Preprint
Communication

Travel Time Prediction Based on Data Feature Selection and Data Clustering Methods

Altmetrics

Downloads

534

Views

520

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

22 February 2018

Posted:

07 March 2018

You are already at the latest version

Alerts
Abstract
In recent years, governments applied intelligent transportation system (ITS) technique to provide several convenience services (e.g., garbage truck app) for residents. This study proposes a garbage truck fleet management system (GTFMS) and data feature selection and data clustering methods for travel time prediction. A GTFMS includes mobile devices (MD), on-board units, fleet management server, and data analysis server (DAS). When user uses MD to request the arrival time of garbage truck, DAS can perform the procedure of data feature selection and data clustering methods to analyses travel time of garbage truck. The proposed methods can cluster the records of travel time and reduce variation for the improvement of travel time prediction. After predicting travel time and arrival time, the predicted information can be sent to user’s MD. In experimental environment, the results showed that the accuracies of previous method and proposed method are 16.73% and 85.97%, respectively. Therefore, the proposed data feature selection and data clustering methods can be used to predict stop-to-stop travel time of garbage truck.
Keywords: 
Subject: Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated