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13 Abstract: Parametric cyclonic wind fields are widely used worldwide for insurance risk
14 underwriting, coastal planning, or storm surge forecasts. They support high-stakes financial,
15 development, and emergency decisions. Yet, there is still no consensus on the best parametric
16 approach, or relevant guidance to choose among the great variety of published models. The aim of
17 this paper is first and foremost to demonstrate that recent progresses on estimating extreme surface
18 wind speeds from satellite remote sensing now makes it possible to select the best option with

19 greater objectivity. In particular, we show that the Cyclone Global Navigation Satellite System
20 (CYGNSS) mission of NASA is able to capture a substantial part of the tropical cyclones structure,

21 and allows identifying systematic biases in a number of parametric models. Our results also
22 suggest that none of the traditional empirical approaches can be considered as the best option in all
23 cases. Rather, the choice of a parametric model depends on several criteria such as cyclone intensity
24 and/or availability of wind radii information. The benefit of using satellite remote sensing data to
25 better select a parametric model for a specific case study is tested here by simulating hurricane
26 Maria (2017). The significant wave heights computed by a wave-current hydrodynamic coupled
27 model are found to be in good accordance with the predictions given by the remote sensing data in
28 terms of bias. The results and approach presented in this study should shed new light on how to
29 handle parametric cyclonic wind models, and help the scientific community to conduct better
30 wind, waves and surge analysis for tropical cyclones.

31 Keywords: Remote sensing; cyclones; parametric models; hurricanes; CYGNSS; ASCAT, storm
32 surges; waves; winds

33

34 1. Introduction

35 Since the overview of Vickery et al. [1], numerical atmospheric models have been increasingly
36  applied in storm surge prediction or coastal hazard assessment studies [2-5]. Nonetheless,

37  parametric models deriving cyclonic wind fields from a few input parameters (pressure drop,

38  maximum velocity, wind radii, location of the cyclone center, etc) are still widely used by the

39  research and insurance communities, due to their simplicity, efficiency, and low-computational costs
40  [6-12]. This is especially true for studies investigating storm surge hazards with statistical

41  approaches, which require the construction of a large number of synthetic storms [13-16].

42  For a few decades (and still often today) the parametric surface winds were simply derived as the
43 sum of an axisymmetric wind field and a uniform vector to mimic the asymmetry due to the storm
44 translation speed. Vivid debates arose to determine the best way to estimate both components,
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45  which is a particularly relevant issue since large discrepancies of the synthesized wind field occur
46  depending on the chosen method [17]. This kind of approach where the tropical cyclone (TC) size is
47  generally determined by a single parameter (the radius of maximum winds), presents several

48  drawbacks. In particular, it generally does not satisfactorily represent the TC wind asymmetry,

49  which can be due to many factors such as blocking action by a neighbor anticyclone, boundary layer
50 friction, or terrestrial effects [18].

51 To date, the increasing availability of satellite remote sensing data makes it possible to better depict
52  and forecast the wind structure of TCs and its variations with azimuth. Whether they are based on
53 infrared imagery and data [19-21], scatterometry [22-23], X-band, C-band and L-band radiometry
54 [24-29], or global navigation satellite system-reflectometry (GNSS-R) [30-32], all these data can

55 provide information about the 34-kt, 50-kt, and/or 64-kt wind radii in each TC quadrant. These radii
56  are now commonly reported in advisories issued by warning centers.

57  Yet, to our knowledge, only very few studies investigating TC winds, cyclonic-induced waves, or
58  storm surges through parametric models account for all this information, whether for forecasts or
59 hindcasts. Besides, it is striking to see that even now, there is neither consensus nor even real debate
60  on the best gradient wind model, i.e. the parametric model that will represent with the greatest

61  accuracy the increase and decay of wind speed as a function of distance to the TC center. A vivid
62  example of this is the Holland [33] vortex. Although known to present significant drawbacks [34],
63  this model is still widely used by the research and insurance communities all over the globe. Other
64  commonly used parametric wind models (for which there is room for improvement) include for
65 example Jelesnianski and Taylor [35], or Emanuel and Rotunno [36]. New models are proposed

66  almost every year [18,37], but the published studies also generally suffer from one or several

67 drawbacks, including:

68 e a lack of information about the parameters considered. For example, the empirical surface wind

69 reduction factor (SWRF [38]) used for computations is rarely indicated, although it is thought to
70 play a significant role in the estimated surface wind speeds [17].

71 e comparisons/validations with a limited number of observed data. In-situ observations of surface wind
72 speed are relatively sparse for TCs, as they spend most of their lifetime over the oceans, where
73 the density of buoys able to record extreme winds is relatively small. Besides, the wind
74 recorded by meteorological stations is often biased because of terrestrial effects, which makes it
75 difficult to compare observations with parametric values in a consistent way. Although these
76 issues are offset to some extent in the North Atlantic and East Pacific thanks to aircraft
77 reconnaissance, it remains a major problem in all oceanic basins.

78 o comparisons/validations with a limited number of parametric wind models. Except the work of Lin and
79 Chavas [17], we are not aware of any study investigating parametric wind models over a wide
80 range of parameters and methods. New proposed models are often compared to the Holland
81 [33] or Jelesnianski and Taylor [35] approaches to assess their quality, and disregard more
82 recent models such as Willoughby et al. [39] or Emanuel and Rotunno [36].

83 e comparisons/validations with parametric models which do not include all the available information about
84 the TC wind structure. As noted before, very few studies take into account all the available
85 information about wind structure, such as the 34-kt, 50-kt, and 64-kt wind radii for each
86 quadrant. Most of the time, only the hurricane-force (i.e. 64kt) wind radii are used, which
87 potentially results in errors far from the cyclone center.

88  Yet, indirect surface wind speed measurements using remote sensing data are now expected to be
89  mature enough to help us overcome most of these limitations. The recent availability of data from
90  CYGNSS (Cyclone Global Navigation Satellite System), a spatial mission dedicated to wind speeds
91  retrieval near the eye of TCs, is a promising example.
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92  The main objective of this paper is to investigate the benefits of using recent satellite remote sensing
93  data such as CYGNSS or ASCAT (Advanced Scatterometer) to help everyone selecting the most
94  suitable parametric model, depending on his own case study.

95  After a short description of data and wind models used in the present study (section 2), we compare

96  CYGNSS and ASCAT data with parametric models constrained by observations for 16 recent

97  hurricanes (section 3). The aim is to provide a first evaluation of the usefulness of these remote

98  sensing data as proxy for surface wind speeds. As we will show, these preliminary results suggest

99  that CYGNSS and ASCAT might indeed provide reliable estimates for extreme and moderate wind
100  speeds respectively. We then hypothesize that it is indeed the case, and check whether or not this
101  assumption leads to consistent results. To this aim, we first compute the biases given by several
102  parametric models to see if we can reproduce the findings of past studies (section 4). We then
103  perform numerical hindcasts of hurricane Maria (2017) using several parametric formulas, and
104  compare significant wave heights computed with real in-situ data to check, again, if the results are
105  consistent (section 5). We finally discuss the main results of the manuscript and give concluding
106  remarks (section 6).

107 2. Data and Methods

108  2.1. Cyclone selection

109 The Atlantic Ocean had a very active hurricane season in 2017, due to six major hurricanes and
110  two in category 5. Thanks to aircraft reconnaissance, large quantities of high-quality in-situ data
111 were collected and incorporated into models to better reproduce the hurricanes and their evolution
112 for a wide range of intensities and sizes. Besides, the CYGNSS mission of NASA (dedicated to
113 surface wind speed measurements in extreme conditions) was launched just in time to collect data
114 for this season. These conditions are ideal for revisiting the structure of TCs, and the ability of
115  parametric models to approximate it. In this study, we considered most of the hurricanes that
116  occurred both in Atlantic (ATL) and East Pacific (EP) during the 2017 season. In all, 16 events were
117  taken into account (Table 1).

118 Table 1. List and characteristics of the 16 hurricanes considered in this study. The minimum and
119 maximum radjii at 34-kt, 50-kt, and 64-kts (R34, R50, and R64 respectively) are given in nautical miles
120 at the peak intensity. WS stands for wind speed.
TC
Min/Max | Min/Max Min/Max
Number | Name Basin Dates Category
R34 R50 R64
(max WS)
25/06 >
1 Dora EP 1 (80kt) 40/70 20/40 15/25
28/06
07/07 >
2 Eugene EP 3 (100kt) 60/110 40/80 20/30
10/07
07/08 >
3 Franklin | ATL 1 (75kt) 60/130 30/50 NA/30
10/08
13/08 >
4 Gert ATL ’ 2 (90kt) 50/120 15/60 NA/30
17/08
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17/08 >
5 Harvey | ATL 4 (115kt) 70/120 40/60 20/35
30/08
24/08 >
6 Hilary EP 2 (90kt) 60/90 30/50 15/20
30/08
30/08 >
7 Irma ATL 5 (160kt) 80/160 50/100 30/45
11/09
23/07 -
8 Irwin EP 1 (80kt) 30/60 10/30 NA/15
01/08
05/09 >
9 Jose ATL 4 (135kt) 50/120 30/50 20/30
22/09
06/09 >
10 Katia ATL 2 (90kt) 60/60 20/40 15/20
09/09
19/08 -
11 Kenneth | EP 4 (115kt) 60/90 30/50 15/25
23/08
16/09 -
12 Lee ATL 3 (100kt) 60/80 40/50 25/30
30/09
16/09 -
13 Maria ATL 5 (150kt) 100/150 60/80 35/50
30/09
13/09 -
14 Max EP 1 (70kt) 30/40 20/20 10/10
15/09
14/09 -
15 Norma EP 1 (65kt) 70/80 30/50 NA/25
19/09
16/09 -
16 Otis EP 3 (100kt) 40/60 20/40 10/20
19/09
121
122 For each of these events, we considered the following data provided by the NHC (National

123 Hurricane Center) advisories: location of the cyclone center, minimum pressure, maximum wind
124 speed, radii of the 34-, 50-, and 64-knot winds in the four quadrants at every 6 hours. Most of these
125  data were calibrated using aircraft reconnaissance and are consequently expected to be reliable.

126 2.2. Remote sensing data

127 We also collected the full dataset distributed by the CYGNSS and ASCAT science team
128  members for the 2017 hurricane season in Atlantic and East Pacific.
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129 The CYGNSS mission [31] consists of a eight satellites-constellation in low-inclination circular
130  orbit that receive direct and reflected GPS L1 (1.575 Ghz) signals to infer surface wind speeds and
131  sea roughness, even for intense rainfalls typically observed during hurricanes. It allows for a good
132 spatial and temporal coverage, with mean and median revisit times over the tropics of 7.2h and 2.8h
133 respectively [32]. The 25km- resolution data considered here (v2.0) have been validated and
134 calibrated using cyclones of the 2017 season, including most of the events considered in this study
135  (Table 1). For the time being, the overall root mean square (RMS) error in the CYGNSS retrievals is
136  about 1.4m/s and 17% for wind speeds lower and larger than 20 m/s respectively [40]. According to
137  the CYGNSS team (personal communication), the bias explains approximately half of the high wind
138  RMS (about 8.5%), the other half being random scatter. Generally speaking, we can thus expect
139  maximum biases of a few meters per second, even for high wind speeds.

140

141 We tested here several Level 2-wind speed products:

142

143 e The "wind speed" (ws) product is derived from the best fit to both the normalized bistatic radar
144 cross-section (NBRCS) and leading edge slope (LES) of the integrated delay waveform given by
145 the delay-Doppler maps (DDM [41]), using a fully developed seas geophysical model function
146 (GMEF);

147 e The "yslf_les_wind_speed" (les) wind product is derived from only the LES of the DDM, using a
148 young seas / limited-fetch GMF;

149 e The "yslf_nbrcs_wind_speed" (nbrc) product is derived from only the NBRCS, using the young
150 seas / limited-fetch GMF.

151

152 ASCAT [22,42] consists of C-band scatterometers mounted on the satellites MetOp-A and

153  MetOp-B, that were launched in 2006 and 2012 respectively. The emitting antennas transmit pulses
154 at 5.255 GHz and extend on either side of the instrument, which results in a double 500km-wide
155  swath of observations. These scatterometers are found to give reliable estimations of wind speeds up
156  to at least 34-kt. However, they lose sensitivity in extreme conditions and are often plagued by rain
157  contamination. We use here the 25km-resolution coastal product, which give more wind data close
158  to the coast [43].

159 2.3. Parametric wind models

160 For a given cyclone and parametric gradient wind profile, we estimated the surface wind speed
161  associated to each CYGNSS and ASCAT data point according to the following main steps:

162

163 1- From the NHC advisories, we estimated the surface background wind relative to the cyclone

164  translation velocity at the time of acquisition of the considered CYGNSS/ASCAT data point.
165  Following the approach of Lin and Chavas [17], we assumed that this wind is decelerated by a factor
166  a=0.56 and rotated counter-clockwise by an angle =19.2° from the free tropospheric wind.

167

168 2-We removed the translational portion of the wind speed from the maximum observed wind
169 velocity and the 34-, 50-, and 64kt winds.

170

171 3-We converted surface velocities to velocities on top of the atmospheric boundary layer by

172 applying an empirical surface wind reduction factor SWRF [38]. In the following sections, we
173 specified SWRF=0.9. Other values were tested, but for the sake of simplicity results are not presented
174 here (they add very little to the conclusions of this paper).

175

176 4-We estimated the maximum wind radii for the four quadrants, using the chosen parametric
177  gradient wind profile, and the available wind radii information. For each quadrant, up to three radii
178  of maximum wind are thus obtained: one from the 64-kt wind radius (Rmes), another from the 50-kt
179  wind radius (Rms0), and a last one from the 34-kt wind radius (Rms34).
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180

181 5-Depending on the available wind radii information considered, we computed Rmes4, Rm34 or all
182  the radii of maximum winds (Rmes, Rmso, and Rmss) for the data point azimuth, using a spline
183  interpolation.

184

185 6-We computed the wind speed values at the CYGNSS/ASCAT data point obtained using the
186  chosen parametric gradient wind profile and the radii of maximum winds considered (Rme4, Rm34, or
187  all three of them).

188 7-We assessed the wind speed at the CYGNSS/ASCAT data point, using a weighted average of
189  the wind speeds obtained in the previous step. We followed the procedure proposed by Hu et al.
190  [44], which ensures that all the wind radii information is satisfied.

191

192 8-We obtained the surface wind speed by multiplying the result by SWRE.

193

194 9-The wind speed obtained in the previous step was combined with the surface background

195  wind computed in step 1 to get the final parametric wind speed at the CYGNSS/ASCAT data point
196  considered.

197

198 This procedure is repeated for all the storms, gradient wind profiles, and CYGNSS/ASCAT
199  Level 2-data points within a distance of 200km from the cyclone center. The parametric models
200  considered here are given in Table 2.

201
202 Table 2. Parametric wind models considered in this study. For all of them, an empirical surface wind
203 reduction factor [38] SWRF=0.9 was prescribed. Comparisons are only made for data within a
204 distance of 200km from the cyclone center. The translation vector is reduced by a factor a=0.56 and
205 rotated counter-clockwise by an angle =19.2°, according to the findings of Lin and Chavas [17].
206 Here, Vin and Rm are the maximum wind speed and the radius of maximum winds. r refers to the
207 distance to the TC center, and f to the coriolis coefficient.
Name Main reference Formula
E11 Emanuel and Ve 2r(Ry,V,, + 0.5fR%)  fr
r)= - =
Rotunno [36] RZ +712 2

Ro_y (r\*[ (1+b)(n+m)
V) = V()
Ro —R R r \2(n+m)

mom n+m (m)

0.5
E04 Emanuel [45] b(1+ 2m)
+ 142 ( r )2m+1
m (g

with b=0.25, m=1.6, n=0.9, Ro=420km

2rR Vi

J92 Jelesnianski et al [46] V() = RZ + 12

HS80 Holland [33] V() =

p + 4 2

<Rm)B BAPexp (— (RT’”)B) r2f2 ~ f_r
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2
with B = ‘meet/VmRmep 115 ¢ = exp(1)

AP
R B
Holland [33] R,\? BAPexp (_ =) )
v = |(=2)
r P
H80c with cyclostrophic
approximation with B =" | 5 =115, ¢ = exp(1)
n
M16 Murty et al. [37] V(r) =V, ((;Zri':z)) with n =3/5

For 0 <r <R,: V() =V, (RL)n with n = 0.79
W06 Willoughby et al. [39]

For r =Ry, : V(r) = V,exp (— %) with X = 243km

208

209 3. Comparison of CYGNSS and ASCAT data

210

211 To get a preliminary idea of the usefulness of CYGNSS and ASCAT data as proxy for surface
212 wind speeds, we computed the biases between these data and the mean (i.e. averaged over all
213  empirical models) parametric winds for different cyclone categories and distances to the center
214  (Figure 1). Computations were performed only when more than 30 data points were available for a
215  given intensity/distance class. In practice, the comparison was possible for almost all cases, as
216  hundreds or even thousands of space-borne observations were available for each class. Parametric
217  models have been constrained by all the information provided by the NHC in the advisories, to
218  ensure that they give the best approximation possible to real winds. In classes for which the biases
219  arelarge, remote sensing data are not consistent with the mean parametric winds. We choose not to
220 investigate further these data in the following sections, even if there is no evidence that the error is
221  due to remote sensing rather than parametric models. On the contrary, small biases (in absolute
222 terms) suggest that remote sensing data and parametric winds are consistent, so that they both give
223 satisfactory results a priori. In the following, we will make the assumption that these
224  CYGNSS/ASCAT data are indeed good proxies, and check whether or not this hypothesis leads to
225  consistent results.

226

227

228
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Figure 1. Bias between the remote sensing data and the parametric winds averaged over all
empirical models (negative/positive values indicate that remote sensing data are
negatively/positively biased compared to the mean parametric winds) . Different categories of
distance to the cyclone center (r) and cyclone intensities are considered. TS stands for tropical
storms, H1, H2, H3, H4, and HS5 to the cyclone category (1, 2, 3, 4, and 5 respectively). R34,
R50, and R64 are the radii for the 34-kt, 50-kt, and 64-kt winds. ws, nbrc, and les are three
different CYGNSS products (see section 2).

Regarding ASCAT data, Figure 1 shows that the bias is low (less than about 2-3m/s in absolute
value) for radius larger than R34, but becomes increasingly negative with cyclone category and
decreasing distance to the cyclone center, up to almost -20m/s. These results suggest that ASCAT
data are a good proxy for wind speeds lower than 34-kt, but that they underestimate extreme winds.
This conclusion is consistent with previous published papers [47].

The "wind speed" (ws) product is found to give systematically more negative biases than
ASCAT, and thus probably often underestimates the velocities (Figure 1). However, the absolute
value of bias remains relatively low for radius larger than R34, which suggests that this product
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246 might still be a good proxy for moderate and (potentially even more) low wind speeds. As this
247  product was developed for fully developed seas, these results were also expected.

248 Wind speeds derived from only the LES of the DDM ("les" in Figure 1) display, again, negative
249 biases for r>R64. However, those remain smaller in absolute value compared to "ws", which makes
250  sense since this product has been derived using a young seas / limited-fetch GMF that is expected to
251  be more suitable for our test cases. Considering the potential errors on parametric models, it could
252 be a proxy as good as ASCAT for radius larger than R34. Above all, this product shows significantly
253 reduced biases for r<R64. This suggests that it yields better estimates of surface wind speeds than
254  ASCAT close to the eyewall.

255 The wind speeds derived from only the NBRCS ("nbrc" in Figure 1) outperform the other
256  products in most cases for radius lower than R34, with bias generally lower than 5m/s in absolute
257  value. The main exception is the wind for radius lower than R64 for minor cyclones (category 1 or 2),
258  where the bias reaches 10 to 15m/s. One plausible explanation is that the resolution of CYGNSS
259  (25km) is too low to capture the surface wind speeds in these area, especially for weak cyclones
260  where the 64kt radii are very close to the eyewall, i.e. to places where wind speeds vary quickly as a
261  function of distance to the center. This problem is presumably less severe for major cyclones
262  (category 3 or more) because of a larger extent of hurricane-force winds (Table 1).

263

264 Based on all these findings, we will hypothesize in the following section that the ASCAT and
265  CYGNSS/NBRC products are the best surface wind speeds proxy for r> R34 and r<R34 respectively.
266  However, we will not consider radii lower than R64 for weak (category 1-2) cyclones, as Figure 1
267  also suggest that none of the space-borne products tested here is reliable in these conditions.

268

269 We will check in sections 4 and 5 whether these preliminary results and assumptions give
270  results consistent with previous work and in-situ data, to confirm or invalidate them a posteriori.

271 4. Performance of parametric wind models

272 Using the assumption made in the previous section, we computed the bias of the various
273  parametric models as a function of storm intensity, distance to the cyclone center, and calibration
274  method (using only radii at 34kt, only radii at 64kt, and all radii information for the left, middle and
275  right panels respectively in Figure 2). The color bar shows the absolute value of bias. Blue colors
276  correspond to small biases (in absolute value), and thus suggest that the parametric model should
277  work well for the intensity/distance class considered. Conversely, red colors indicate that the model
278  is expected to perform poorly. The aim is to see whether the assumption on which this figure is
279  based ("ASCAT and CYGNSS/NBRC are good wind speeds proxy for r> R34 and r<R34
280  respectively") gives consistent results or not.

281
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283 Figure 2. Diagrams displaying the bias between various parametric models and the surface
284  wind speeds estimated by CYGNSS/ASCAT data for all the events considered here, as a function of
285  storm intensity and distance to the cyclone center (x- and y-axis respectively for each diagram), as
286  well as calibration method (using only radii at 34kt, only radii at 64kt, and all radii information for
287  the left, middle and right panels respectively). The color bar (the same for all diagrams) shows the
288  absolute value bias. The values are displayed for each category/distance cell. The black contours
289  indicate the category/distance classes for which we consider E11 and H80 models in section 5 (model
290  E11HS80).

291  First of all, it appears that the bias is significantly reduced in almost all cases for r<R64 and r>R34
292  when constraining the parametric models by R64 and R34 respectively. This suggests that not only
293  the "mean" parametric wind values computed in section 3 are consistent with the CYGNSS/ASCAT
294  data for these classes, but also most of the parametric models taken individually, as long as they are
295  constrained by the 64-kt and 34-kt wind radii given by the NHC. This finding gives additional credit
296 to the assumption we made in section 3. It may, however, be observed that biases are not always so
297  much reduced (and can even be increased) when constraining the parametric models by R50 for very
298  intense (category >3) cyclones. This issue appears also in Figure 1, where strangely the absolute bias
299  of CYGNSS is larger for R64<r< R50 than for r<R64. There could be several explanations to this fact:
300  anissue with the calibration of CYGNSS data for these conditions of course, but also a problem with
301  the parametric models for extreme events in the "transition zone" (the area between the inner

302  core/outer region). The latter cannot be dismissed, as most parametric models were built by focusing
303  mainly on the inner and/or outer regions (e.g. [39]), whereas much less attention was paid to the
304  transition zone between extreme and moderate winds. We will return to this point later on.

305  The results are also found to be consistent with most of the previous works. For instance:

306 e The inner region solution of Emanuel and Rotunno [36], E11, generally gives the smaller bias

307 (hence the best results) close to the storm center (typically, for r<R50), especially for intense and
308 well defined cyclones. It is also found to underestimate significantly the wind speeds far from
309 the center as found in Lin and Chavas [17], even when prescribing the radii at 34-kt. E04
310 performs much better for the outer region, but poorly near the center. E11 and E04 can thus be
311 merged to develop a complete TC radial wind structure as proposed by Chavas et al. [48];

312 e  When solely constrained by radii close to the cyclone center (here R64), the Holland profile
313 (H80) tends to underestimate the winds in the outer region, as noted by Willoughby and Rahn
314 [34]. It can also lead to broad wind maximum, and thus wind overestimations at several dozens
315 of kilometers from the center for extreme cyclones (for R64<r<R50 for example), as can be seen
316 in the right and left panels notably. These findings, which are in accordance with the results of
317 Willoughby and Rahn [34], confirm that the issue we identified earlier with the 50-kt wind radii
318 could be partly due to flaws in parametric models such as H80 in the "transition zone".

319 e ]92tends to overestimate the wind speeds by a few m/s, as suggested by Lin and Chavas [17];
320 e The results are generally much better when considering a family of profiles with two

321 characteristic lengths, as proposed by Willoughby et al [39]. For example, as stated above, the
322 performance of the Holland model H80 is significantly increased when both radii at 34-kt and
323 64-kt are prescribed;

324 e Models such as W06 or M16 (which decay exponentially or as a power-law outside the eye)
325 perform well in the outer region when the 34-kt radii are prescribed properly, which is
326 consistent with the findings of Willoughby et al. [39] and Murty et al. [37].

327  The consistency of these results increases the confidence in our assumption that the ASCAT and
328  CYGNSS/NBRC products are relatively good proxies for surface wind speeds, for r>R34 and r<R34
329  respectively (with the exception of the inner region for weak cyclones). To further build the

330  confidence in this hypothesis, we also performed numerical hindcasts of hurricane Maria (2017), and
331  compared computed significant wave heights with real in-situ data (section 5). The aim was also to
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332  investigate the potential of results such as those presented in Figure 2 to choose one parametric
333  model rather than another, depending on the case study.

334 5. Comparison with in-situ data

335 Hurricane Maria was the deadliest storm of the 2017 Atlantic season. Recorded as a category 5
336  event, it caused catastrophic damages in Dominica and Puerto Rico, as well as widespread flooding
337  and crop destructions in Guadeloupe. We tested here the ability of several parametric models to
338  properly represent the wind pattern evolution during Maria by comparing the significant wave

339  heights observed at buoys in the Lesser Antilles with those computed using a wave-current coupled
340  model forced by a sub-set of the various parametric winds considered in the previous section. The
341  modelis based on the code SCHISM-WWM [49]. The computational domain is represented in Figure
342 3. Resolution spans from 10km far from the region of interest (where the bathymetry is derived from
343 GEBCO), up to about 100m in Guadeloupe and Martinique where we have the best bathymetric data
344  (ship-based soundings from the SHOM, the French Naval Hydrographic and Oceanographic

345  Department). The model is forced by:

346 e  astronomic tidal potential over the whole domain (12 constituents);

347 e 26 tidal harmonic constituents at the open boundaries, provided by the global FES2012 model
348 [50] ;

349 e parametric pressure fields [33];

350 e  parametric winds blended with CFSR (Climate Forecast System Reanalysis [51]) wind data. The

351 parametric winds are prescribed for radii less than R34 , whereas CFSR data are imposed for r >
352 1.5 R34. In between, a smooth transition is ensured using a weighing coefficient varying with
353 the radius r.

354

: Maria

St Lucie ®

Atlantic Ocean

-

-

=
7 5? Caribbean Sea

355

356 Figure 3. Study area. The computational domain is depicted with the dashed red contour. The
357 dashed white line represents the track of hurricane Maria. The location of the buoys used for
358 comparison is given in the upper-right corner box.

359

360 We considered here five parametric models:

361 e E11 and HS80, constrained using the 64-kt wind radii only (E11(R64) and H80(R64) in Figure 4);
362 e E11 and H80, constrained using all the wind radii information (E11(All) and H80(All) in Figure

363 4);

364 e  E11HS0, for which we chose to blend the wind speeds inferred from E11 for the inner core area
365 with those given by H80 for the outer region (see the black contours in Figure 2)

366

367  E11H80 was chosen to test whether results such as those presented in Figure 2 could be of benefit to
368  build a better parametric model for the cyclone considered, using a combination of models that is
369  expected to reduce the biases. We strongly insist on the fact that the new model tested here (E11H80)
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370  isjust an example. In no way we consider this model as the best option. E11 combined with W06 or
371  EO04 could be also tested for instance.

372

373 The reader is referred to Krien et al [9] for greater details about the model and the numerical
374  strategy. Here, we compared the significant wave heights (Hs) computed by the model with the Hs
375  recorded by three buoys located in the Lesser Antilles (Figure 3): Fort de France (FdF) and Sainte
376  Lucie, owned by Meteo France, as well as 42060, maintained by the National Data Buoy Center
377  (NDBC). The latter went adrift during the peak of Maria, hence the decrease of Hs was unfortunately
378  not captured.

379
380 Table 3. Bias, root mean square error (RMS) and normalized RMS (NRMS) obtained when
381 comparing numerical simulations with in-situ significant wave heights.
42060 Fort de France St Lucie
Bias 0.1m -0.85m -0.43m
HB80 (R64) RMS 1.2m 0.9m 0.55m
NRMS 27.1% 41.8% 24%
Bias 1.5m 0.9m 0.64m
HS80 (All) RMS 2m 1.06m 0.84m
NRMS 46% 49.3% 36.6%
Bias -1.4m -0.8m -0.44m
E11 (R64) RMS 1.5m 0.87m 0.56m
NRMS 35% 40.3% 24.5%
Bias -0.9m -0.21m -0.19m
E11 (All) RMS 0.9m 0.34m 0.43m
NRMS 21.3% 15.8% 18.7%
Bias -0.7m 0.0Im -0.04m
E11HS80
RMS 0.7m 0.31m 0.44m
(All)
NRMS 17.4% 14.5% 19.2%

382 Results (Table3, Figure 4) show that:

383 e HS80 and E11 constrained only by the 64-kt wind radii (R64) give the worst results, with Hs
384 generally significantly underestimated, and NRMS ranging between 20% and 50% (Table 3).
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386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

e Trying to improve these models by constraining all the 34-kt, 50-kt, and 64-kt wind radii (All)
results in much better performances for E11, with reduced bias and NRMS (15 to 22%
approximately). This suggests that E11 satisfactorily represents the TC structure, at least as long
as the hurricane (here in category 4-5) remains relatively close to the buoys. It tends to
underestimate Hs (in Sainte Lucie for example) when the storm moves further away.

¢  On the contrary, the H80 model strongly overestimates Hs when Maria is the closest to the
storm, at a distance of about 120-200km (which corresponds roughly to the radii at 50-kt). This
is also consistent with the results of Figure 2, and confirms, again, that the relatively significant
biases obtained in Figure 1 for extreme cyclones and R64<r<R50 might be partly explained by
flaws in parametric models such as H80 rather than errors in CYGNSS wind speeds. The
prediction is better when Maria moves further away, which was also expected.

e  The best results are obtained here for the model E11H80. The bias is found to be considerably
reduced compared to Ellconstrained with all wind radii.

These results are all consistent with those presented in Figure 2 (keeping in mind that Maria is
here a category 4-5 hurricane, and that it passes relatively close to the buoys, see Figure 3). Hence
they also support our assumption that the ASCAT and CYGNSS/NBRC products are relatively good
proxies for surface wind speeds, for r>R34 and r<R34 respectively (with the exception of the inner
region for weak cyclones).
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Figure 4- Significant wave height time series for different parametric models. "R64" denotes a
model constrained only by the 64-kt wind radii. "ALL" indicates a model constrained with all
the available information (34-kt, 50-kt, and 64-kt wind radii). E11H80 corresponds to a blend of
the model E11 (for the inner core region) and H80 (for the outer region). Results for
Fort-de-France, Sainte-Lucie, and the 42060 station are displayed in (a), (b), and (c) respectively.
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414 6. Conclusions

415 Taking advantage of an extremely active 2017 hurricane season in the tropical Atlantic Ocean and the
416 Eastern Pacific, we investigated the potential of using recent satellite remote sensing data such as CYGNSS and
417 ASCAT to identify the advantages and drawbacks of several parametric wind models used for storm surge
418 hazard assessment or prediction of cyclonic waves.

419 Under the assumption that ASCAT and CYGNSS/NBRC products can be considered as good proxies for surface
420  wind speeds for the outer and inner regions respectively (with an exception for the core of weak cyclones), we
421 were able to confirm the findings of a number of previous studies (e.g. Willoughby et al. [39], Lin and Chavas

422 [17] or Chavas et al. [48]). Using a wave-current coupled numerical model, we also showed that remote sensing
423 data such as CYGNSS/ASCAT are probably sufficiently accurate to be used to better select a suitable parametric
424 model, depending on the case study considered. The choice will depend on several criteria such as cyclone
425 intensity and/or availability of wind radii information. Indeed, our results suggest that none of the traditional
426 empirical approaches can be considered as the best option in all cases.

427 We strongly insist on the fact that our aim here is not to encourage using or discarding a specific parametric

428 model, and even less to propose a new one. First, because we did not test all the published models. Second,
429 because each author uses a specific combination of parameters and approach to mimic the wind field, so that it
430 would be presumptuous to draw definitive conclusions. Besides, there are still errors on remote sensing data, so
431 that differences of 2-3m/s in terms of bias are probably not really significant.

432 The main finding of this paper is thus the following: satellite remote sensing is now mature enough to provide
433 relevant information about the performance of parametric cyclonic wind models, even if further work is
434  needed, especially to access to the full structure of TCs close to the eyewall. We focused here mainly on the
435 CYGNSS mission, but there is little doubt that other type of data can also be valuable. Remote sensing has now
436 become a powerful tool that should be used to validate or improve existing parametric approaches, in order to
437 conduct better wind, waves, and surge analysis for TCs.

438 It is noteworthy to conclude by mentioning that even with the improved model tested here for Maria (see
439 section 5), the NRMS remains relatively high (15-20%). Indeed, the temporal resolution (6-hours) is not
440 sufficient to allow parametric models to reproduce the short-term variations of track, translation speed, or wind
441 asymmetry. This stresses the need for higher temporal sampling of data (location of the cyclone center,
442 maximum wind speed, wind radii, etc), and greater efforts to improve the efficiency of numerical atmospheric
443 models.
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