioresour. Technol.* 2017, 232, 10-17.
- 276 13. Xu, G.J., Xu, X.C., Yang, F.L., Liu, S.T., Gao, Y. Partial nitrification adjusted by hydroxylamine in aerobic
277 granules under high DO and ambient temperature and subsequent Anammox for low C/N wastewater
278 treatment. *Chem. Eng. J.* 2012, 213, 338-345.
- 279 14. Sukru, A., Erdal, S. Influence of salinity on partial nitrification in a submerged biofilter. *Bioresour. Technol.*
280 2012, 118, 24-29.
- 281 15. Chen, J., Zhang, J.Q., Wen, H.Y., Zhang, Q., Yang, X., Li, J. The effect of hydroxylamine inhibition and pH
282 control on achieving shortcut nitrification in constructed rapid infiltration system. *Acta Scien. Circum.* 2016,
283 36(10), 3728-3735.
- 284 16. Cui, Y.W., Peng, Y.Z., Gan, X.Q., Ye, L., Wang, Y.Y. Achieving and maintaining biological nitrogen removal
285 via nitrite under normal conditions. *J. Environ. Sci.* 2005, 17(5), 794-798.
- 286 17. Ge, L.P., Qiu, L.P., Liu, Y.Z., Zhang, S.B. Effect of Free Chlorine on Shortcut Nitrification in Biological
287 Aerated Filter. *J Jinan Univ (Sci. and Tech.)*. 2011, 25(4), 336-339.
- 288 18. Lees, H., Simpson, J.R. The biochemistry of the nitrifying organisms. 5. Nitrite oxidation by Nitrobacter.
289 *Biochem J.* 1957, 65, 297-305.
- 290 19. Banashri, S.A.P.A. Partial nitrification—operational parameters and microorganisms involved. *Rev Environ*
291 *Sci Biotechnol.* 2007, 6, 285-313.
- 292 20. Wei, F.S. The Standard Methods for the Examination of Water and Wastewater (Fourth Edition). China
293 Environmental Science Press: Beijing, China; 211, 254-279, 9787801634009.
- 294 21. Ni, H., Xiong, Z., Zhang, S., Zeng, S.Q., Li, L. Effect of porous ceramic on the immobilized microorganisms
295 and scanning electron microscopy. *J Hubei Univ (Natural Science)*. 2011, 33(2), 182-186.
- 296 22. Mulder, A., Van, D., Graaf, A. A., Robertson, L.A., Kuenen, J.G. Anaerobic ammonium oxidation
297 discovered in a denitrifying fluidized bed reactor. *Fems Microbiol Ecol.* 1995, 16(3), 177-184.
- 298 23. Gómez, M.A., González- López, J., Hontoria- García, E. Influence of carbon source on nitrate removal of
299 contaminated ground-water in a denitrifying submerged filter. *J. Hazard. Mater.* 2000, 80, 69-80.