Preprint
Article

Machine Learning for the Design and Development of Biofilm Regulators

Altmetrics

Downloads

973

Views

796

Comments

0

This version is not peer-reviewed

Submitted:

14 March 2018

Posted:

15 March 2018

You are already at the latest version

Alerts
Abstract
Biofilms are congregations of bacteria on a surface, and they grow into obstacles for the functionalities of any device or machinery involves anything biological. Biofilms are developed through a biochemical system known as ‘Quorum Sensing’ that accounts for the chemical signaling that direct either biofilm formation or inhibition. Computational models that relate chemical and structural features of compounds to their performance properties have been used to aide in the discovery of active small molecules for many decades. These quantitative structure-activity relationship (QSAR) models are also important for predicting the activity of molecules that can have a range of effectiveness in biological systems. This study uses QSAR methodologies combined with and different machine learning algorithms to predict and assess the performance of several different compounds acting in Quorum Sensing. Through computational probing of the quorum sensing molecular interaction, new design rules can be elucidated for countering biofilms.
Keywords: 
Subject: Chemistry and Materials Science  -   Theoretical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated