Preprint
Article

3D Finite Element analysis of Laser Surface Glazing to Investigate Temperature Effects on Surface of Ti64 Alloy

Altmetrics

Downloads

575

Views

503

Comments

0

Submitted:

16 March 2018

Posted:

19 March 2018

You are already at the latest version

Alerts
Abstract
Ti64 alloy plays a significant role in the biomedical applications such as bioimplants for its excellent biocompatibility. Its usage can be further extended by improving the surface hardness and wear resistance. In this respect, laser surface glazing (LSG), an advanced surface modification technique, is very useful which can produce thin hardened surface layer and strong metallurgical bonding. Investigation of temporal and spatial temperature distributions of laser glazed surface of materials are essential because temperature plays significant role in achieving required surface properties. Therefore, in this study, a 3D Finite element analysis has been developed to perform transient thermal analysis of LSG for Ti64 alloy. The model investigated temperature distribution, depth of modified zone and heating and cooling. The results show that the peak temperature is attained 2095 K for 300 W laser power, 0.2 mm beam width and 0.15 ms residence time. Since this temperature is above the melting point (1933 K) of Ti64 alloy, the melt depth is calculated 22.5 μm. Furthermore, from the simulation results, the average heating and cooling rates are estimated 1.19×107 Ks-1 and 2.71×106 Ks-1 respectively which indicate the presence of hard phases in the modified zone.
Keywords: 
Subject: Chemistry and Materials Science  -   Surfaces, Coatings and Films
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated