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 12 

Abstract: Parametric cyclonic wind fields are widely used worldwide for insurance risk 13 
underwriting, coastal planning, or storm surge forecasts. They support high-stakes financial, 14 
development, and emergency decisions. Yet, there is still no consensus on the best parametric 15 
approach, or relevant guidance to choose among the great variety of published models. The aim of 16 
this paper is first and foremost to demonstrate that recent progresses on estimating extreme surface 17 
wind speeds from satellite remote sensing now makes it possible to select the best option with 18 
greater objectivity. In particular, we show that the Cyclone Global Navigation Satellite System 19 
(CYGNSS) mission of NASA is able to capture a substantial part of the tropical cyclones structure, 20 
and allows identifying systematic biases in a number of parametric models. Our results also 21 
suggest that none of the traditional empirical approaches can be considered as the best option in all 22 
cases. Rather, the choice of a parametric model depends on several criteria such as cyclone intensity 23 
and/or availability of wind radii information. The benefit of using satellite remote sensing data to 24 
better select a parametric model for a specific case study is tested here by simulating hurricane 25 
Maria (2017). The significant wave heights computed by a wave-current hydrodynamic coupled 26 
model are found to be in good accordance with the predictions given by the remote sensing data in 27 
terms of bias. The results and approach presented in this study should shed new light on how to 28 
handle parametric cyclonic wind models, and help the scientific community to conduct better 29 
wind, waves and surge analysis for tropical cyclones. 30 

Keywords: Remote sensing; cyclones; parametric models; hurricanes; CYGNSS; ASCAT; storm 31 
surges; waves; winds  32 

 33 

1. Introduction 34 

 Since the overview of Vickery et al. [1], numerical atmospheric models have been increasingly 35 
applied in storm surge prediction or coastal hazard assessment studies [2-5]. Nonetheless, 36 
parametric models deriving cyclonic wind fields from a few input parameters (pressure drop, 37 
maximum velocity, wind radii, location of the cyclone center, etc) are still widely used by the 38 
research and insurance communities, due to their simplicity, efficiency, and low-computational costs 39 
[6-12]. This is especially true for studies investigating storm surge hazards with statistical 40 
approaches, which require the construction of a large number of synthetic storms [13-16]. 41 

For a few decades (and still often today) the parametric surface winds were simply derived as the 42 
sum of an axisymmetric wind field and a uniform vector to mimic the asymmetry due to the storm 43 
translation speed. Vivid debates arose to determine the best way to estimate both components, 44 
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which is a particularly relevant issue since large discrepancies of the synthesized wind field occur 45 
depending on the chosen method [17]. This kind of approach where the tropical cyclone (TC) size is 46 
generally determined by a single parameter (the radius of maximum winds), presents several 47 
drawbacks. In particular, it generally does not satisfactorily represent the TC wind asymmetry, 48 
which can be due to many factors such as blocking action by a neighbor anticyclone, boundary layer 49 
friction, or terrestrial effects [18]. 50 

 To date, the increasing availability of satellite remote sensing data makes it possible to better depict 51 
and forecast the wind structure of TCs and its variations with azimuth. Whether they are based on 52 
infrared imagery and data [19-21], scatterometry [22-23], X-band, C-band and L-band radiometry 53 
[24-29], or global navigation satellite system-reflectometry (GNSS-R) [30-32], all these data can 54 
provide information about the 34-kt, 50-kt, and/or 64-kt wind radii in each TC quadrant. These radii 55 
are now commonly reported in advisories issued by warning centers. 56 

Yet, to our knowledge, only very few studies investigating TC winds, cyclonic-induced waves, or 57 
storm surges through parametric models account for all this information, whether for forecasts or 58 
hindcasts. Besides, it is striking to see that even now, there is neither consensus nor even real debate 59 
on the best gradient wind model, i.e. the parametric model that will represent with the greatest 60 
accuracy the increase and decay of wind speed as a function of distance to the TC center. A vivid 61 
example of this is the Holland [33] vortex. Although known to present significant drawbacks [34], 62 
this model is still widely used by the research and insurance communities all over the globe. Other 63 
commonly used parametric wind models (for which there is room for improvement) include for 64 
example Jelesnianski and Taylor [35], or Emanuel and Rotunno [36]. New models are proposed 65 
almost every year [18,37], but the published studies also generally suffer from one or several 66 
drawbacks, including: 67 

• a lack of information about the parameters considered. For example, the empirical surface wind 68 
reduction factor (SWRF [38]) used for computations is rarely indicated, although it is thought to 69 
play a significant role in the estimated surface wind speeds [17]. 70 

• comparisons/validations with a limited number of observed data. In-situ observations of surface wind 71 
speed are relatively sparse for TCs, as they spend most of their lifetime over the oceans, where 72 
the density of buoys able to record extreme winds is relatively small. Besides, the wind 73 
recorded by meteorological stations is often biased because of terrestrial effects, which makes it 74 
difficult to compare observations with parametric values in a consistent way. Although these 75 
issues are offset to some extent in the North Atlantic and East Pacific thanks to aircraft 76 
reconnaissance, it remains a major problem in all oceanic basins. 77 

• comparisons/validations with a limited number of parametric wind models. Except the work of Lin and 78 
Chavas [17], we are not aware of any study investigating parametric wind models over a wide 79 
range of parameters and methods. New proposed models are often compared to the Holland 80 
[33] or Jelesnianski and Taylor [35] approaches to assess their quality, and disregard more 81 
recent models such as Willoughby et al. [39] or Emanuel and Rotunno [36]. 82 

• comparisons/validations with parametric models which do not include all the available information about 83 
the TC wind structure. As noted before, very few studies take into account all the available 84 
information about wind structure, such as the 34-kt, 50-kt, and 64-kt wind radii for each 85 
quadrant. Most of the time, only the hurricane-force (i.e. 64kt) wind radii are used, which 86 
potentially results in errors far from the cyclone center. 87 

Yet, indirect surface wind speed measurements using remote sensing data are now expected to be 88 
mature enough to help us overcome most of these limitations. The recent availability of data from 89 
CYGNSS (Cyclone Global Navigation Satellite System), a spatial mission dedicated to wind speeds 90 
retrieval near the eye of TCs, is a promising example. 91 
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The main objective of this paper is to investigate the benefits of using recent satellite remote sensing 92 
data such as CYGNSS or ASCAT (Advanced Scatterometer) to help everyone selecting the most 93 
suitable parametric model, depending on his own case study. 94 

After a short description of data and wind models used in the present study (section 2), we compare 95 
CYGNSS and ASCAT data with parametric models constrained by observations for 16 recent 96 
hurricanes (section 3). The aim is to provide a first evaluation of the usefulness of these remote 97 
sensing data as proxy for surface wind speeds. As we will show, these preliminary results suggest 98 
that CYGNSS and ASCAT might indeed provide reliable estimates for extreme and moderate wind 99 
speeds respectively. We then hypothesize that it is indeed the case, and check whether or not this 100 
assumption leads to consistent results. To this aim, we first compute the biases given by several 101 
parametric models to see if we can reproduce the findings of past studies (section 4). We then 102 
perform numerical hindcasts of hurricane Maria (2017) using several parametric formulas, and 103 
compare significant wave heights computed with real in-situ data to check, again, if the results are 104 
consistent (section 5). We finally discuss the main results of the manuscript and give concluding 105 
remarks (section 6). 106 

2. Data and Methods  107 

2.1. Cyclone selection 108 

The Atlantic Ocean had a very active hurricane season in 2017, due to six major hurricanes and 109 
two in category 5. Thanks to aircraft reconnaissance, large quantities of high-quality in-situ data 110 
were collected and incorporated into models to better reproduce the hurricanes and their evolution 111 
for a wide range of intensities and sizes. Besides, the CYGNSS mission of NASA (dedicated to 112 
surface wind speed measurements in extreme conditions) was launched just in time to collect data 113 
for this season. These conditions are ideal for revisiting the structure of TCs, and the ability of 114 
parametric models to approximate it. In this study, we considered most of the hurricanes that 115 
occurred both in Atlantic (ATL) and East Pacific (EP) during the 2017 season. In all, 16 events were 116 
taken into account (Table 1).  117 

Table 1. List and characteristics of the 16 hurricanes considered in this study. The minimum and 118 
maximum radii at 34-kt, 50-kt, and 64-kts (R34, R50, and R64 respectively) are given in nautical miles 119 

at the peak intensity. WS stands for wind speed. 120 

Number Name Basin Dates 

TC 

Category 

(max WS) 

Min/Max 

R34  

Min/Max 

R50  

Min/Max 

R64  

1 Dora EP 
25/06 → 

28/06 
1 (80kt) 40/70 20/40 15/25 

2 Eugene EP 
07/07 → 

10/07 
3 (100kt) 60/110 40/80 20/30 

3 Franklin ATL 
07/08 → 

10/08 
1 (75kt) 60/130 30/50 NA/30 

4 Gert ATL 
13/08 → 

17/08 
2 (90kt) 50/120 15/60 NA/30 
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5 Harvey ATL 
17/08 → 

30/08 
4 (115kt) 70/120 40/60 20/35 

6 Hilary EP 
24/08 → 

30/08 
2 (90kt) 60/90 30/50 15/20 

7 Irma ATL 
30/08 → 

11/09 
5 (160kt) 80/160 50/100 30/45 

8 Irwin EP 
23/07 → 

01/08 
1 (80kt) 30/60 10/30 NA/15 

9 Jose ATL 
05/09 → 

22/09 
4 (135kt) 50/120 30/50 20/30 

10 Katia ATL 
06/09 → 

09/09 
2 (90kt) 60/60 20/40 15/20 

11 Kenneth EP 
19/08 → 

23/08 
4 (115kt) 60/90 30/50 15/25 

12 Lee ATL 
16/09 → 

30/09 
3 (100kt) 60/80 40/50 25/30 

13 Maria ATL 
16/09 → 

30/09 
5 (150kt) 100/150 60/80 35/50 

14 Max EP 
13/09 → 

15/09 
1 (70kt) 30/40 20/20 10/10 

15 Norma EP 
14/09 → 

19/09 
1 (65kt) 70/80 30/50 NA/25 

16 Otis EP 
16/09 → 

19/09 
3 (100kt) 40/60 20/40 10/20 

 121 
For each of these events, we considered the following data provided by the NHC (National 122 

Hurricane Center) advisories: location of the cyclone center, minimum pressure, maximum wind 123 
speed, radii of the 34-, 50-, and 64-knot winds in the four quadrants at every 6 hours. Most of these 124 
data were calibrated using aircraft reconnaissance and are consequently expected to be reliable. 125 

2.2. Remote sensing data 126 

We also collected the full dataset distributed by the CYGNSS and ASCAT science team 127 
members for the 2017 hurricane season in Atlantic and East Pacific. 128 
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The CYGNSS mission [31] consists of a eight satellites-constellation in low-inclination circular 129 
orbit that receive direct and reflected GPS L1 (1.575 Ghz) signals to infer surface wind speeds and 130 
sea roughness, even for intense rainfalls typically observed during hurricanes. It allows for a good 131 
spatial and temporal coverage, with mean and median revisit times over the tropics of 7.2h and 2.8h 132 
respectively [32]. The 25km- resolution data considered here (v2.0) have been validated and 133 
calibrated using cyclones of the 2017 season, including most of the events considered in this study 134 
(Table 1). For the time being, the overall root mean square (RMS) error in the CYGNSS retrievals is 135 
about 1.4m/s and 17% for wind speeds lower and larger than 20 m/s respectively [40]. According to 136 
the CYGNSS team (personal communication), the bias explains approximately half of the high wind 137 
RMS (about 8.5%), the other half being random scatter. Generally speaking, we can thus expect 138 
maximum biases of a few meters per second, even for high wind speeds.  139 

 140 
We tested here several Level 2-wind speed products: 141 
 142 

• The "wind speed" (ws) product is derived from the best fit to both the normalized bistatic radar 143 
cross-section (NBRCS) and leading edge slope (LES) of the integrated delay waveform given by 144 
the delay-Doppler maps (DDM [41]), using a fully developed seas geophysical model function 145 
(GMF); 146 

• The "yslf_les_wind_speed" (les) wind product is derived from only the LES of the DDM, using a 147 
young seas / limited-fetch GMF; 148 

• The "yslf_nbrcs_wind_speed" (nbrc) product is derived from only the NBRCS, using the young 149 
seas / limited-fetch GMF. 150 
 151 
ASCAT [22,42] consists of C-band scatterometers mounted on the satellites MetOp-A and 152 

MetOp-B, that were launched in 2006 and 2012 respectively. The emitting antennas transmit pulses 153 
at 5.255 GHz and extend on either side of the instrument, which results in a double 500km-wide 154 
swath of observations. These scatterometers are found to give reliable estimations of wind speeds up 155 
to at least 34-kt. However, they lose sensitivity in extreme conditions and are often plagued by rain 156 
contamination. We use here the 25km-resolution coastal product, which give more wind data close 157 
to the coast [43]. 158 

2.3. Parametric wind models 159 

For a given cyclone and parametric gradient wind profile, we estimated the surface wind speed 160 
associated to each CYGNSS and ASCAT data point according to the following main steps: 161 

 162 
1- From the NHC advisories, we estimated the surface background wind relative to the cyclone 163 

translation velocity at the time of acquisition of the considered CYGNSS/ASCAT data point. 164 
Following the approach of Lin and Chavas [17], we assumed that this wind is decelerated by a factor 165 
α=0.56 and rotated counter-clockwise by an angle β=19.2° from the free tropospheric wind. 166 

 167 
2-We removed the translational portion of the wind speed from the maximum observed wind 168 

velocity and the 34-, 50-, and 64kt winds. 169 
 170 
3-We converted surface velocities to velocities on top of the atmospheric boundary layer by 171 

applying an empirical surface wind reduction factor SWRF [38]. In the following sections, we 172 
specified SWRF=0.9. Other values were tested, but for the sake of simplicity results are not presented 173 
here (they add very little to the conclusions of this paper). 174 

 175 
4-We estimated the maximum wind radii for the four quadrants, using the chosen parametric 176 

gradient wind profile, and the available wind radii information. For each quadrant, up to three radii 177 
of maximum wind are thus obtained: one from the 64-kt wind radius (Rm64), another from the 50-kt 178 
wind radius (Rm50), and a last one from the 34-kt wind radius (Rm34). 179 
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 180 
5-Depending on the available wind radii information considered, we computed Rm64, Rm34 or all 181 

the radii of maximum winds (Rm64, Rm50, and Rm34) for the data point azimuth, using a spline 182 
interpolation. 183 

 184 
6-We computed the wind speed values at the CYGNSS/ASCAT data point obtained using the 185 

chosen parametric gradient wind profile and the radii of maximum winds considered (Rm64, Rm34, or 186 
all three of them). 187 

7-We assessed the wind speed at the CYGNSS/ASCAT data point, using a weighted average of 188 
the wind speeds obtained in the previous step. We followed the procedure proposed by Hu et al. 189 
[44], which ensures that all the wind radii information is satisfied. 190 

 191 
8-We obtained the surface wind speed by multiplying the result by SWRF. 192 
 193 
9-The wind speed obtained in the previous step was combined with the surface background 194 

wind computed in step 1 to get the final parametric wind speed at the CYGNSS/ASCAT data point 195 
considered.     196 

 197 
This procedure is repeated for all the storms, gradient wind profiles, and CYGNSS/ASCAT 198 

Level 2-data points within a distance of 200km from the cyclone center. The parametric models 199 
considered here are given in Table 2. 200 

 201 

Table 2. Parametric wind models considered in this study. For all of them, an empirical surface wind 202 
reduction factor [38] SWRF=0.9 was prescribed. Comparisons are only made for data within a 203 

distance of 200km from the cyclone center. The translation vector is reduced by a factor α=0.56 and 204 
rotated counter-clockwise by an angle β=19.2°, according to the findings of Lin and Chavas [17]. 205 
Here, Vm and Rm are the maximum wind speed and the radius of maximum winds. r refers to the 206 

distance to the TC center, and f to the coriolis coefficient. 207 

Name Main reference Formula 

E11 
Emanuel and 

Rotunno [36] 
(ݎ)ܸ = ௠ܴ)ݎ2 ௠ܸ ൅ 0.5݂ܴ௠ଶ )ܴ௠ଶ ൅ ଶݎ − 2ݎ݂  

E04 Emanuel [45] 

(ݎ)ܸ = ௠ܸ ܴ଴ି௥ܴ଴ − ܴ௠ ൬ ௠൰௠ݎܴ ൮ (1 ൅ ܾ)(݊ ൅ ݉)݊ ൅ ݉ ቀ ௠ቁଶ(௡ା௠)ݎܴ
൅ ܾ(1 ൅ 2݉)1 ൅ 2݉ ቀ ௠ቁଶ௠ାଵ൲଴.ହݎܴ

 

with b=0.25, m=1.6, n=0.9, R0=420km 

J92 Jelesnianski et al [46] ܸ(ݎ) = ௠ܴݎ2 ௠ܸܴ௠ଶ ൅  ଶݎ

H80 Holland [33] ܸ(ݎ) = ඩ൬ܴ௠ݎ ൰஻ ݌ݔ݁ܲ∆ܤ ൬− ቀܴ௠ݎ ቁ஻൰ߩ ൅ ଶ݂ଶ4ݎ − 2ݎ݂  
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with ܤ = ௏೘మ ௘ఘା௙௏೘ோ೘௘ఘ∆௉ ߩ ,  = 1.15, ݁ = exp (1) 

H80c 

Holland [33] 

with cyclostrophic 

approximation 

(ݎ)ܸ = ඩ൬ܴ௠ݎ ൰஻ ݌ݔ݁ܲ∆ܤ ൬− ቀܴ௠ݎ ቁ஻൰ߩ  

with ܤ = ௏೘మ ௘ఘ∆௉ ߩ ,  = 1.15, ݁ = exp (1) 

M16 Murty et al. [37] ܸ(ݎ) = ௠ܸ ൬ ଶ௥ோ೘൫ோ೘మ ା௥మ൯൰௡
 with ݊ = 3 5⁄  

W06 Willoughby et al. [39] 

For 0 ≤ ݎ ≤ ܴ௠: ܸ(ݎ) = ௠ܸ ቀ ௥ோ೘ቁ௡
 with ݊ = 0.79 

For ݎ ≥ ܴ௠ : ܸ(ݎ) = ௠ܸ݁݌ݔ ቀ− ௥ିோ೘௑ ቁ with ܺ = 243݇݉ 

 208 

3. Comparison of CYGNSS and ASCAT data 209 

 210 
To get a preliminary idea of the usefulness of CYGNSS and ASCAT data as proxy for surface 211 

wind speeds, we computed the biases between these data and the mean (i.e. averaged over all 212 
empirical models) parametric winds for different cyclone categories and distances to the center 213 
(Figure 1). Computations were performed only when more than 30 data points were available for a 214 
given intensity/distance class. In practice, the comparison was possible for almost all cases, as 215 
hundreds or even thousands of space-borne observations were available for each class. Parametric 216 
models have been constrained by all the information provided by the NHC in the advisories, to 217 
ensure that they give the best approximation possible to real winds. In classes for which the biases 218 
are large, remote sensing data are not consistent with the mean parametric winds. We choose not to 219 
investigate further these data in the following sections, even if there is no evidence that the error is 220 
due to remote sensing rather than parametric models. On the contrary, small biases (in absolute 221 
terms) suggest that remote sensing data and parametric winds are consistent, so that they both give 222 
satisfactory results a priori. In the following, we will make the assumption that these 223 
CYGNSS/ASCAT data are indeed good proxies, and check whether or not this hypothesis leads to 224 
consistent results. 225 

 226 
 227 
 228 
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 229 
Figure 1. Bias between the remote sensing data and the parametric winds averaged over all 230 

 empirical models (negative/positive values indicate that remote sensing data are 231 
 negatively/positively biased compared to the mean parametric winds) . Different categories of 232 
 distance to the cyclone center (r) and cyclone intensities are considered. TS stands for tropical 233 
 storms, H1, H2, H3, H4,  and H5 to the cyclone category (1, 2, 3, 4, and 5 respectively). R34, 234 
 R50, and R64 are the radii for the 34-kt, 50-kt, and 64-kt winds. ws, nbrc, and les are three 235 
 different CYGNSS products (see section 2). 236 

 237 
Regarding ASCAT data, Figure 1 shows that the bias is low (less than about 2-3m/s in absolute 238 

value) for radius larger than R34, but becomes increasingly negative with cyclone category and 239 
decreasing distance to the cyclone center, up to almost -20m/s. These results suggest that ASCAT 240 
data are a good proxy for wind speeds lower than 34-kt, but that they underestimate extreme winds. 241 
This conclusion is consistent with previous published papers [47].  242 

The "wind speed" (ws) product is found to give systematically more negative biases than 243 
ASCAT, and thus probably often underestimates the velocities (Figure 1). However, the absolute 244 
value of bias remains relatively low for radius larger than R34, which suggests that this product 245 
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might still be a good proxy for moderate and (potentially even more) low wind speeds. As this 246 
product was developed for fully developed seas, these results were also expected.  247 

Wind speeds derived from only the LES of the DDM ("les" in Figure 1) display, again, negative 248 
biases for r>R64. However, those remain smaller in absolute value compared to "ws", which makes 249 
sense since this product has been derived using a young seas / limited-fetch GMF that is expected to 250 
be more suitable for our test cases. Considering the potential errors on parametric models, it could 251 
be a proxy as good as ASCAT for radius larger than R34. Above all, this product shows significantly 252 
reduced biases for r<R64. This suggests that it yields better estimates of surface wind speeds than 253 
ASCAT close to the eyewall. 254 

The wind speeds derived from only the NBRCS ("nbrc" in Figure 1) outperform the other 255 
products in most cases for radius lower than R34, with bias generally lower than 5m/s in absolute 256 
value. The main exception is the wind for radius lower than R64 for minor cyclones (category 1 or 2), 257 
where the bias reaches 10 to 15m/s. One plausible explanation is that the resolution of CYGNSS 258 
(25km) is too low to capture the surface wind speeds in these area, especially for weak cyclones 259 
where the 64kt radii are very close to the eyewall, i.e. to places where wind speeds vary quickly as a 260 
function of distance to the center. This problem is presumably less severe for major cyclones 261 
(category 3 or more) because of a larger extent of hurricane-force winds (Table 1).  262 

 263 
Based on all these findings, we will hypothesize in the following section that the ASCAT and 264 

CYGNSS/NBRC products are the best surface wind speeds proxy for r> R34 and r<R34 respectively. 265 
However, we will not consider radii lower than R64 for weak (category 1-2) cyclones, as Figure 1 266 
also suggest that none of the space-borne products tested here is reliable in these conditions. 267 

 268 
We will check in sections 4 and 5 whether these preliminary results and assumptions give 269 

results consistent with previous work and in-situ data, to confirm or invalidate them a posteriori.  270 

4. Performance of parametric wind models 271 

Using the assumption made in the previous section, we computed the bias of the various 272 
parametric models as a function of storm intensity, distance to the cyclone center, and calibration 273 
method (using only radii at 34kt, only radii at 64kt, and all radii information for the left, middle and 274 
right panels respectively in Figure 2). The color bar shows the absolute value of bias. Blue colors 275 
correspond to small biases (in absolute value), and thus suggest that the parametric model should 276 
work well for the intensity/distance class considered. Conversely, red colors indicate that the model 277 
is expected to perform poorly. The aim is to see whether the assumption on which this figure is 278 
based ("ASCAT and CYGNSS/NBRC are good wind speeds proxy for r> R34 and r<R34 279 
respectively") gives consistent results or not. 280 

 281 
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 Figure 2. Diagrams displaying the bias between various parametric models and the surface 283 
wind speeds estimated by CYGNSS/ASCAT data for all the events considered here, as a function of 284 
storm intensity and distance to the cyclone center (x- and y-axis respectively for  each diagram), as 285 
well as calibration method (using only radii at 34kt, only radii at 64kt, and all radii information for 286 
the left, middle and right panels respectively). The color bar (the same  for all diagrams) shows the 287 
absolute value bias. The values are displayed for each category/distance cell. The black contours 288 
indicate the category/distance classes for which we consider E11 and H80 models in section 5 (model 289 
E11H80). 290 

First of all, it appears that the bias is significantly reduced in almost all cases for r<R64 and r>R34 291 
when constraining the parametric models by R64 and R34 respectively. This suggests that not only 292 
the "mean" parametric wind values computed in section 3 are consistent with the CYGNSS/ASCAT 293 
data for these classes, but also most of the parametric models taken individually, as long as they are 294 
constrained by the 64-kt and 34-kt wind radii given by the NHC. This finding gives additional credit 295 
to the assumption we made in section 3. It may, however, be observed that biases are not always so 296 
much reduced (and can even be increased) when constraining the parametric models by R50 for very 297 
intense (category >3) cyclones. This issue appears also in Figure 1, where strangely the absolute bias 298 
of CYGNSS is larger for R64<r< R50 than for r<R64. There could be several explanations to this fact: 299 
an issue with the calibration of CYGNSS data for these conditions of course, but also a problem with 300 
the parametric models for extreme events in the "transition zone" (the area between the inner 301 
core/outer region). The latter cannot be dismissed, as most parametric models were built by focusing 302 
mainly on the inner and/or outer regions (e.g. [39]), whereas much less attention was paid to the 303 
transition zone between extreme and moderate winds. We will return to this point later on. 304 

The results are also found to be consistent with most of the previous works. For instance: 305 

• The inner region solution of Emanuel and Rotunno [36], E11, generally gives the smaller bias 306 
(hence the best results) close to the storm center (typically, for r<R50), especially for intense and 307 
well defined cyclones. It is also found to underestimate significantly the wind speeds far from 308 
the center as found in Lin and Chavas [17], even when prescribing the radii at 34-kt. E04 309 
performs much better for the outer region, but poorly near the center. E11 and E04 can thus be 310 
merged to develop a complete TC radial wind structure as proposed by Chavas et al. [48]; 311 

• When solely constrained by radii close to the cyclone center (here R64), the Holland profile 312 
(H80) tends to underestimate the winds in the outer region, as noted by Willoughby and Rahn 313 
[34]. It can also lead to broad wind maximum, and thus wind overestimations at several dozens 314 
of kilometers from the center for extreme cyclones (for R64<r<R50 for example), as can be seen 315 
in the right and left panels notably. These findings, which are in accordance with the results of 316 
Willoughby and Rahn [34], confirm that the issue we identified earlier with the 50-kt wind radii 317 
could be partly due to flaws in parametric models such as H80 in the "transition zone".     318 

• J92 tends to overestimate the wind speeds by a few m/s, as suggested by Lin and Chavas [17]; 319 
• The results are generally much better when considering a family of profiles with two 320 

characteristic lengths, as proposed by Willoughby et al [39]. For example, as stated above, the 321 
performance of the Holland model H80 is significantly increased when both radii at 34-kt and 322 
64-kt are prescribed; 323 

• Models such as W06 or M16 (which decay exponentially or as a power-law outside the eye) 324 
perform well in the outer region when the 34-kt radii are prescribed properly, which is 325 
consistent with the findings of Willoughby et al. [39] and Murty et al. [37].  326 

The consistency of these results increases the confidence in our assumption that the ASCAT and 327 
CYGNSS/NBRC products are relatively good proxies for surface wind speeds, for r>R34 and r<R34 328 
respectively (with the exception of the inner region for weak cyclones). To further build the 329 
confidence in this hypothesis, we also performed numerical hindcasts of hurricane Maria (2017), and 330 
compared computed significant wave heights with real in-situ data (section 5). The aim was also to 331 
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investigate the potential of results such as those presented in Figure 2 to choose one parametric 332 
model rather than another, depending on the case study. 333 

5. Comparison with in-situ data 334 

 Hurricane Maria was the deadliest storm of the 2017 Atlantic season. Recorded as a category 5 335 
event, it caused catastrophic damages in Dominica and Puerto Rico, as well as widespread flooding 336 
and crop destructions in Guadeloupe. We tested here the ability of several parametric models to 337 
properly represent the wind pattern evolution during Maria by comparing the significant wave 338 
heights observed at buoys in the Lesser Antilles with those computed using a wave-current coupled 339 
model forced by a sub-set of the various parametric winds considered in the previous section. The 340 
model is based on the code SCHISM-WWM [49]. The computational domain is represented in Figure 341 
3. Resolution spans from 10km far from the region of interest (where the bathymetry is derived from 342 
GEBCO), up to about 100m in Guadeloupe and Martinique where we have the best bathymetric data 343 
(ship-based soundings from the SHOM, the French Naval Hydrographic and Oceanographic 344 
Department). The model is forced by: 345 

• astronomic tidal potential over the whole domain (12 constituents); 346 
• 26 tidal harmonic constituents at the open boundaries, provided by the global FES2012 model 347 

[50] ; 348 
• parametric pressure fields [33]; 349 
• parametric winds blended with CFSR (Climate Forecast System Reanalysis [51]) wind data. The 350 

parametric winds are prescribed for radii less than R34 , whereas CFSR data are imposed for r > 351 
1.5 R34. In between, a smooth transition is ensured using a weighing coefficient varying with 352 
the radius r. 353 

 354 

 355 
 Figure 3. Study area. The computational domain is depicted with the dashed red contour. The 356 
 dashed white line represents the track of hurricane Maria. The location of the buoys used for 357 
 comparison is given in the upper-right corner box. 358 
  359 
 We considered here five parametric models:  360 
• E11 and H80, constrained using the 64-kt wind radii only (E11(R64) and H80(R64) in Figure 4); 361 
• E11 and H80, constrained using all the wind radii information (E11(All) and H80(All) in Figure 362 

4); 363 
• E11H80, for which we chose to blend the wind speeds inferred from E11 for the inner core area 364 

with those given by H80 for the outer region (see the black contours in Figure 2) 365 
 366 
E11H80 was chosen to test whether results such as those presented in Figure 2 could be of benefit to 367 
build a better parametric model for the cyclone considered, using a combination of models that is 368 
expected to reduce the biases. We strongly insist on the fact that the new model tested here (E11H80) 369 
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is just an example. In no way we consider this model as the best option. E11 combined with W06 or 370 
E04 could be also tested for instance.  371 
 372 
The reader is referred to Krien et al [9] for greater details about the model and the numerical 373 
strategy. Here, we compared the significant wave heights (Hs) computed by the model with the Hs 374 
recorded by three buoys located in the Lesser Antilles (Figure 3): Fort de France (FdF) and Sainte 375 
Lucie, owned by Meteo France, as well as 42060, maintained by the National Data Buoy Center 376 
(NDBC). The latter went adrift during the peak of Maria, hence the decrease of Hs was unfortunately 377 
not captured. 378 
 379 
 Table 3. Bias, root mean square error (RMS) and normalized RMS (NRMS) obtained when 380 
 comparing numerical simulations with in-situ significant wave heights. 381 

 42060 Fort de France St Lucie 

H80 (R64) 

Bias 0.1m -0.85m -0.43m 

RMS 1.2m 0.9m 0.55m 

NRMS 27.1% 41.8% 24% 

H80 (All) 

Bias 1.5m 0.9m 0.64m 

RMS 2m 1.06m 0.84m 

NRMS 46% 49.3% 36.6% 

E11 (R64) 

Bias -1.4m -0.8m -0.44m 

RMS 1.5m 0.87m 0.56m 

NRMS 35% 40.3% 24.5% 

E11 (All) 

Bias -0.9m -0.21m -0.19m 

RMS 0.9m 0.34m 0.43m 

NRMS 21.3% 15.8% 18.7% 

E11H80 

(All) 

Bias -0.7m 0.01m -0.04m 

RMS 0.7m 0.31m 0.44m 

NRMS 17.4% 14.5% 19.2% 

Results (Table3, Figure 4) show that: 382 

• H80 and E11 constrained only by the 64-kt wind radii (R64) give the worst results, with Hs 383 
generally significantly underestimated, and NRMS ranging between 20% and 50% (Table 3). 384 
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• Trying to improve these models by constraining all the 34-kt, 50-kt, and 64-kt wind radii (All) 385 
results in much better performances for E11, with reduced bias and NRMS (15 to 22% 386 
approximately). This suggests that E11 satisfactorily represents the TC structure, at least as long 387 
as the hurricane (here in category 4-5) remains relatively close to the buoys. It tends to 388 
underestimate Hs (in Sainte Lucie for example) when the storm moves further away.  389 

• On the contrary, the H80 model strongly overestimates Hs when Maria is the closest to the 390 
storm, at a distance of about 120-200km (which corresponds roughly to the radii at 50-kt). This 391 
is also consistent with the results of Figure 2, and confirms, again, that the relatively significant 392 
biases obtained in Figure 1 for extreme cyclones and R64<r<R50 might be partly explained by 393 
flaws in parametric models such as H80 rather than errors in CYGNSS wind speeds. The 394 
prediction is better when Maria moves further away, which was also expected. 395 

• The best results are obtained here for the model E11H80. The bias is found to be considerably 396 
reduced compared to E11constrained with all wind radii. 397 

 398 
 These results are all consistent with those presented in Figure 2 (keeping in mind that Maria is 399 
here a category 4-5 hurricane, and that it passes relatively close to the buoys, see Figure 3). Hence 400 
they also support our assumption that the ASCAT and CYGNSS/NBRC products are relatively good 401 
proxies for surface wind speeds, for r>R34 and r<R34 respectively (with the exception of the inner 402 
region for weak cyclones).  403 
 404 
 405 

 406 
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 407 
Figure 4- Significant wave height time series for different parametric models. "R64" denotes a 408 

 model constrained only by the 64-kt wind radii. "ALL" indicates a model constrained with all 409 
 the available information (34-kt, 50-kt, and 64-kt wind radii). E11H80 corresponds to a blend of 410 

 the model E11 (for the inner core region) and H80 (for the outer region). Results for 411 
 Fort-de-France, Sainte-Lucie, and the 42060 station are displayed in (a), (b), and (c) respectively. 412 

 413 
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6. Conclusions 414 

 Taking advantage of an extremely active 2017 hurricane season in the tropical Atlantic Ocean and the 415 
Eastern Pacific, we investigated the potential of using recent satellite remote sensing data such as CYGNSS and 416 
ASCAT to identify the advantages and drawbacks of several parametric wind models used for storm surge 417 
hazard assessment or prediction of cyclonic waves.  418 
Under the assumption that ASCAT and CYGNSS/NBRC products can be considered as good proxies for surface 419 
wind speeds for the outer and inner regions respectively (with an exception for the core of weak cyclones), we 420 
were able to confirm the findings of a number of previous studies (e.g. Willoughby et al. [39], Lin and Chavas 421 
[17] or Chavas et al. [48]). Using a wave-current coupled numerical model, we also showed that remote sensing 422 
data such as CYGNSS/ASCAT are probably sufficiently accurate to be used to better select a suitable parametric 423 
model, depending on the case study considered. The choice will depend on several criteria such as cyclone 424 
intensity and/or availability of wind radii information. Indeed, our results suggest that none of the traditional 425 
empirical approaches can be considered as the best option in all cases. 426 
We strongly insist on the fact that our aim here is not to encourage using or discarding a specific parametric 427 
model, and even less to propose a new one. First, because we did not test all the published models. Second, 428 
because each author uses a specific combination of parameters and approach to mimic the wind field, so that it 429 
would be presumptuous to draw definitive conclusions. Besides, there are still errors on remote sensing data, so 430 
that differences of 2-3m/s in terms of bias are probably not really significant. 431 
The main finding of this paper is thus the following: satellite remote sensing is now mature enough to provide 432 
relevant information about the performance of parametric cyclonic wind models, even if further work is 433 
needed, especially to access to the full structure of TCs close to the eyewall. We focused here mainly on the 434 
CYGNSS mission, but there is little doubt that other type of data can also be valuable. Remote sensing has now 435 
become a powerful tool that should be used to validate or improve existing parametric approaches, in order to 436 
conduct better wind, waves, and surge analysis for TCs.  437 
It is noteworthy to conclude by mentioning that even with the improved model tested here for Maria (see 438 
section 5), the NRMS remains relatively high (15-20%). Indeed, the temporal resolution (6-hours) is not 439 
sufficient to allow parametric models to reproduce the short-term variations of track, translation speed, or wind 440 
asymmetry. This stresses the need for higher temporal sampling of data (location of the cyclone center, 441 
maximum wind speed, wind radii, etc), and greater efforts to improve the efficiency of numerical atmospheric 442 
models. 443 
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