

1 *Review*

## 2 **Conflicting roles of Connexin43 in tumor-induced** 3 **inflammation and cancer pathology**

4 **Miaki Uzu<sup>1,2</sup>, Wun Chey Sin<sup>3</sup>, Ayaka Shimizu<sup>1</sup>, Hiromi Sato<sup>1,\*</sup>**5 <sup>1</sup> Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences,  
6 Chiba University; hiromi-s@chiba-u.jp7 <sup>2</sup> Division of Cancer Pathophysiology, National Cancer Center Research Institute; muzu@ncc.go.jp8 <sup>3</sup> Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia;  
9 wc.sin@ubc.ca

10 \* Correspondence: hiromi-s@chiba-u.jp; Tel.: +81-43-226-2877

11 **Abstract:** The tumor microenvironment is known to have increased levels of cytokines and  
12 metabolites, such as glutamate, due to their release from the surrounding cells. A normal cell around  
13 the tumor that responds to the inflammatory environment is likely to be subsequently altered. We  
14 will discuss how these abnormalities will support tumor survival via the actions of gap junctions  
15 (GJs) and hemichannels (HCs) which are composed of hexamer of connexin 43 (Cx43) protein. In  
16 particular, we will discuss how GJ intercellular communication (GJIC) in glioma cells, the primary  
17 brain tumor, is a regulatory factor and its attenuation leads to tumor invasion. In contrast, the  
18 astrocytes, which are normal cells around the glioma, are "hijacked" by tumor cells, either by  
19 receiving the transmission of malignant substances from the cancer cells via GJIC, or perhaps via  
20 astrocytic HC activity through the paracrine signaling which enable the delivery of these substances  
21 to the distal astrocytes. This astrocytic signaling would promote tumor expansion in the brain. In  
22 addition, brain metastasis from peripheral tissues has also been known to be facilitated by GJs  
23 formed between cerebral vascular endothelial cells and cancer cells. Astrocytes and microglia are  
24 generally thought to eliminate cancer cells at the blood brain barrier. In contrast, some reports  
25 suggest they facilitate tumor progression as tumor cells take advantage of the normal functions of  
26 astrocytes that support the survival of the neurons by exchanging nutrients and metabolites. In  
27 summary, GJIC is essential for the normal physiological function of growth and allowing the  
28 diffusion of physiological substances. Therefore, whether GJIC is cancer promoting or suppressing  
29 may be dependent by what permeates through GJs, when it is active, and to which cells. The nature  
30 of GJs, which has been ambiguous in brain tumor progression, will need to be re-visited and  
31 understood together with new findings on Cx proteins and HC activities.

32 **Keywords:** connexin43; central nervous system; glioma; astrocyte; blood brain barrier;  
33 neurovascular unit

---

### 35 **1. Introduction**

36 The gap junction (GJ) protein connexin (Cx) 43 forms intercellular channels permitting the  
37 passage of small ions and signaling molecules between adjacent cells (1, 2). In particular, connexin43  
38 (Cx43), an ubiquitous isoform, is deeply involved in regulating cell functions mainly via three kinds  
39 of approaches; one is the channel function of the GJ as an intercellular junction, second is the  
40 'hemichannel (HC)' permitting paracrine communication between the cytosol and the extracellular  
41 environment (3, 4), and third is the non-channel function via its C-terminal where intermolecular  
42 interaction occurs.

43 The oncogenicity of a tumor cell depends on its proliferative capacity, motility and viability. Due  
44 to the nature of Cx that functions at the cell surface, Cx is associated with all of these cellular  
45 phenotypes. Induction of inflammatory signaling, such as the treatment of anti-cancer agents and  
46 exposure to cytokines, also modulates Cx functions, intra- and extra-cellularly. Therefore, Cx can be

1 a target of drug development, however, whether they promote exacerbations or support clinical  
 2 improvement depends on the surrounding environment: which cell (molecule) the Cx is  
 3 communicating with, or by which structure Cx exerts its function.

4 The pivotal role of Cx43 in promoting tumor progression has been previously overlooked  
 5 because downregulation of Cx43-mediated intercellular communication is normally associated with  
 6 increased malignancy in tumor cells (5, 6). Indeed, for a long period, it was believed that the GJ  
 7 formed by Cx43 has mostly tumor suppressive effects (5-7), such as its role in anti-proliferation (8, 9),  
 8 anti-metastasis (10), and pro-apoptosis (11-15). In contrast, emerging evidence indicates that Cx43  
 9 serves a facilitative role in tumorigenesis (5, 16), especially in advanced stages (7). Additionally, it  
 10 has been demonstrated that Cx43 allows the tumor cells to hijack programs that are part of normal  
 11 tissue development (17).

12 In this review, we will focus on the paradoxically unique characteristics of Cx43 in cancer  
 13 pathology of the central nervous system (CNS), in particular, the gliomas which are aggressive brain  
 14 tumors, and metastatic cancers which move from the peripheral tissues into the brain, with reference  
 15 to our recent findings.

## 16 2. the Role of Cx43 in Tumors Of The CNS

17 In the CNS, several Cx molecules have been observed; Cx30, Cx32, Cx36 and Cx43 in neurons,  
 18 Cx30, Cx40, Cx43, and Cx45 in astrocytes, Cx32, Cx36 and Cx43 in microglia, Cx26, Cx32, Cx29, Cx36,  
 19 and Cx47 in an oligodendrocyte (18-20). Although they were observations from rodents, Cx43 is one  
 20 of the subtypes that showed high conservation in the majority of positions shown to be important  
 21 residues for channel oligomerization, gating, permeation and docking (21) and is the major subtype  
 22 in the CNS. GJs formed by Cx43 are often observed between astrocytes, and cell junctions with  
 23 heterologous cells have also been reported. The paradoxical roles of this molecule are highlighted in  
 24 Table 1 which highlights three types of formations as GJs, HCs, or non-channel functions (inter-  
 25 molecular interaction).

26 **Table 1.** Summary of the role of Cx43 with specific cell combinations in cancer pathology.

| Cell combination          | Form of Cx                                             | Transmitter or Partner molecule | Effect on malignant behavior and mechanisms suggested to be occurred in cancer cells                                                                                           | Ref                          |
|---------------------------|--------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Mesothelioma-Mesothelioma | Cx molecule (C-terminal)                               | Src, Bax, JNK                   | Increasing level of Cx43 in malignant mesothelioma cell <b>enhances sensitivity</b> against cisplatin and sunitinib treatment                                                  | [11], [12], [13], [14], [15] |
| Leukemic cell-BMSCs       | GJ                                                     | -                               | GJ between Cx43- overexpressed BMSCs and leukemic cells <b>induced apoptosis in leukemic cells</b> due to caspase 3/7 activation                                               | [9]                          |
| Breast cancer-Osteocyte   | HCs                                                    | ATP                             | Released ATP from osteocyte <b>inhibits growth, migration and invasion ability of breast cancer cells</b>                                                                      | [104]                        |
| Glioblastoma-HMEC         | GJ                                                     | miR-145-5b                      | miR-145-5b from HMEC is transferred to glioblastoma (U87 cells) which <b>decrease cancer proliferation</b>                                                                     | [116]                        |
| Colon cancer-HMEC         | GJ                                                     | miR-145-5b                      | miR-145-5b from HMEC is permitted to be transferred to cancer cells (SW480 cells) and up-regulated Cx43 expression, which <b>inhibits proangiogenic</b> effect of cancer cells | [22], [72]                   |
| Glioma-Glioma             | GJ, Cx molecule (extracellular loop and/or C-terminal) | miR-5096                        | GJ between glioma-glioma has <b>anti-invasive effect</b>                                                                                                                       |                              |

|                                                |                                                        |                              |                                                                                                                                                                                                                                                                                         |               |
|------------------------------------------------|--------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Glioblastoma-HMEC                              | GJ                                                     | miR-5096                     | mir-5096 from glioblastoma is transferred to HMEC <b>increases proangiogenic effect</b> of glioblastoma<br>Increasing level of Cx43 in glioma cell <b>enhances resistance</b> against temozolomide treatment                                                                            | [104]<br>[86] |
| Glioma-Glioma                                  | GJ, Cx molecule (C-terminal)                           | Bcl-2, Bax                   | Increasing level of Cx43 in glioma cell <b>enhances resistance</b> against temozolomide treatment                                                                                                                                                                                       | [86]          |
| Glioma-Astrocyte, Astrocyte-Astrocyte          | GJ, Cx molecule (extracellular loop and/or C-terminal) | miR-5096                     | Glioma-astrocyte and astrocyte-astrocyte <b>promotes glioma invasion</b>                                                                                                                                                                                                                | [22],<br>[72] |
| Glioblastoma-HMEC                              | GJ                                                     | miR-5096                     | mir-5096 from glioblastoma (U-87 cells) to HMEC <b>increases proangiogenic effect</b>                                                                                                                                                                                                   | [104]         |
| Melanoma-Astrocyte                             | GJ                                                     | -                            | Direct contact with astrocyte <b>up-regulates invasion</b> of cancer cells and <b>drug resistance</b>                                                                                                                                                                                   | [126]         |
| Breast cancer-Astrocyte, Lung cancer-Astrocyte | GJ                                                     |                              | GJ signaling enhances production of <b>cytokines in cancer cells and endothelin in astrocytes</b> , which in turn <b>upregulate AKT/MAPK signaling in breast cancer (MDA-MB-231) and lung cancer (H226) cells</b> to protect from cytotoxicity of chemotherapeutic drugs                | [127]         |
| Breast cancer-Astrocyte, Lung cancer-Astrocyte | GJ                                                     | cGAMP                        | cGAMP from metastasized cancer cells to astrocytes induces <b>STING signaling in astrocytes</b> , which in turn <b>stimulate cancer metastasis</b>                                                                                                                                      | [129]         |
| Microglia-Retinal cerebral endothelial cell    | HCs                                                    |                              | Microglia secretes basigin via activation of PI3K/Akt signaling or IGF signaling that in turn <b>promote angiogenesis in cerebral endothelial cell</b>                                                                                                                                  | [117]         |
| Microglia-Astrocyte                            | GJ, HCs                                                | IL-1 $\beta$ , TNF- $\alpha$ | Intercellular diffusion of glucose in CNS via GJ composed of Cx43 between astrocytes is <b>downregulated by cytokines secreted from HCs of microglia</b> . Opposingly when glucose uptake in each astrocyte is <b>increased</b> , then it switches the cell to be a reactive astrocyte. | [3]           |

1 Tumor suppressive effect of Cx43 is in green while those in pink indicates Cx43 works in a tumor promotive  
 2 manner. Although Table 1 contains Cx43 reports regarding various cell combinations not limited to CNS, it is  
 3 generally accepted that the fundamental role of connexin is the same in peripheral tissues and the CNS. BMSCs;  
 4 bone marrow stroma cells, cGAMP;2'3'-cyclic GMP-AMP, CNS; central nervous system, DC; dendritic cells,  
 5 GJ; gap junction, HCs; hemichannels, HMEC; human micro vascular cerebral endothelial cells.

## 6 2.1. Cx43 in Glioma Progression

7 The role of Cx43 protein in glioma cells in growth control and migration remains unclear despite  
 8 extensive studies (5, 16). Carcinogenesis is usually accompanied with a reduction in GJIC (5, 6). We  
 9 investigated Cx43 expression at both the mRNA and the protein level (16); consistent with previous  
 10 studies, we have observed a general reduction of Cx43 protein in the tumor core as the glioma grade  
 11 increases (22). Interestingly, Cx43 staining is increased in low grade gliomas. A query on the  
 12 provisional TCGA revealed upregulation of Cx43 in low-grade gliomas may be correlated with a  
 13 shorter disease-free period. These results reveal a possible role of Cx43 in the early stages of glioma

1 progression when the relatively low proliferative index of cells may predispose them to migrate and  
2 integrate with the host parenchyma.

3 *2.2. Cx43 Activity in Glioma-Induced Inflammation*

4 Inflammation is associated with cancer initiation and progression (23). The inflammatory  
5 response induced in the host tissue by the tumor cells accounts for the major signaling pathways  
6 hijacked by tumor cells to promote their own survival and expansion (24). In the brain, the release of  
7 ATP also leads to the activation of purinergic receptors in microglia, which are the resident immune  
8 cells and a prominent feature of glioma pathology (24). Microglia have a critical role in modulating  
9 the microenvironment by secreting cytokines that affect tumor growth and migration (25). However,  
10 their role in gliomagenesis remains undefined since their activation can result in pro- and anti-  
11 inflammatory responses (26, 27), therefore suppression or depletion of microglia have been  
12 demonstrated both to reduce (28, 29) or promote glioma invasion (30).

13 Opening of unpaired Cx43 HCs (31-33) under pathophysiological conditions results in the  
14 release of bioactive molecules including ATP (34) and participates in pro-inflammatory responses.  
15 Similarly, the pannexin (Panx) family of GJs generally form the equivalent of a HC providing direct  
16 communication between the cytoplasm and extracellular space (31, 35). Located at the plasma  
17 membrane, Panx1 is a major conduit for ATP during apoptosis that increases extracellular ATP  
18 resulting in neuroinflammation (36-38). In this regard, the association of Panx1 with P2X<sub>7</sub> purinergic  
19 receptor in an inflammasome containing caspase 1 is necessary for its ATP release (39-41).  
20 Interestingly, there is evidence to suggest cross talk between Cx43 HCs and Panx1 (42) and HC  
21 activity can propagate apoptosis in glioma cells (43). Therefore, there is a possibility that inhibition  
22 of HC-mediated ATP release will reduce the recruitment of microglia and affect glioma progression.

23 *2.3. Reactive Astrocytes, Immune Cells, and Cx43 Expression in the Glioma Microenvironment*

24 The interaction between tumor cells and their microenvironment is implicated in modulating  
25 tumor progression and contributing to the resistance of tumor cells to therapeutic treatment (44-49).  
26 An early study indicates that 90% of recurrent gliomas occur within 2 cm of the resected tumor (50),  
27 the peri-tumoral region that is widely known as the invasive niche populated with activated immune  
28 cells, reactive astrocytes and cerebral endothelial cells. Indeed, one prominent feature of glioma  
29 pathology is extensive astrogliosis, an inflammatory response that involves the recruitment of  
30 reactive astrocytes around gliomas and brain metastases (51-53); it is often clinically difficult to  
31 distinguish glioma cells from reactive astrocytes (51). Reactive astrocytes express increased levels of  
32 glial fibrillary acidic protein (GFAP) intermediate filaments (54, 55) and pro-inflammatory cytokines  
33 (56). Although many signaling proteins are upregulated in activated astrocytes, the significance of  
34 these proteins, and whether they can be exploited to control brain diseases, remains to be explored.

35 The gap junction protein Cx43, widely expressed in adult astrocytes (57, 58), has been shown to  
36 be upregulated in regions with astrogliosis induced by various brain pathologies including brain  
37 ischemia and epilepsy (18, 59-65). Using a mouse model consisting of intracranial syngeneic  
38 implantation of mouse GL261 glioma cells, we demonstrate that reactive astrocytes with enhanced  
39 GFAP expression show an upregulation of Cx43 (66).

40 *2.4. opposite Roles of Cx43 in Tumor Invasion and Apoptosis*

41 Over-expression of Cx43 has been reported to promote glioma migration in a channel-dependent  
42 manner (67-69), especially in the presence of normal stromal cells such as astrocytes (67-70). Cx43-  
43 mediated GJIC appears to alter astrocyte morphology in an *in vitro* co-culture of glioma cells with  
44 astrocytes (69, 71), suggesting that bi-directional signaling exists between these cells. However, it  
45 remains unclear how these interactions modify the invasive properties of glioma cells *in vivo*. We  
46 similarly showed that co-culture of U87MG human glioma cells with normal human astrocytes  
47 enhances the invasive behavior of the glioma cells (72). We further demonstrated using chemical  
48 inhibitors, siRNAs, and a channel defective Cx43 mutant Cx43T154A, that functional glioma-glioma

1 GJs suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte GJs promote glioma  
2 invasion (72). Therefore, migration and invasion are enhanced with low homocellular glioma GJIC  
3 and high heterocellular glioma-astrocyte GJIC. Cx43 is also known to promote migration through  
4 channel-independent mechanisms; it strengthens adhesive connections between glioma cells and  
5 astrocytes via its extracellular loops (67, 68, 73, 74), and also regulates cytoskeletal dynamics via its  
6 carboxy (C)-terminal tail (75-77). The C-tail of Cx43 interacts with various intracellular signaling  
7 molecules (12, 76, 78, 79) and serves a role in channel gating (60, 80, 81).

8 In addition to glioma, there is also metastatic cancer cells in CNS coming from outside the brain  
9 (82). After metastatic cells have survived the harsh blood flow environment, they still have to go  
10 beyond several layers of cells to further escape from the blood vessels and infiltrate into the brain.  
11 The first layer is broken by their interaction with cerebral endothelial cells, which are damaged by  
12 tumor cells via activation of several signaling pathways. The small GTPase (Rho / ROCK) pathway,  
13 the PI3K / Akt pathway, and the TGF- $\beta$  pathway are mainly considered to be involved in this  
14 interaction (83). A metastatic cancer cell that dislodges from the blood vessels due to collapse of the  
15 luminal structure, however, would probably be targeted by the exclusion network of the CNS; via  
16 promotion of plasmin generation from neuron-derived plasminogen by astrocyte, that cleaves Fas  
17 ligand (FasL) to kill cancer cell, and also by the immune cells immediately attacking a cancer cell if it  
18 exists as an independent cell (84). To escape this attack, a cancer cell often begins to interact with  
19 astrocytes in the brain. Integrins and GJs are attracting attention as molecules that mediate these  
20 heterogeneous cell-cell interactions. Details will be described later in section 2.6.

21 In addition to its potential role in tumor invasion, Cx43 has been implicated in regulating cell  
22 death. One report indicates that Cx43 increases glioma cell resistance to apoptosis by a channel-  
23 dependent mechanism (85). We also demonstrate that Cx43 increases the resistance of human glioma  
24 cells to temozolomide treatment by modulating the mitochondrial apoptosis pathway (86). In  
25 addition, Cx43 interacts with Bax in the vicinity of the cell membrane, and by promoting its  
26 mitochondrial transition, it regulates the apoptotic signal of the cell and enhances sunitinib  
27 susceptibility (12). We will next review examples distinguishing whether the GJs mediate effects via  
28 homocellular-type or heterocellular-type of interactions in the multiple steps of cancer invasion.  
29 (Figure 1 and 2)

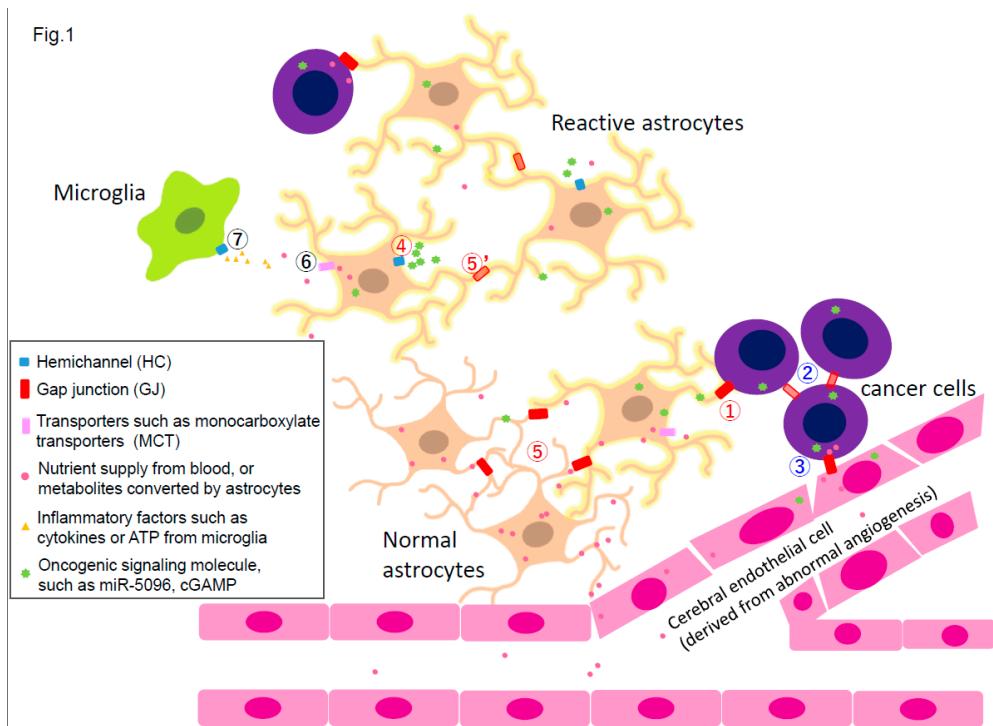
### 30 2.5. Homocellular Junctions

#### 31 2.5.1. Glioma Channels in Invasion

32 We investigate the role of homocellular GJIC in glioma migration using a 3D spheroid migration  
33 model that mimics the *in vivo* architecture of tumor cells to quantify migration changes (87) and found  
34 that down-regulation of Cx43 expression in the U118 human glioma cell line increased migration by  
35 reducing cell-ECM adhesion, and changed the migration pattern from collective to single cell (87).  
36 More importantly, we are able to conclude that GJIC has a more prominent role in mediating  
37 migration in a 3D model. The ability of a C-terminal truncated Cx43 mutant (TrCx43) to produce  
38 migration levels similar to control cells expressing wild-type (WT) Cx43 suggests that the C-terminal  
39 is not mediating migration in this system (87). In contrast, we showed that blocking the channel  
40 function with a specific mutant (Cx43T154A) and a chemical channel blocker (carbenoxolone; CBX)  
41 increases migration suggesting that a significant reduction in GJIC is required to increase U118  
42 glioma migration and/or invasion (Fig.1 pathway 2).

#### 43 2.5.2. Homocellular Astrocyte Channels in Glioma Invasion

44 Upregulation of Cx43 has been detected in astrocytomas and peri-tumor parenchyma (88-90).  
45 Using an intracranial mouse model by which we implanted mCherry-labeled GL261 cells into the  
46 striatum of syngeneic C57B/6 mice with an intact immune system (91, 92), we similarly observed  
47 increased Cx43 immunoreactivity in the brain parenchyma within 100  $\mu$ m from the edge of the tumor  
48 mass (66). Interestingly, Cx43 co-localizes with podoplanin (PDPN), a glycoprotein implicated to  
49 have a role in inflammation (93), in tumor-associated astrocytes (66). Our findings in an intracranial


1 glioma mouse model demonstrate that the elimination of Cx43 in host astrocytes surrounding  
2 gliomas reduces the invasion of these tumor cells into the surrounding brain parenchyma (22).  
3 Despite robust intercellular communication between astrocytes was observed (Fig.1 pathway 5), no  
4 significant increase in HC activity in the peri-tumor region (22), which is in contrast to what is  
5 expected from what we know about HC and inflammation (see previous section). In addition, our  
6 results with the T154A channel dead Cx43 mutant demonstrate that Cx43-mediated intercellular  
7 communication between glioma cells and astrocytes is not essential for astrocytic Cx43 to mediate its  
8 pro-invasive effect *in vivo*. Taken together, our results reveal an unexplored role of glial Cx43  
9 paracrine signaling that can provide a permissive niche for glioma invasion (Fig.1 pathway 4).

10 *2.6. Heterocellular Junctions*

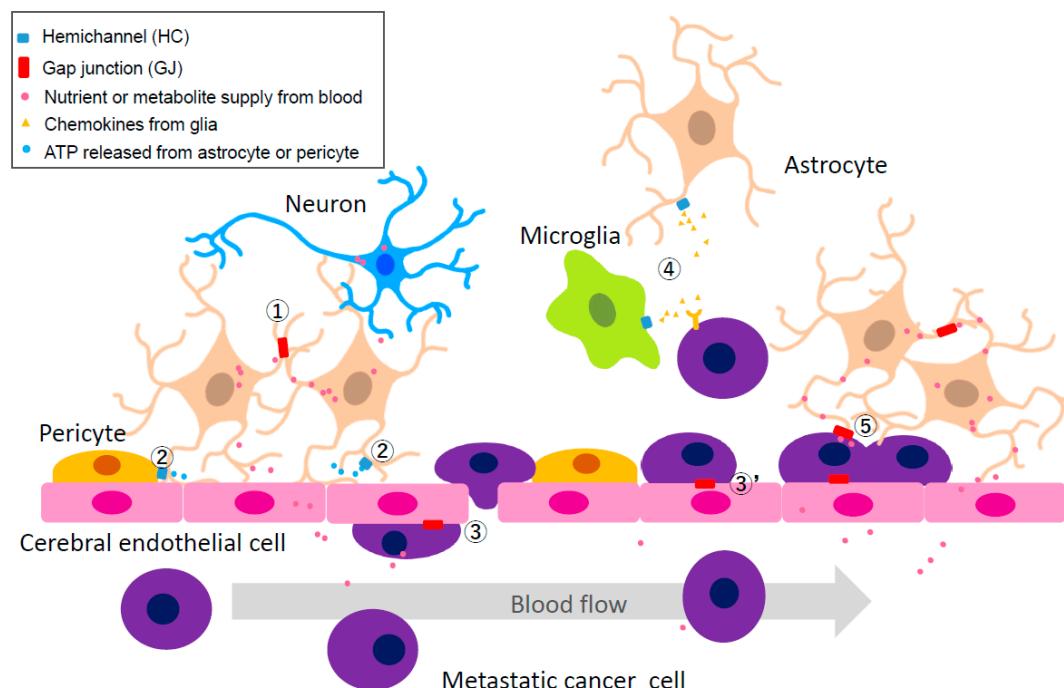
11 *2.6.1. Heterocellular GJIC in Glioma Invasion*

12 Investigations on the specific roles of Cx43 in glioma invasion have been hindered by the fact  
13 that alteration in tumoral Cx43 levels not only disrupt intra-tumoral homocellular communication,  
14 but also perturb the formation of heterocellular channels between glioma cells and astrocytes. In  
15 addition, the opposing effects of homocellular and heterocellular GJIC on glioma migration (67)  
16 further complicates the role of tumoral Cx43 in glioma progression. As mentioned previously, our  
17 results (72) so far suggest that glioma-glioma GJs attenuate migration while glioma-astrocyte and  
18 astrocyte-astrocyte GJs promote glioma invasion. We speculate that the pro-invasive effects may arise  
19 from transfer of oncogenic signaling molecules from glioma cells to adjacent astrocytes via Cx43  
20 (Fig.1 pathway 1), followed by spread of these signals (and/or their downstream effectors) among  
21 astrocytes through astrocyte-astrocyte GJs (Fig.1 pathway 5).

22 The direct passage of small ions and metabolites such as  $\text{Ca}^{2+}$  (33), ATP (2, 4, 34), glutamate (94),  
23 glucose (95), and peptides (96) through Cx43 channels are well known. However, increasing evidence  
24 has demonstrated that Cx43 is permeable to oligonucleotides as long as 24 nucleotides in length (97).  
25 Subsequently, siRNA and microRNA (miRNA) have been shown to exert functional effects on  
26 neighboring cells via GJs by using well established chemical inhibitors and reporter proteins such as  
27 GFP and luciferase (98-100). Indeed, we are able to demonstrate that glioma-astrocyte GJs are  
28 permeable to miRNAs, which are small, non-coding RNA molecules that often regulate several  
29 protein targets and signaling pathways, using cel-miR-67 as a “tracer” (72). Specifically, we identified  
30 a miR-5096 that enhance the invasiveness of glioma cells in a Cx43-dependent manner, by using a  
31 combination of techniques that include the use of GJ inhibitors and an anti-miR™ that ‘neutralizes’  
32 the action of miR-5096 (72). The increase of miR-5096 is not due to endogenous upregulation by the  
33 astrocytes as we were unable to detect the corresponding much larger, GJ-impermeable primary  
34 miRNA that is the precursor of mature miR-5096 in the astrocytes (72). Our findings add to recent  
35 studies that demonstrate that cancer cells ‘reprogram’ normal stromal cells by miRNAs (101, 102).  
36 Astrocytes promote brain metastasis by silencing PTEN (phosphatase and tension homology), a  
37 protein well known for its tumour suppressive property, via miR-19a using exosomes as a delivery  
38 vehicle (103). On the other hand, it is also known that miR-5096 originating from glioma interacts  
39 with human microvascular cerebral endothelial cells (HMEC) through GJ and promotes angiogenesis  
40 (104) (Fig.1 pathway 3). Therefore, the microenvironment has a direct influence in the gene  
41 expression of tumour cells and glioma cells that directly influence astrocytes and HMEC to facilitate  
42 invasion.



**Figure 1.** The microenvironment of glioma or metastatic cancers in central nerve system (CNS). Reactive astrocytes have increased Cx43 and GFAP levels, while PTEN, a well-known tumor suppressive protein, is decreased. Cerebral endothelial cells (CECs) also participated here as angiogenesis inducing factor and supply nutrients. Microglia increases glucose uptake by astrocytes. Numbers indicate GJ or HC pathways to maintain this environment. Red colored pathways (○1, ○4, ○5 and ○5') are common between glioma and metastatic cancers. Blue colored pathways (○2 and ○3) are derived from previous reports on glioma (84,101). Black colored pathways (○6 and ○7) denotes those of metastatic cancers (3). ○1GJ between a cancer cell and an astrocyte; it promotes tumor invasion by transferring oncogenic signaling molecules from a cancer cell to an adjacent astrocyte. ○2GJ between glioma cells; down-regulation of GJ promotes invasion of glioma. ○3GJ between glioma and CEC; it promotes angiogenesis. ○4HC activity of reactive astrocyte; it contributes to spreading of oncogenic signaling molecule in the brain. ○5GJ between normal astrocytes; it supports nutrients supply from CECs to CNS cells. ○5GJ between astrocytes located distal from the tumor; it is mainly down-regulated when HC is upregulated. ○6Transporters expressed in astrocytes located distal from the tumor; they are believed to be upregulated to uptake enough metabolites. ○7HC activity in microglia; it may support increase of glucose uptake in astrocytes, while it decreases spread of glucose between astrocytes.


#### 2.6.2. Heterocellular Gjs or Hcs: Extravascular Liberation of Metastatic Cancer - Neurovascular Unit Including Cerebral Endothelial Cells (Cecs), Pericytes, Glial Cells, and Neurons

For cancer cells to penetrate the CNS region, it is necessary to break through the blood brain barrier (BBB). BBB consists of CECs, pericytes, and glia (Fig.2). One factor that is essential for cancer metastasis is the condition of blood flow. For metastatic cells to undergo extravascular liberation, cells need to remain on the wall in the vascular lumen (Fig.2 pathway 3), therefore the infiltration process will be physically difficult to occur if the blood flow is too rapid. Substantial evidence suggests that the neurovascular unit facilitates cancer metastasis. High levels of Cx expression are observed at the endfeet of astrocytes that enclose the blood vessels (105, 106). An increase in  $[Ca^{2+}]_i$  in astrocytes is observed during vasodilation or contraction (105, 107, 108) (Fig.2 pathway 2). The morphological changes of endothelial cells, such as the decision to contract or expand, depends on the nature of the signal that changes extracellular  $Ca^{2+}$  concentration. It is an interesting possibility that Cx43 present in the endfeet will affect the perivascular velocity of propagation of this  $[Ca^{2+}]_i$  wave to adjacent astrocytes. It has been suggested that the expression of Cx channels increase the

1 number of endfeet in contact with the CEC and is involved in regulating blood flow (105, 109, 110).  
 2 It is also suggested that HCs are involved in  $[Ca^{2+}]_i$  waves, possibly via ATP release regulating blood  
 3 flow. Pericytes enclosing CECs have thick basement membrane, but its basement between astrocytes  
 4 are thin and chemical exchange tends to occur. Furthermore, Cx43 HCs are present on the surface of  
 5 pericytes and have been demonstrated to play an important role in the pericyte-mediated vascular  
 6 network communication (111) (Fig.2 pathway 2). Thus, even at the capillary level, the blood flow  
 7 rate is precisely controlled, and this regulation mechanism may be utilized by cancer cells when they  
 8 infiltrate outside the blood vessel.

9 Immediately after cancer cells break through the BBB, metastatic cancer cells remain around the  
 10 blood vessels. This perivascular region is not limited to cancer cells but also is a niche preferred by  
 11 dormant cells such as neural and glial stem cells (112). An important progenitor cell proliferation  
 12 pathway mediated by vascular endothelial growth factor (VEGF) occurs at this niche position, which  
 13 is a favorable environment for metastatic spread of certain cancer cells (113). Therefore, the metastatic  
 14 cancer cells tend to remain attached to the surface of the outer wall of the blood vessel (Fig.2 pathway  
 15 3). The GJ formed here supports this observation. Regarding the intracerebral infiltration of breast  
 16 cancer and melanoma cells, GJs consisting of Cx26 and Cx43 have been demonstrated between CECs  
 17 and invasive cancer cells, and CBX, a GJ inhibitor, was able to decrease the size or number of  
 18 microcancer colonies in the brain (114). In addition, there are also microglia around the cerebral  
 19 vascular unit. It is reported that microglia secrete cytokines and exosomes in the primary tumor of  
 20 the brain (115, 116), which may contribute to proliferation in the brain environment of cancer cells  
 21 located around blood vessels (Fig.2 pathway 4). It also activates PI3K / Akt signaling and IGF  
 22 signaling, which in turn promotes angiogenesis in CECs (117). Further studies are needed to  
 23 determine to what extent such functions of microglia support extravasation of metastatic cancer in  
 24 the brain.

Fig.2



25  
 26  
 27  
 28  
 29  
 30  
 31

**Figure 2.** The peri-vascular niche of the tumor microenvironment highlighting the extravasation of metastatic cells. The neurovascular unit includes cerebral endothelial cells (CECs), pericytes, glial cells, and neurons. Metastatic cancer cells utilize the nutrient supply from CECs to CNS cells mediated by the astrocytes. 1GJ between normal astrocytes; it supports nutrients from CECs to CNS neurons. 2HC activity of astrocytes and pericytes; it adjusts  $[Ca^{2+}]_i$  concentration in nearby CECs via release of ATP which results in change of blood flow rate. 3GJ between CEC and metastatic cancer

1 cell inside the capillary; it supports extravascular liberation of cancer cell from blood vessels. 3GJ  
2 between CEC and metastatic cancer cell located in a pericyte-like location; it protects cancer cells from  
3 immune attack by CNS astrocyte and microglia. 4HC activity of microglia or astrocyte; it supports  
4 cancer growth by release of chemokines, although the actual mechanisms by which glial cells promote  
5 immune attack or support cancer remains unknown. 5GJ between metastatic cancer cell located in a  
6 pericyte like-location and an astrocyte; it contributes to cancer growth as the first step in brain  
7 metastasis.

8 **2.6.3. Heterocellular Gjs: Possibility of Utilizing Metabolic Coupling between Astrocytes and**  
9 **Neurons**

10 It is reported that there exists approximately 86 billion neurons and 85 billion glia (sum of  
11 astrocyte, microglia, and other glia) in the whole human brain (118). The distribution ratio differ quite  
12 differently in each brain region: for instance, 1:3.7 in the cerebral cortex, and 1:11 in the brain stem.  
13 In particular, astrocytes residing around neurons play a key role for the maintenance of neuronal  
14 excitability: recycling neurotransmitters released into the synaptic cleft, buffering pH or K<sup>+</sup>, and  
15 supplying neurons with antioxidants and metabolites (119, 120). GJs and HCs are intimately related  
16 to these astrocytic functions (Fig.2 pathway 4).

17 Recycling of glutamate, the primary excitatory neurotransmitter, is one of the critical roles for  
18 astrocytes since overstimulation of glutamic receptors is highly toxic to neurons. To prevent this  
19 excitotoxicity, the rapid uptake of glutamate is performed via glutamate transporters, like glutamate  
20 transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST) expressed in astrocytes. It is  
21 shown that glutamate is able to directly pass through GJs, which is inhibited by the treatment of CBX,  
22 and the inhibition of GJs sensitizes neurons to glutamate toxicity (121, 122). These results suggest that  
23 the passage of glutamate or its metabolites through GJs may spread a signal among astrocytes so as  
24 to have them support the survival of neurons (Fig.2 pathway 4). In addition, glutamate uptake is  
25 accompanied by the co-transportation of Na<sup>+</sup>, which generates a metabolic wave and evokes energy  
26 demand (123). The propagation of this metabolic wave is mediated by ions, and glycolytic metabolites  
27 like glucose and lactate also seem to be involved in the promotion of metabolism. Rouach *et al*  
28 revealed that a fluorescent glucose derivative 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino]-2-  
29 Deoxyglucose (2-NBDG) can pass through GJ between astrocytes, and the addition of glucose or  
30 lactate stimulates the neuronal activity in the mouse brain, which is abrogated in Cx43-knock out  
31 mice (124). This work suggests that the spread of glycolytic metabolites via astrocytic GJs also  
32 contributes to a signal transmission among astrocytes and positively affects neuronal activity.  
33 Monocarboxylate transporters (MCTs) are the only known lactate transport carriers, however, a  
34 recent study shows that HCs are related to the extracellular release of lactate and this phenomenon  
35 enhances synaptic transmission (125). Considering these reports, astrocytic GJs and HCs cooperate  
36 with each other and contribute to the astrocytic functions to support surrounding neurons. It has also  
37 been reported that cytokines secreted from microglia under inflammatory conditions enhance  
38 glucose uptake by astrocytes through HCs while reducing glucose diffusion through GJs between  
39 astrocytes (3) (Fig.1 pathway 4567), thus, the change of activity of HCs and GJs may be involved  
40 with the appearance of reactive astrocyte in inflammatory conditions. However, it is not known  
41 whether special metabolic networks may be developed in the cancerous lesions.

42 It is expected that the above astrocyte-neuron metabolic network occurs between astrocytes and  
43 invasive cancer cells (Fig.2 pathway 5). Cancer cells from the primary tumor move to the various  
44 organs via blood flow. As mentioned in the previous section, metastatic cancer cells which invaded  
45 into the BBB will probably contact astrocytes at first. Most of these cells die due to the action of  
46 astrocytes in the brain stroma. Astrocytes secretes plasminogen activator (PA) to generate plasmin  
47 from neuron-derived plasminogen, which promotes release of membrane-bound astrocytic FasL (84).  
48 It would be inducing a paracrine death signal in cancer cells. Additionally, another target of active  
49 plasmin is the L1CAM, adhesion molecule, thereby blocking interaction between cancer cells with  
50 the capillaries (84). On the other hand, cancer cells that survived the extravasation of blood vessels  
51 may utilize the heterocellular metabolic communication to adapt themselves to a new environment.

1 In our preliminary study, significant changes in intracellular metabolome were confirmed in both  
2 astrocytes co-cultured with culture supernatant of cancer cells and cancer cells co-cultured with  
3 astrocyte culture supernatant, respectively, compared with single cultures. Interestingly, the  
4 metabolome did not change if a main metabolite of the pathway is artificially added to the culture  
5 system of cancer cells or vice versa. It suggests that induction of metabolome change in each cell  
6 needs to continuous and bidirectional intercellular communication between astrocyte and a cancer  
7 cell, therefore GJs would be attractive target to realize this phenomenon.

8 **2.6.4. . Heterocellular Gjs: Pro-Survival Functions of Gjs between Metastasized Cancer Cells and**  
9 **Astrocytes**

10 Although astrocytes have important role to kick out cancer cells by using PA or FasL as  
11 mentioned above, they also help tumor survival and proliferation at the region; for example, it is  
12 observed that brain metastatic melanoma cells are surrounded by reactive astrocytes with  
13 morphological changes and highly expressed GFAP in the brain tissue of either human patients or  
14 cancer mouse models (126) (Fig.1 pathway ①). Moreover, direct contact with astrocytes confers the  
15 drug resistance on melanoma cells, which is inhibited by the treatment of CBX or Cx43-specific siRNA  
16 for astrocytes. These data suggest that a metastasized cancer cell and a reactive astrocyte are directly  
17 coupled via GJs, altering the intracellular survival signals (127), and promoting the survival of cancer  
18 cells.

19 One of the well-known second messengers passing through GJs is  $\text{Ca}^{2+}$  (33), and apoptosis is  
20 induced by the elevation of a  $[\text{Ca}^{2+}]_i$  (128). The previous report shows that astrocytic GJ is involved  
21 in the suppression of the rapid increase of  $[\text{Ca}^{2+}]_i$  in melanoma cells induced by the treatment of anti-  
22 cancer agents, indicating that GJs contribute to sequestering the toxic signal transmitter (126).  
23 Another mechanism by which astrocytic GJs promote brain metastasis was elucidated by Chen *et al.*  
24 who revealed that cyclic dinucleotide cyclic GMP-AMP (cGAMP) is transmitted via GJs from brain  
25 metastatic breast and lung cancer cells to astrocytes, which promotes cancer cell growth (129) (Fig.1  
26 pathway ②).

27 **3. Conclusion**

28 As we have seen above, GJ or HC composed by Cx43 are involved in many steps in the  
29 progression of brain cancer. The evidence is especially strong in metastatic cancers, in which GJs  
30 formed between CECs and a metastatic cancer cells is critical in the process of invasion from the  
31 outside of the brain through the blood vessel into the brain. Once in the brain tissue, the cancer cells  
32 have the opportunities to further integrate by communicating with astrocytes and microglia. These  
33 subsequent steps are predicted to be common in primary gliomas and brain metastasis. GJs formed  
34 between heterologous cells becomes a step of planting cancer seeds in allowing for its expansion in  
35 the brain environment. At this time, the substances communicated between heterologous cells  
36 include intracellular secondary messengers, microRNA and cGAMP. Moreover, there is a possibility  
37 that a cancer cell receives the gift of a metabolite which is originally used to benefit the neurons.  
38 Alternatively, toxins such as glutamate or an anti-cancer agent (either an effective drug metabolite;  
39 ganciclovir, or stress factor;  $\text{Ca}^{2+}$ ) can flow from cancer cells to astrocytes, which helps to reduce  
40 toxicity in cancer cells. The prognosis is expected to depend on the critical role played by astrocytes,  
41 which make up the majority of glia constituting the brain parenchyma. Several reports suggest that  
42 the HC activity of the astrocyte is more suited for 'long range' signaling, instead of directly by GJs.  
43 Traditionally, GJs were often thought to function mainly in an anti-cancer context. Here, we discuss  
44 that the specific role of GJs, whether it is cancer suppressive or promoting, depends on the stages of  
45 cancer, whether they are undergoing extravasation or proliferation, and the identity of the cell types  
46 that make contact with the cancer cells. There has been a report that BBB-permeable GJ inhibitors  
47 can suppress brain metastasis in a mouse model (129); therefore, targeting the direct interaction  
48 between metastasized cancer cells and astrocytes may be a prominent therapeutic treatment for brain  
49 metastasis. Future identification of pathological targets and technological innovation that enhances  
50 the selectivity for targeting (selection of cells, choice of GJ or HC) will improve clinical applicability.

1 **Acknowledgement:** We would like to thank Christian C. Naus (The University of British Columbia) for critically  
2 reviewing the manuscript.

3 **Conflicts of Interest:** The authors declare no conflict of interest.

4 **References**

5. 1. Goodenough DA, Paul DL. Gap junctions. *Cold Spring Harbor perspectives in biology*. 2009;1(1):a002576.
6. 2. Simon AM, Goodenough DA. Diverse functions of vertebrate gap junctions. *Trends Cell Biol*.  
7 1998;8(12):477-83.
8. 3. Retamal MA, Froger N, Palacios-Prado N, Ezan P, Saez PJ, Saez JC, et al. Cx43 hemichannels and gap  
9 junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from  
10 activated microglia. *J Neurosci*. 2007;27(50):13781-92.
11. 4. Goodenough DA, Paul DL. Beyond the gap: functions of unpaired connexon channels. *Nat Rev Mol Cell  
12 Biol*. 2003;4(4):285-94.
13. 5. Naus CC, Laird DW. Implications and challenges of connexin connections to cancer. *Nat Rev Cancer*.  
14 2010;10(6):435-41.
15. 6. Mesnil M, Crespin S, Avanzo JL, Zaidan-Dagli ML. Defective gap junctional intercellular communication  
16 in the carcinogenic process. *Biochim Biophys Acta*. 2005;1719(1-2):125-45.
17. 7. Aasen T, Mesnil M, Naus CC, Lampe PD, Laird DW. Gap junctions and cancer: communicating for 50 years.  
18 *Nat Rev Cancer*. 2016;16(12):775-88.
19. 8. Saito T, Sato H, Virgona N, Hagiwara H, Kashiwagi K, Suzuki K, et al. Negative growth control of  
20 osteosarcoma cell by Bowman-Birk protease inhibitor from soybean; involvement of connexin 43. *Cancer letters*.  
21 2007;253(2):249-57.
22. 9. Zhou JZ, Riquelme MA, Gu S, Kar R, Gao X, Sun L, et al. Osteocytic connexin hemichannels suppress breast  
23 cancer growth and bone metastasis. *Oncogene*. 2016;35(43):5597-607.
24. 10. Kou Y, Ji L, Wang H, Wang W, Zheng H, Zou J, et al. Connexin 43 upregulation by dioscin inhibits  
25 melanoma progression via suppressing malignancy and inducing M1 polarization. *International journal of  
26 cancer*. 2017;141(8):1690-703.
27. 11. Uzu M, Sato H, Yamada R, Kashiba T, Shibata Y, Yamaura K, et al. Effect of enhanced expression of  
28 connexin 43 on sunitinib-induced cytotoxicity in mesothelioma cells. *Journal of pharmacological sciences*.  
29 2015;128(1):17-26.
30. 12. Uzu M, Sato H, Shimizu A, Shibata Y, Ueno K, Hisaka A. Connexin 43 enhances Bax activation via JNK  
31 activation in sunitinib-induced apoptosis in mesothelioma cells. *Journal of pharmacological sciences*.  
32 2017;134(2):101-7.
33. 13. Sato H, Iwata H, Takano Y, Yamada R, Okuzawa H, Nagashima Y, et al. Enhanced effect of connexin 43 on  
34 cisplatin-induced cytotoxicity in mesothelioma cells. *Journal of pharmacological sciences*. 2009;110(4):466-  
35 75.
36. 14. Zhang X, Liu Y, Si YJ, Chen XH, Li ZJ, Gao L, et al. Effect of Cx43 gene-modified leukemic bone marrow  
37 stromal cells on the regulation of Jurkat cell line in vitro. *Leukemia research*. 2012;36(2):198-204.
38. 15. Yang S, Wen Q, Liu Y, Zhang C, Wang M, Chen G, et al. Increased expression of CX43 on stromal cells  
39 promotes leukemia apoptosis. *Oncotarget*. 2015;6(42):44323-31.
40. 16. Sin WC, Crespin S, Mesnil M. Opposing roles of connexin43 in glioma progression. *Biochim Biophys Acta*.  
41 2012;1818(8):2058-67.
42. 17. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, et al. Brain tumour cells interconnect to  
43 a functional and resistant network. *Nature*. 2015;528(7580):93-8.
44. 18. Nakase T, Naus CC. Gap junctions and neurological disorders of the central nervous system. *Biochim  
45 Biophys Acta*. 2004;1662(1-2):149-58.
46. 19. Koulakoff A, Mei X, Orellana JA, Saez JC, Giaume C. Glial connexin expression and function in the context  
47 of Alzheimer's disease. *Biochim Biophys Acta*. 2012;1818(8):2048-57.
48. 20. Giaume C, Leybaert L, Naus CC, Saez JC. Connexin and pannexin hemichannels in brain glial cells:  
49 properties, pharmacology, and roles. *Frontiers in pharmacology*. 2013;4:88.
50. 21. Bai D. Structural analysis of key gap junction domains--Lessons from genome data and disease-linked  
51 mutants. *Seminars in cell & developmental biology*. 2016;50:74-82.
52. 22. Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H, Naus CC. Astrocytes promote glioma invasion via the  
53 gap junction protein connexin43. *Oncogene*. 2016;35(12):1504-16.

1 23. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell*. 2011;144(5):646-74.

2 24. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. *Glia*.  
3 2011;59(8):1169-80.

4 25. Garden GA, Moller T. Microglia biology in health and disease. *J Neuroimmune Pharmacol*. 2006;1(2):127-  
5 37.

6 26. Bronte V, Murray PJ. Understanding Local Macrophage Phenotypes In Disease: Modulating macrophage  
7 function to treat cancer. *Nature medicine*. 2015;21(2):117-9.

8 27. Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. *Glia*. 2013;61(1):71-  
9 90.

10 28. Markovic DS, Glass R, Synowitz M, Rooijen N, Kettenmann H. Microglia stimulate the invasiveness of  
11 glioma cells by increasing the activity of metalloprotease-2. *J Neuropathol Exp Neurol*. 2005;64(9):754-62.

12 29. Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, et al. Gliomas induce and exploit  
13 microglial MT1-MMP expression for tumor expansion. *Proc Natl Acad Sci USA*. 2009;106(30):12530-5.

14 30. Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. *Neuro-oncology*.  
15 2012;14(8):958-78.

16 31. Bennett MV, Garre JM, Orellana JA, Bukauskas FF, Nedergaard M, Saez JC. Connexin and pannexin  
17 hemichannels in inflammatory responses of glia and neurons. *Brain Res*. 2012;1487:3-15.

18 32. Orellana JA, von Bernhardi R, Giaume C, Saez JC. Glial hemichannels and their involvement in aging and  
19 neurodegenerative diseases. *Reviews in the neurosciences*. 2012;23(2):163-77.

20 33. Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV. Connexin-based gap junction hemichannels:  
21 gating mechanisms. *Biochim Biophys Acta*. 2005;1711(2):215-24.

22 34. Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, et al. Connexin 43 hemichannels are permeable to ATP.  
23 *J Neurosci*. 2008;28(18):4702-11.

24 35. Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, MacVicar B, et al. Pannexin channels are not  
25 gap junction hemichannels. *Channels (Austin)*. 2011;5(3):193-7.

26 36. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, et al. Pannexin 1 channels  
27 mediate/find-me/"signal release and membrane permeability during apoptosis. *Nature*. 2010;467(7317):863-  
28 7.

29 37. Sandilos JK, Chiu YH, Chekeni FB, Armstrong AJ, Walk SF, Ravichandran KS, et al. Pannexin 1, an ATP  
30 release channel, is activated by caspase cleavage of its pore-associated C terminal autoinhibitory region. *J  
31 Biol Chem*. 2012.

32 38. Qu Y, Misaghi S, Newton K, Gilmour LL, Louie S, Cupp JE, et al. Pannexin-1 is required for ATP release  
33 during apoptosis but not for inflammasome activation. *J Immunol*. 2011;186(11):6553-61.

34 39. de Rivero Vaccari JP, Dietrich WD, Keane RW. Activation and regulation of cellular inflammasomes: gaps  
35 in our knowledge for central nervous system injury. *Journal of cerebral blood flow and metabolism : official  
36 journal of the International Society of Cerebral Blood Flow and Metabolism*. 2014.

37 40. Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, et al. P2X7 receptor-Pannexin1 complex:  
38 pharmacology and signaling. *American journal of physiology Cell physiology*. 2008;295(3):C752-60.

39 41. Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, et al. The pannexin 1 channel  
40 activates the inflammasome in neurons and astrocytes. *J Biol Chem*. 2009;284(27):18143-51.

41 42. Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC, et al. ATP and glutamate released via  
42 astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1  
43 hemichannels. *J Neurochem*. 2011;118(5):826-40.

44 43. Decrock E, De Vuyst E, Virken M, Van Moorhem M, Vranckx K, Wang N, et al. Connexin 43 hemichannels  
45 contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model. *Cell Death Differ*.  
46 2009;16(1):151-63.

47 44. Jackson M, Hassiotou F, Nowak A. Glioblastoma stem-like cells: at the root of tumor recurrence and a  
48 therapeutic target. *Carcinogenesis*. 2014.

49 45. Nakasone ES, Askautrud HA, Kees T, Park JH, Plaks V, Ewald AJ, et al. Imaging tumor-stroma interactions  
50 during chemotherapy reveals contributions of the microenvironment to resistance. *Cancer Cell*.  
51 2012;21(4):488-503.

52 46. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. *Nat Rev Cancer*. 2009;9(4):239-52.

53 47. Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. *Trends Genet*.  
54 2009;25(1):30-8.

1 48. Hu M, Polyak K. Microenvironmental regulation of cancer development. *Curr Opin Genet Dev.* 2008;18(1):27-34.

2 49. Kalluri R, Zeisberg M. Fibroblasts in cancer. *Nat Rev Cancer.* 2006;6(5):392-401.

3 50. Hochberg FH, Pruitt A. Assumptions in the radiotherapy of glioblastoma. *Neurology.* 1980;30(9):907-11.

4 51. Rivera-Zengotita M, Yachnis AT. Gliosis versus glioma?: don't grade until you know. *Advances in 6 anatomic pathology.* 2012;19(4):239-49.

5 52. Katz AM, Amankulor NM, Pitter K, Helmy K, Squatrito M, Holland EC. Astrocyte-specific expression 7 patterns associated with the PDGF-induced glioma microenvironment. *PLoS One.* 2012;7(2):e32453.

6 53. Lee J, Borboa AK, Baird A, Eliceiri BP. Non-invasive quantification of brain tumor-induced astrogliosis. 10 *BMC Neurosci.* 2011;12:9.

7 54. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. *Acta Neuropathol.* 2010;119(1):7-35.

8 55. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. *Glia.* 2005;50:427-34.

9 56. Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. *Physiological reviews.* 14 2014;94(4):1077-98.

10 57. Rozental R, Giaume C, Spray DC. Gap junctions in the nervous system. *Brain Res Brain Res Rev.* 2000;32(1):11-5.

11 58. Dermietzel R, Spray DC. Gap junctions in the brain: where, what type, how many and why? *Trends 17 Neurosci.* 1993;16(5):186-92.

12 59. Fonseca CG, Green CR, Nicholson LF. Upregulation in astrocytic connexin 43 gap junction levels may 19 exacerbate generalized seizures in mesial temporal lobe epilepsy. *Brain Res.* 2002;929(1):105-16.

13 60. Kozoriz MG, Bechberger JF, Bechberger GR, Suen MW, Moreno AP, Maass K, et al. The connexin43 C- 22 terminal region mediates neuroprotection during stroke. *J Neuropathol Exp Neurol.* 2010;69(2):196-206.

14 61. Naus CC, Ozog MA, Bechberger JF, Nakase T. A neuroprotective role for gap junctions. *Cell Commun 23 Adhes.* 2001;8(4-6):325-8.

15 62. Siushansian R, Bechberger JF, Cechetto DF, Hachinski VC, Naus CC. Connexin43 null mutation increases 26 infarct size after stroke. *J Comp Neurol.* 2001;440(4):387-94.

16 63. Cronin M, Anderson PN, Cook JE, Green CR, Becker DL. Blocking connexin43 expression reduces 28 inflammation and improves functional recovery after spinal cord injury. *Mol Cell Neurosci.* 2008;39(2):152-60.

17 64. Lee IH, Lindqvist E, Kiehn O, Widenfalk J, Olson L. Glial and neuronal connexin expression patterns in the 31 rat spinal cord during development and following injury. *J Comp Neurol.* 2005;489(1):1-10.

18 65. Hossain MZ, Peeling J, Sutherland GR, Hertzberg EL, Nagy JI. Ischemia-induced cellular redistribution of 33 the astrocytic gap junctional protein connexin43 in rat brain. *Brain Res.* 1994;652(2):311-22.

19 66. Kolar K, Freitas-Andrade M, Bechberger JF, Krishnan H, Goldberg GS, Naus CC, et al. Podoplanin: a 35 marker for reactive gliosis in gliomas and brain injury. *J Neuropathol Exp Neurol.* 2015;74(1):64-74.

20 67. Oliveira R, Christov C, Guillamo JS, de Bouard S, Palfi S, Venance L, et al. Contribution of gap junctional 37 communication between tumor cells and astroglia to the invasion of the brain parenchyma by human 38 glioblastomas. *BMC Cell Biol.* 2005;6(1):7.

21 68. Lin JH, Takano T, Cotrina ML, Arcuino G, Kang J, Liu S, et al. Connexin 43 enhances the adhesivity and 40 mediates the invasion of malignant glioma cells. *J Neurosci.* 2002;22(11):4302-11.

22 69. Zhang W, Couldwell WT, Simard MF, Song H, Lin JH, Nedergaard M. Direct gap junction communication 42 between malignant glioma cells and astrocytes. *Cancer Res.* 1999;59(8):1994-2003.

23 70. Strale PO, Clarhaut J, Lamiche C, Cronier L, Mesnil M, Defamie N. Down-regulation of connexin43 44 expression reveals the involvement of caveolin-1 containing lipid rafts in human U251 glioblastoma cell 45 invasion. *Mol Carcinog.* 2012;51(11):845-60.

24 71. Gagliano N, Costa F, Cossetti C, Pettinari L, Bassi R, Chiriva-Internati M, et al. Glioma-astrocyte interaction 47 modifies the astrocyte phenotype in a co-culture experimental model. *Oncol Rep.* 2009;22(6):1349-56.

25 72. Hong X, Sin WC, Harris AL, Naus CC. Gap junctions modulate glioma invasion by direct transfer of 49 microRNA. *Oncotarget.* 2015;6(17):15566-77.

26 73. Cotrina ML, Lin JH, Nedergaard M. Adhesive properties of connexin hemichannels. *Glia.* 2008;56(16):1791- 51 8.

27 74. Elias LA, Wang DD, Kriegstein AR. Gap junction adhesion is necessary for radial migration in the 53 neocortex. *Nature.* 2007;448(7156):901-7.

1 75. Crespin S, Bechberger J, Mesnil M, Naus CC, Sin WC. The carboxy-terminal tail of connexin43 gap junction  
2 protein is sufficient to mediate cytoskeleton changes in human glioma cells. *J Cell Biochem.* 2010;110(3):589-  
3 97.

4 76. Behrens J, Kameritsch P, Wallner S, Pohl U, Pogoda K. The carboxyl tail of Cx43 augments p38 mediated  
5 cell migration in a gap junction-independent manner. *Eur J Cell Biol.* 2010;89(11):828-38.

6 77. Bates DC, Sin WC, Aftab Q, Naus CC. Connexin43 enhances glioma invasion by a mechanism involving  
7 the carboxy terminus. *Glia.* 2007;55(15):1554-64.

8 78. Olk S, Zoidl G, Dermietzel R. Connexins, cell motility, and the cytoskeleton. *Cell Motil Cytoskeleton.*  
9 2009;66(11):1000-16.

10 79. Herve JC, Bourmeyster N, Sarrouilhe D. Diversity in protein-protein interactions of connexins: emerging  
11 roles. *Biochim Biophys Acta.* 2004;1662(1-2):22-41.

12 80. Ponsaerts R, De Vuyst E, Retamal M, D'Hondt C, Vermeire D, Wang N, et al. Intramolecular loop/tail  
13 interactions are essential for connexin 43-hemichannel activity. *FASEB J.* 2010;24(11):4378-95.

14 81. Schalper KA, Palacios-Prado N, Retamal MA, Shoji KF, Martinez AD, Saez JC. Connexin hemichannel  
15 composition determines the FGF-1-induced membrane permeability and free  $[Ca^{2+}]_i$  responses. *Mol Biol*  
16 *Cell.* 2008;19(8):3501-13.

17 82. Fidler IJ, Balasubramanian K, Lin Q, Kim SW, Kim SJ. The brain microenvironment and cancer metastasis.  
18 *Molecules and cells.* 2010;30(2):93-8.

19 83. Wilhelm I, Fazakas C, Molnar K, Vegh AG, Hasko J, Krizbai IA. Foe or friend? Janus-faces of the  
20 neurovascular unit in the formation of brain metastases. *Journal of cerebral blood flow and metabolism :*  
21 *official journal of the International Society of Cerebral Blood Flow and Metabolism.* 2017;271678x17732025.

22 84. Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH, Lee DJ, et al. Serpins promote cancer cell survival and  
23 vascular co-option in brain metastasis. *Cell.* 2014;156(5):1002-16.

24 85. Westhoff MA, Zhou S, Bachem MG, Debatin KM, Fulda S. Identification of a novel switch in the dominant  
25 forms of cell adhesion-mediated drug resistance in glioblastoma cells. *Oncogene.* 2008;27(39):5169-81.

26 86. Gielen PR, Aftab Q, Ma N, Chen VC, Hong X, Lozinsky S, et al. Connexin43 confers Temozolomide  
27 resistance in human glioma cells by modulating the mitochondrial apoptosis pathway.  
28 *Neuropharmacology.* 2013;75(2013):539-48.

29 87. Aftab Q, Sin WC, Naus CC. Reduction in gap junction intercellular communication promotes glioma  
30 migration. *Oncotarget.* 2015;6(13):11447-64.

31 88. Baklaushev VP, Yusubalieva GM, Tsitrin EB, Gurina OI, Grinenko NP, Victorov IV, et al. Visualization of  
32 Connexin 43-positive cells of glioma and the perigloma zone by means of intravenously injected  
33 monoclonal antibodies. *Drug Deliv.* 2011;18(5):331-7.

34 89. Caltabiano R, Torrisi A, Condorelli D, Albanese V, Lanzafame S. High levels of connexin 43 mRNA in high  
35 grade astrocytomas. Study of 32 cases with in situ hybridization. *Acta Histochem.* 2010;112(6):529-35.

36 90. Aronica E, Gorter JA, Jansen GH, Leenstra S, Yankaya B, Troost D. Expression of connexin 43 and connexin  
37 32 gap-junction proteins in epilepsy-associated brain tumors and in the perilesional epileptic cortex. *Acta*  
38 *Neuropathol (Berl).* 2001;101(5):449-59.

39 91. Jacobs VL, Valdes PA, Hickey WF, De Leo JA. Current review of in vivo GBM rodent models: emphasis on  
40 the CNS-1 tumour model. *ASN Neuro.* 2011;3(3):e00063.

41 92. Newcomb E, Zagzag D. The Murine GL261 Glioma Experimental Model to Assess Novel Brain Tumor  
42 Treatments. In: Meir EG, editor. *CNS Cancer. Cancer Drug Discovery and Development:* Humana Press;  
43 2009. p. 227-41.

44 93. Rayes J, Lax S, Wichaiyo S, Watson SK, Di Y, Lombard S, et al. The podoplanin-CLEC-2 axis inhibits  
45 inflammation in sepsis. *Nat Commun.* 2017;8(1):2239.

46 94. Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR. Functional hemichannels in astrocytes: a novel  
47 mechanism of glutamate release. *J Neurosci.* 2003;23(9):3588-96.

48 95. Goldberg GS, Lampe PD, Nicholson BJ. Selective transfer of endogenous metabolites through gap junctions  
49 composed of different connexins. *Nat Cell Biol.* 1999;1(7):457-9.

50 96. Neijissen J, Herberts C, Drijfhout JW, Reits E, Janssen L, Neefjes J. Cross-presentation by intercellular  
51 peptide transfer through gap junctions. *Nature.* 2005;434(7029):83-8.

52 97. Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, et al. Connexin-specific cell-to-  
53 cell transfer of short interfering RNA by gap junctions. *J Physiol.* 2005;568(Pt 2):459-68.

1 98. Katakowski M, Buller B, Wang X, Rogers T, Chopp M. Functional microRNA is transferred between glioma  
2 cells. *Cancer Res.* 2010;70(21):8259-63.

3 99. Kizana E, Cingolani E, Marban E. Non-cell-autonomous effects of vector-expressed regulatory RNAs in  
4 mammalian heart cells. *Gene Ther.* 2009;16(9):1163-8.

5 100. Wolvetang EJ, Pera MF, Zuckerman KS. Gap junction mediated transport of shRNA between human  
6 embryonic stem cells. *Biochem Biophys Res Commun.* 2007;363(3):610-5.

7 101. Kohlhapp FJ, Mitra AK, Lengyel E, Peter ME. MicroRNAs as mediators and communicators between cancer  
8 cells and the tumor microenvironment. *Oncogene.* 2015;34(48):5857-68.

9 102. Vidigal JA, Ventura A. The biological functions of miRNAs: lessons from in vivo studies. *Trends Cell Biol.*  
10 2015;25(3):137-47.

11 103. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, et al. Microenvironment-induced PTEN loss by  
12 exosomal microRNA primes brain metastasis outgrowth. *Nature.* 2015;527(7576):100-4.

13 104. Thuringer D, Boucher J, Jego G, Pernet N, Cronier L, Hammann A, et al. Transfer of functional microRNAs  
14 between glioblastoma and microvascular endothelial cells through gap junctions. *Oncotarget.*  
15 2016;7(45):73925-34.

16 105. Contreras JE, Sanchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, et al. Metabolic inhibition induces  
17 opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication  
18 in cortical astrocytes in culture. *Proc Natl Acad Sci USA.* 2002;99(1):495-500.

19 106. Nagy JI, Patel D, Ochalski PA, Stelmack GL. Connexin30 in rodent, cat and human brain: selective  
20 expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late  
21 developmental appearance. *Neuroscience.* 1999;88(2):447-68.

22 107. Gordon GR, Mulligan SJ, MacVicar BA. Astrocyte control of the cerebrovasculature. *Glia.* 2007;55(12):1214-  
23 21.

24 108. Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood flow. *Trends Neurosci.*  
25 2009;32(3):160-9.

26 109. Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacska BJ. Synchronous hyperactivity and intercellular calcium  
27 waves in astrocytes in Alzheimer mice. *Science (New York, NY).* 2009;323(5918):1211-5.

28 110. Hoogland TM, Kuhn B, Gobel W, Huang W, Nakai J, Helmchen F, et al. Radially expanding transglial  
29 calcium waves in the intact cerebellum. *Proc Natl Acad Sci USA.* 2009;106(9):3496-501.

30 111. Ivanova E, Kovacs-Oller T, Sagdullaev BT. Vascular Pericyte Impairment and Connexin43 Gap Junction  
31 Deficit Contribute to Vasomotor Decline in Diabetic Retinopathy. *J Neurosci.* 2017;37(32):7580-94.

32 112. Winkler F. The brain metastatic niche. *Journal of molecular medicine (Berlin, Germany).* 2015;93(11):1213-  
33 20.

34 113. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, et al. Real-time imaging  
35 reveals the single steps of brain metastasis formation. *Nature medicine.* 2010;16(1):116-22.

36 114. Stoletov K, Strnadel J, Zardouzian E, Momiyama M, Park FD, Kelber JA, et al. Role of connexins in  
37 metastatic breast cancer and melanoma brain colonization. *Journal of cell science.* 2013;126(Pt 4):904-13.

38 115. Wu SY, Watabe K. The roles of microglia/macrophages in tumor progression of brain cancer and metastatic  
39 disease. *Frontiers in bioscience (Landmark edition).* 2017;22:1805-29.

40 116. Thuringer D, Jego G, Berthenet K, Hammann A, Solary E, Garrido C. Gap junction-mediated transfer of  
41 miR-145-5p from microvascular endothelial cells to colon cancer cells inhibits angiogenesis. *Oncotarget.*  
42 2016;7(19):28160-8.

43 117. Yin J, Xu WQ, Ye MX, Zhang Y, Wang HY, Zhang J, et al. Up-regulated basigin-2 in microglia induced by  
44 hypoxia promotes retinal angiogenesis. *Journal of cellular and molecular medicine.* 2017;21(12):3467-80.

45 118. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, et al. Equal numbers of neuronal  
46 and nonneuronal cells make the human brain an isometrically scaled-up primate brain. *J Comp Neurol.*  
47 2009;513(5):532-41.

48 119. Belanger M, Magistretti PJ. The role of astroglia in neuroprotection. *Dialogues in clinical neuroscience.*  
49 2009;11(3):281-95.

50 120. Belanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic  
51 cooperation. *Cell metabolism.* 2011;14(6):724-38.

52 121. Giaume C, Tabernero A, Medina JM. Metabolic trafficking through astrocytic gap junctions. *Glia.*  
53 1997;21(1):114-23.

1 122. Ozog MA, Siushansian R, Naus CC. Blocked gap junctional coupling increases glutamate-induced  
2 neurotoxicity in neuron-astrocyte co-cultures. *J Neuropathol Exp Neurol.* 2002;61(2):132-41.

3 123. Bernardinelli Y, Magistretti PJ, Chatton JY. Astrocytes generate Na<sup>+</sup>-mediated metabolic waves. *Proc Natl  
4 Acad Sci USA.* 2004;101(41):14937-42.

5 124. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C. Astroglial metabolic networks sustain  
6 hippocampal synaptic transmission. *Science (New York, NY).* 2008;322(5907):1551-5.

7 125. Karagiannis A, Sylantyev S, Hadjihambi A, Hosford PS, Kasparov S, Courine AV. Hemichannel-mediated  
8 release of lactate. *Journal of cerebral blood flow and metabolism : official journal of the International Society  
9 of Cerebral Blood Flow and Metabolism.* 2016;36(7):1202-11.

10 126. Lin Q, Balasubramanian K, Fan D, Kim SJ, Guo L, Wang H, et al. Reactive astrocytes protect melanoma  
11 cells from chemotherapy by sequestering intracellular calcium through gap junction communication  
12 channels. *Neoplasia (New York, NY).* 2010;12(9):748-54.

13 127. Kim SW, Choi HJ, Lee HJ, He J, Wu Q, Langley RR, et al. Role of the endothelin axis in astrocyte- and  
14 endothelial cell-mediated chemoprotection of cancer cells. *Neuro-oncology.* 2014;16(12):1585-98.

15 128. Zhivotovsky B, Orrenius S. Calcium and cell death mechanisms: a perspective from the cell death  
16 community. *Cell calcium.* 2011;50(3):211-21.

17 129. Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A, et al. Carcinoma-astrocyte gap junctions promote  
18 brain metastasis by cGAMP transfer. *Nature.* 2016;533(7604):493-8.