

1 Article

2

Constitutive activation of STAT3 in myeloma cells 3 cultured in a three-dimensional, reconstructed bone 4 marrow model

5 **Yung-Hsing Huang ¹, Ommoleila Molavi ^{1,2}, Abdulraheem Alshareef ^{1,†}, Moinul Haque ¹, Qian
6 Wang ¹, Michael P. Chu ^{3,4}, Christopher P. Venner ^{3,4}, Irwinder Sandhu ^{3,4}, Anthea C. Peters ^{3,4},
7 Afsaneh Lavasanifar ⁵ and Raymond Lai ^{1,3,*}**8 ¹ Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada9 ² Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, East Azerbaijan Province, Iran10 ² Department of Oncology, University of Alberta, Edmonton, AB, Canada11 ² Department of Medicine, University of Alberta, Edmonton, AB, Canada12 ² Department of Pharmacy, University of Alberta, Edmonton, AB, Canada

13 * Correspondence: rlai@ualberta.ca; Tel.: +1 780-432-8506

14 † AA is now with the Department of Clinical Laboratory Sciences, College of Applied Medical Sciences,
15 Taibah University, Madinah, Saudi Arabia16 **Abstract:** Malignant cells cultured in three-dimensional (3D) models have been found to be
17 phenotypically and biochemically different from their counterparts cultured conventionally. Since
18 most of these studies employed solid tumor types, how 3D culture affects multiple myeloma (MM)
19 cells is not well understood. Here, we compared MM cells (U266 and RPMI8226) in a 3D culture
20 model with those in conventional culture. While the conventionally cultured cells were present in
21 single cells or small clusters, MM-3D cells grew in large spheroids. We discovered that STAT3 was
22 the pathway that was more activated in 3D in both cell lines. The active form of STAT3 (phospho-
23 STAT3 or pSTAT3), which was absent in MM cells cultured conventionally, became detectable after
24 1-2 days in 3D culture. This elevated pSTAT3 level was dependent on the 3D environment, since it
25 disappeared after transferring to conventional culture. STAT3 inhibition using a pharmacological
26 agent, Stattic, significantly decreased the cell viability of MM cells and sensitized them to
27 bortezomib in 3D culture. Using an oligonucleotide array, we found that 3D culture significantly
28 increased the expression of several known STAT3 downstream genes implicated in oncogenesis.
29 Since most primary MM tumors are naturally STAT3-active, studies of MM in 3D culture can
30 generate results that are more representative of the disease.32 **Keywords:** 3D culture, multiple myeloma, STAT, bortezomib, CETSA, Stattic33

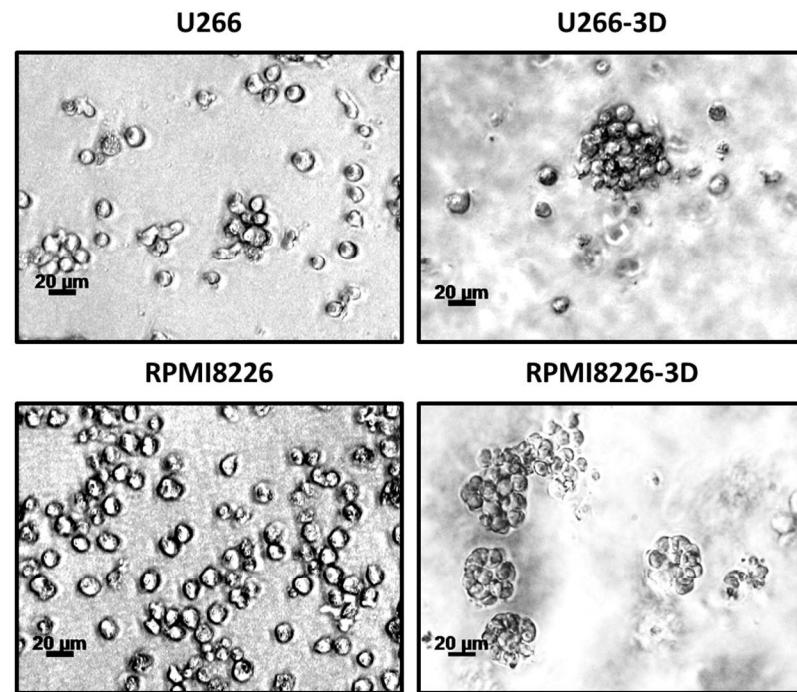
34

1. Introduction

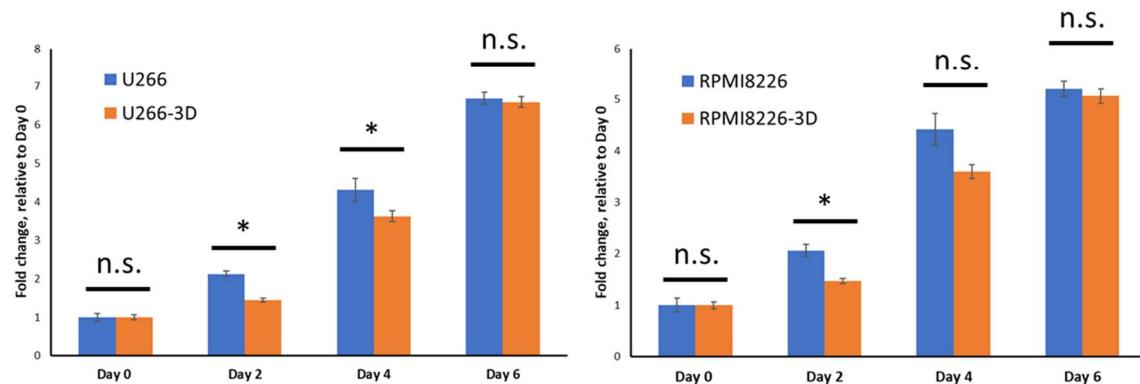
35 Studies of malignant cells using three-dimensional (3D) culture systems are believed to provide
36 information that is more representative of the 'real-life' *in vivo* conditions, as opposed to those using
37 cells cultured conventionally in monolayer or cell suspension. In keeping with this concept,
38 malignant cells cultured in 3D have been shown to display substantial differences in their growth
39 characteristics, gene expression and drug resistance patterns when compared to cells cultured
40 conventionally [1–3]. Importantly, cells grown in biomimetic 3D systems are phenotypically similar
41 to tumors formed *in vivo*. In one study, unlike their counterparts cultured in monolayer, glioblastoma
42 cells cultured in 3D were found to phenotypically mimic xenografts formed in mice, with respect to
43 their growth rate, levels of hypoxia and angiogenesis [4]. Similarly, in another study, it was found
44 that the drug resistance profile of glioblastoma cell lines derived from patient-derived xenografts
45 correlates with the clinical outcome of these patients, and the correlations were better than that of

46 cells cultured conventionally [5]. From our literature search, we have identified a good number of
47 studies employing various 3D models to study cancer biology, with the majority of these studies
48 focusing on malignant epithelial cells and neurogenic cells. In comparison, studies of malignant
49 hematopoietic cells using 3D culture models are relatively scarce, and the impact of 3D culture on
50 these cancer cells is incompletely understood.

51 Multiple myeloma (MM), characterized by the accumulation of clonal malignant plasma cells in
52 the three-dimensional bone marrow niches, represents 10% of all hematologic malignancies [6].
53 Although the recent advances in various therapeutic modalities have improved the 5-year survival
54 of MM patients to ~50%, MM remains to be an incurable disease [7,8]. The tumor microenvironment
55 within the bone marrow niche is believed to play an essential role in the development and
56 progression of MM. For example, it was found that vascular endothelial growth factor secreted by
57 MM cells can induce the release of IL-6 from bone marrow stromal cells, which in turn promotes the
58 proliferation and survival of MM cells [9]. In light of the importance of the microenvironment, several
59 animal models have been developed to study the biology of MM and to evaluate various therapeutics
60 designed to treat MM [10–12]. Nonetheless, to our knowledge, studies of MM using 3D models are
61 relatively few [13]. For example, Ferrarini *et al.* employed a bioreactor system to create the 3D
62 condition, although this bioreactor is relatively expensive and thus, not widely accessible [14]. De la
63 Puente *et al.* employed cross-linked fibrinogen matrix supplemented with patient-derived
64 mononuclear cells and supernatants [15]. Kirshner *et al.* described a 3D model in which Matrigel®,
65 which is commercially available, was found to support the expansion of primary MM cells for up to
66 30 days [16]. This 3D model carries several important advantages over animal models, as it is
67 relatively inexpensive and devoid of issues related to cross-species immune incompatibilities. We
68 also believe that Kirshner's 3D model is more accessible to researchers, as it does not require the
69 purchase of relatively expensive equipment or elaborate preparation of patient samples.
70 Nonetheless, how exactly the 3D culture impacts the biology of MM cells is largely unknown.


71 To evaluate the impact of the 3D culture on MM cells, we optimized a 3D reconstructed bone
72 marrow model based on the method previously described by Kirshner *et al.* [16,17]. The modifications
73 to the system have generated several improvements, such as the fact that our system is highly
74 amendable to histologic processing, immunocytochemical studies and possibly other morphologic
75 studies (i.e. studies of cell-cell interactions). Importantly, our results have highlighted the importance
76 of STAT3, which was found to be active in MM-3D cells but not those cultured conventionally. Our
77 data supports the concept that STAT3 increases the expression of proteins which are responsible for
78 enhanced cell survival, proliferation and drug resistance in MM [18–21]. As STAT3 is often active in
79 primary MM cells [22], we believe that studies of MM in the 3D culture systems can generate results
80 that are more representative of the disease.

81 2. Results


82 2.1. MM cells cultured in 3D form large clusters

83 We cultured two MM cell lines, U266 and RPMI8226, using the 3D model that had been
84 optimized, as described in Materials and Methods [17]. These cells were labeled MM-3D cells, and
85 we compared their growth characteristics with cells cultured conventionally. As shown in **Figure 1A**,
86 MM cells from both cell lines cultured conventionally settled in the bottom of the tissue culture flasks,
87 and they were found to be present in small clusters composed of an average of 5–10 cells with a
88 greatest dimension of 20–30 μ m (i.e. U266) or predominantly in single cells (i.e. RPMI8226). In contrast,
89 MM-3D cells from both cell lines were present predominantly as spherical, tight cell clusters that
90 were composed of >20–30 cells with the greatest dimension of >50 μ m ($p < 0.05$, **Figure S1**). We then
91 compared the cell growth in these two different culture conditions using the trypan blue exclusion
92 assay. As shown in **Figure 1B**, we found that MM-3D cells grew significantly slower than those
93 cultured conventionally in the first few days of culture ($p < 0.05$), although the differences were
94 relatively small. These differences in cell growth became statistically insignificant on day 4 for
95 RPMI8226 and on day 6 for U266.

(A)

(B)

96

97

98

99

100

101

102

103

104

Figure 1. MM cells exhibit different appearances and growth patterns in conventional culture versus in 3D culture. (A) The morphology of U266 and RPMI8226 cells in conventional or 3D culture after 6 days was examined by phase contrast microscopy. Images were taken at 100X magnification. A scale bar equivalent to 20 μ m is included in each graph. (B) The growth of U266 and RPMI8226 cells in conventional (blue bars) or 3D cultures (orange bars) was measured by the trypan blue exclusion assay at various time points. Fold changes of total viable cells were normalized to the cell number on day 0 (2.5×10^5 cells). The error bars represent standard deviation from a triplicate experiment, * $p<0.05$, n.s. not significant, Student's t-test.

105 2.2. STAT3 activity in MM cells is increased in 3D culture

106 Deregulations of several signaling pathways, including that of STAT3, Erk/MAPK, PI3K/Akt,
 107 NF- κ B and Notch, are known to be important in the pathogenesis of MM [22–28]. To determine if 3D
 108 culture has a significant impact on the cellular signaling in MM cells, we examined the status of these
 109 5 pathways in U266 and RPMI8226 cells, cultured in 3D or conventionally. As shown in Figure 2A,

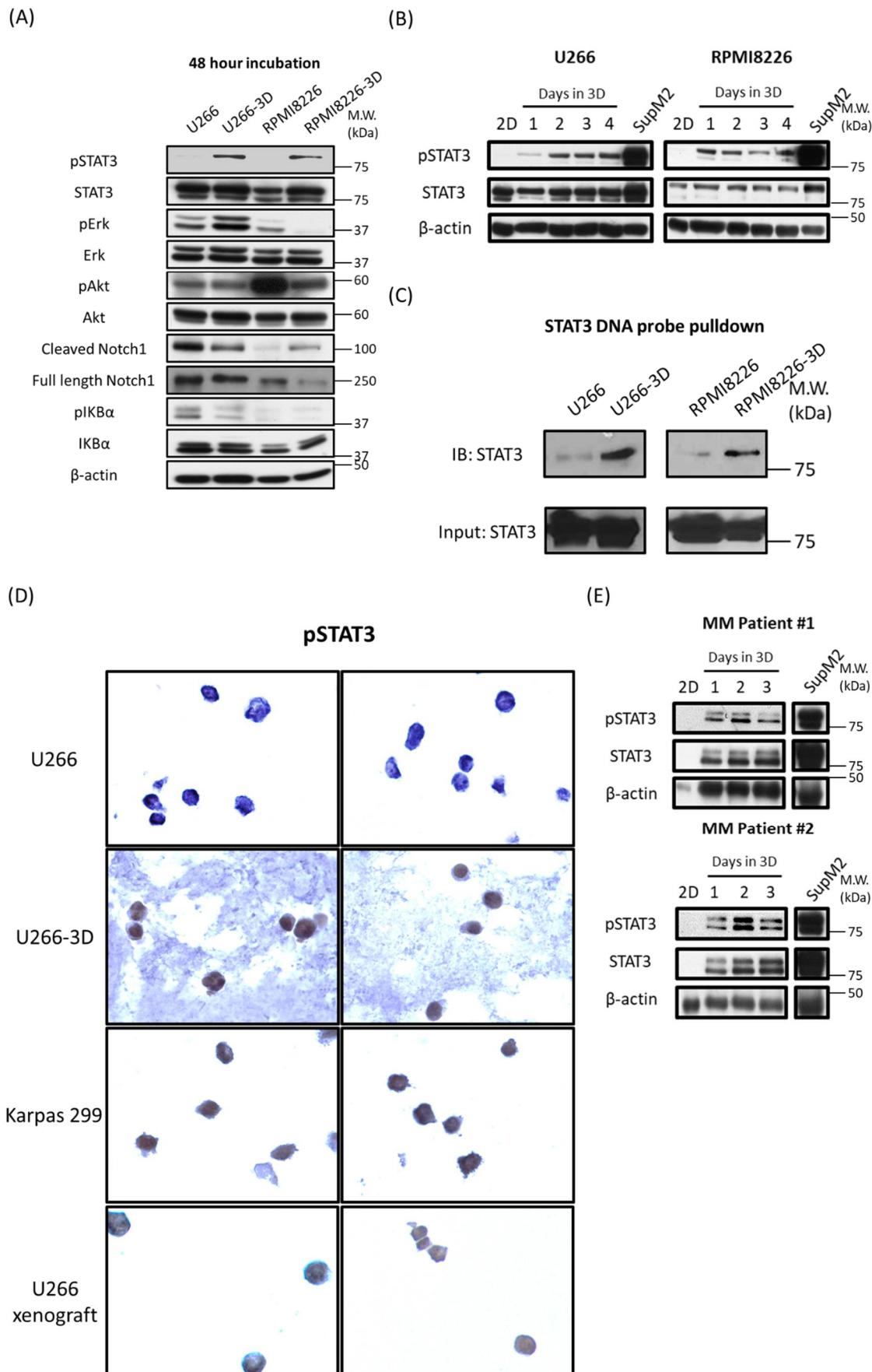
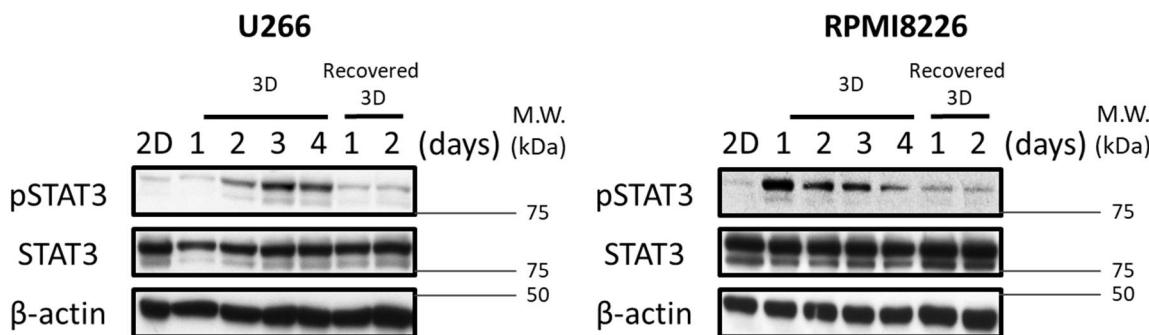


Figure 2. MM cells cultured in 3D acquire STAT3 activity. (A) The activity of various signaling pathways (STAT3, Erk/MAPK, PI3K/Akt, NF- κ B and Notch) in U266 and RPMI8226 cells cultured conventionally (2D) or in 3D was examined by Western blot analysis after 48 hours. (B) The STAT3

114 activity of U266 and RPMI8226 cells in 2D or 3D culture from day 1 to day 4 were examined by
115 Western blot analysis of pSTAT3 levels. SupM2 cells were included as a positive control for the
116 pSTAT3 level. (C) The DNA binding ability of STAT3 in U266 and RPMI8226 cells cultured in 2D or
117 3D was examined by DNA pulldown immunoblotting assay. The cells were harvested and lysed after
118 48 hours in culture. STAT3 in cell lysate was pulled down by a STAT3 DNA probe (described in
119 Supplementary Appendix). (D) Immunocytochemical analysis of pSTAT3 level in U266, U266-3D,
120 Karpas 299 and U266 xenograft cells. The cells were fixed after 48 hours in culture. The procedure of
121 processing, embedding and sectioning was described in Materials and Methods. Two representative
122 pictures were shown. Karpas 299 cells were included as a positive control for pSTAT3 staining. (E)
123 Western blot analysis of pSTAT3 and STAT3 levels of primary MM bone marrow cells in 2D or 3D
124 culture from day 1 to day 3. SupM2 cells were included as a positive control for pSTAT3 level. β -actin
125 was probed as a loading control in each blot.

126 using lysates prepared from cells harvested on day 2, we found that the active/phosphorylated form
127 of STAT3 (pSTAT3) was expressed in MM-3D cells, whereas this band was not detectable in cells
128 cultured conventionally.

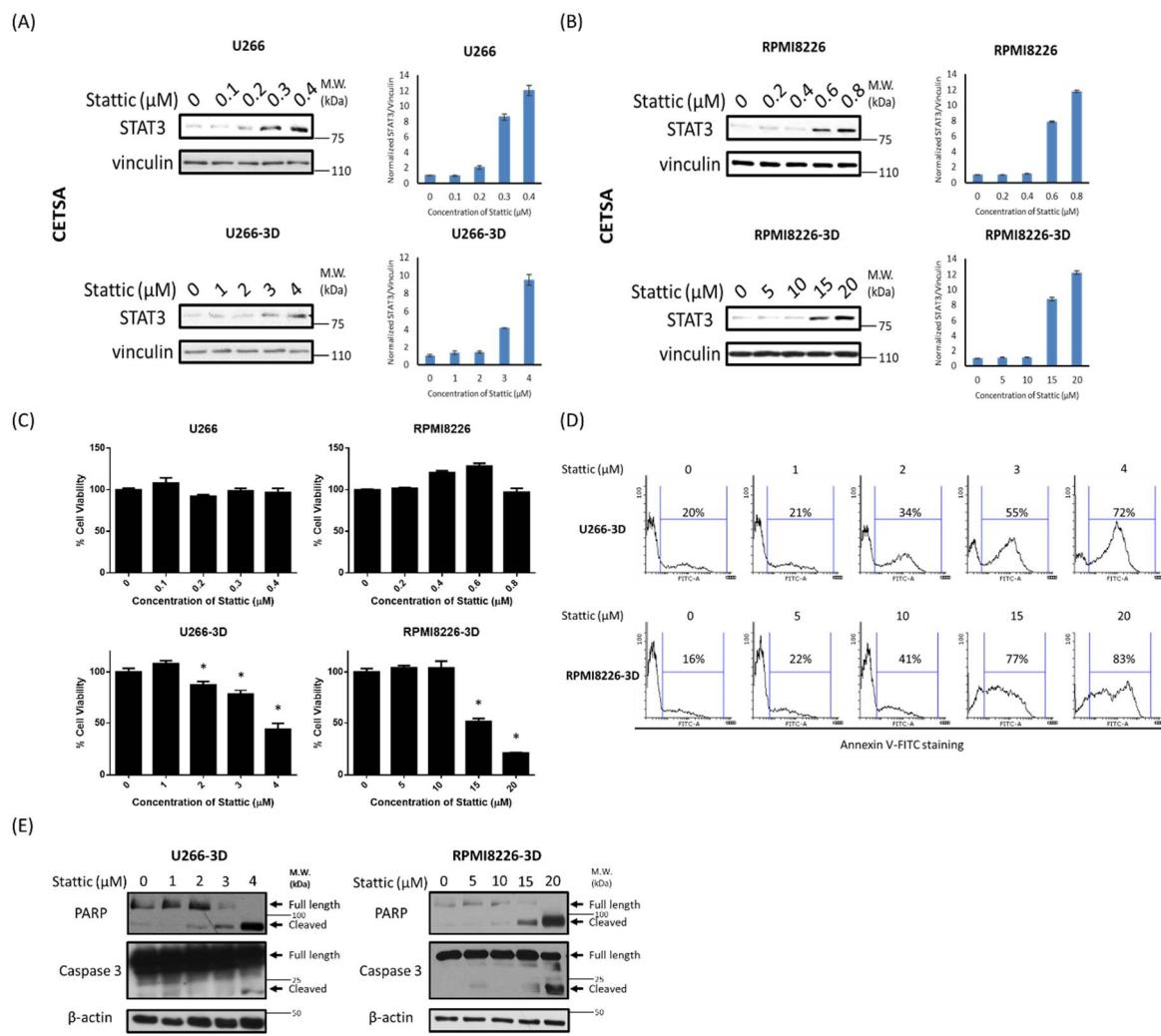

129 We did not observe consistent and/or obvious difference in the activation status of the other 4
130 signaling pathways (Figure 2A). In view of these findings, we focused our studies on STAT3. We
131 then performed a time course experiment to study the kinetics of STAT3 activation in MM-3D cells.
132 Cells from both MM cell lines were cultured in 3D for 4 days and the expression level of pSTAT3 was
133 examined daily using Western blot analysis. Triplicate experiments were performed and results from
134 a representative experiment are shown in Figure 2B. In U266 cells, the pSTAT3 band became
135 detectable on day 1, and there was a time-dependent upregulation of pSTAT3 which peaked on day
136 4. In RPMI8226 cells, the pSTAT3 band also became detectable on day 1 and but it appeared to
137 diminish gradually thereafter. In comparison, no pSTAT3 band was detectable in cells cultured
138 conventionally throughout the experiment (Figure S2). Cell lysates from SupM2, an ALK-positive
139 anaplastic large cell lymphoma cell line known to have a high pSTAT3 expression [29], were used as
140 the positive control. To explore the possible activators of STAT3 in 3D culture, we checked the
141 expression level of several cytokines which are known to induce STAT3 phosphorylation in MM: IL6,
142 IL21 and IL10 [30–32]. As shown in Figure S3, the expression of all three cytokines in U266 cells
143 increased by 1.5–2.5 folds after 1 day of 3D culture compared to cells in conventional culture.

144 In support of the concept that the STAT3 transcriptional activity was indeed increased in MM-
145 3D cells, we examined the DNA-binding ability of STAT3 using the protein-DNA pulldown assay.
146 As shown in **Figure 2C**, a substantially high level of STAT3 protein in MM-3D cells was pulled down
147 with the biotinylated DNA probe containing the STAT3 consensus sequence; in comparison, no band
148 was detectable when cells cultured conventionally were examined. To estimate the proportion of
149 MM-3D cells showing pSTAT3 expression, we optimized our experimental protocol, as detailed in
150 Materials and Methods, so that MM-3D cells and the surrounding matrix were readily fixed in
151 formalin and processed for immunocytochemistry. As shown in **Figure 2D**, the vast majority of U266
152 cells cultured in 3D showed definitive evidence of nuclear pSTAT3 staining, and this finding suggests
153 that STAT3 activation in 3D culture was a generalized phenomenon and not restricted to a small cell
154 subset. Additionally, a similar STAT3 activation pattern was also observed in the U266 cells
155 xenografted in an animal, suggesting that the 3D culture reflected the *in vivo* MM condition better
156 than the conventional culture. Lastly, we examined if the cell concentration affects the activation of
157 STAT3 in MM-3D cells. Thus, we doubled the cell density from 2.5×10^5 /ml to 5.0×10^5 /ml at the
158 beginning of the 3D culture. As shown in **Figure S4**, while both cell lines acquired pSTAT3 on day 1,
159 this signal decreased with time and became undetectable on day 3 or day 4. This time-dependent
160 decrease in pSTAT3 was likely due to the depletion of nutrients in the tissue culture.

161 We also had collected evidence that the observed STAT3 activation in MM-3D is not a cell line-
162 specific phenomenon. As shown in **Figure 2E**, we studied two primary patient bone marrow aspirate
163 samples using western blot analysis, and we found that MM-3D cells, but not cells in conventional
164 culture, showed a substantial level of pSTAT3 expression that peaked on day 2, similar to that seen
165 in U266 cells cultured in 3D.

166 2.3. STAT3 activation in MM-3D cells is dependent on the 3D environment

167 To understand if the expression of pSTAT3 is truly dependent on the 3D culture environment,
 168 we extracted MM-3D cells from 3D culture matrix and transferred them to conventional cell culture.
 169 Specifically, the matrix was dissolved, and pelleted MM-3D cells were washed and re-suspended in
 170 growth medium at a cell density of 2.5×10^5 cells/ml. The expression level of pSTAT3 was then
 171 evaluated at 24 hours and 48 hours using Western blot analysis. As shown in **Figure 3**, the pSTAT3
 172 level substantially decreased on day 2 after transfer to conventional culture in both U266 and
 173 RPMI8226 cells.

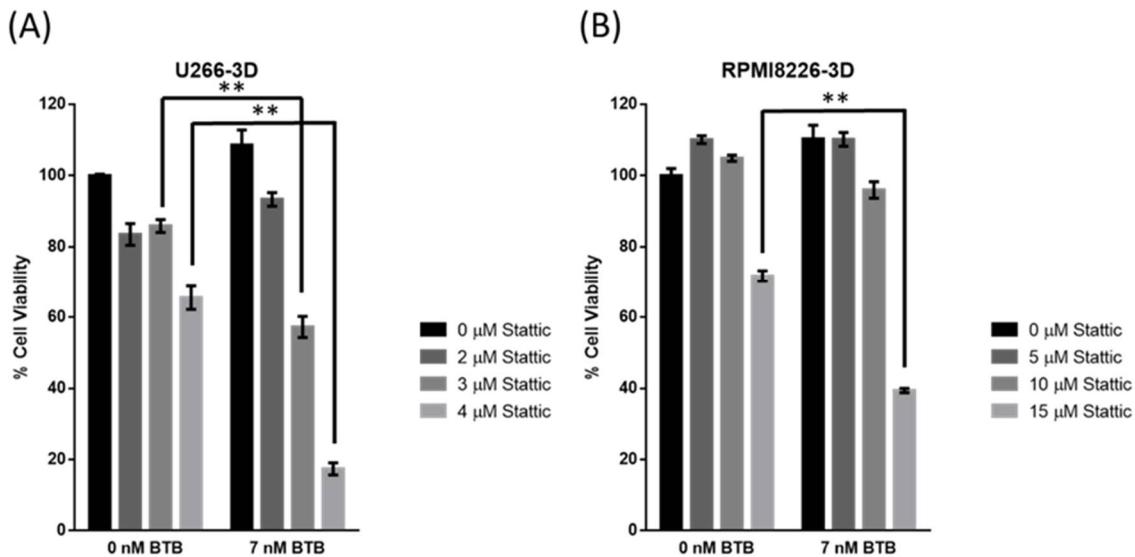

174

175 **Figure 3.** Acquired STAT3 activity in MM cells diminished upon transfer from 3D to conventional
 176 culture. The STAT3 activity in U266 and RPMI8226 cells before and after transfer from 3D culture by
 177 Western blot analysis of pSTAT3 level. U266 and RPMI8226 were pre-cultured for 2 days and 1 day
 178 prior to transfer to reach a substantial pSTAT3 level, respectively. β -actin was probed as a loading
 179 control. 2.5×10^5 cells were seeded initially.

180 2.4. STAT3 inhibition is effective in decreasing cell growth of MM-3D cells

181 To investigate the biological significance of 3D-induced STAT3 activation, we inhibited STAT3
 182 using a STAT3 pharmacologic inhibitor, Stattic, which has been extensively described in the literature
 183 [33]. Since we anticipated the intracellular drug level will be highly dependent on the types of tissue
 184 culture (e.g. cell suspension versus solid matrix), we employed cellular thermal shift assay (CETSA)
 185 [34], to compare the extent of STAT3-Stattic binding in MM-3D cells and in cells cultured in
 186 suspension. As shown in **Figure 4A**, in U266-3D cells, Stattic was found to be substantially bound to
 187 STAT3 at a dose of 4 μ M, which was found to induce more than 50% reduction in cell viability after
 188 24 hours (**Figure 4C**). In comparison, in U266 cells grown conventionally, 0.3 μ M of Stattic was the
 189 lowest dosage found to be effective in mediating a substantial physical binding between Stattic and
 190 STAT3, and this dosage of Stattic did not induce any significant loss of cell viability. Similarly, in
 191 RPMI8226-3D cells, a substantial Stattic-STAT3 binding was observed at 15 μ M (**Figure 4B**), which
 192 induced more than 50% reduction in cell viability (**Figure 4C**). In comparison, only 0.6 μ M of Stattic
 193 was required for a substantial Stattic-STAT3 binding in conventionally cultured cells, and no
 194 significant reduction in cell viability was seen at this dosage. In summary, with a comparable level of
 195 Stattic-STAT3 binding, MM-3D cells showed significant reduction in cell growth whereas cells in
 196 suspension did not show significant changes. These findings support the concept that STAT3
 197 activation in MM-3D is biologically important.

198 To investigate the mechanism underlying the Stattic-induced reduction in cell viability, we
 199 asked if apoptosis played a role. As shown in **Figure 4D**, Stattic was found to induce apoptosis in
 200 MM-3D cells, as shown by the level of Annexin V staining, cleaved PARP and caspase 3 (**Figure 4E**).
 201 Specifically, the expression of cleaved PARP and caspase 3 was detectable at the same dosages of
 202 Stattic at which a substantial binding between Stattic-STAT3 was found (i.e. 3-4 μ M for U266 cells
 203 and 15-20 μ M for RPMI8226 cells). In contrast, no sign of apoptosis was observed in both cell lines
 204 cultured conventionally; specifically, no appreciable Annexin V staining, cleaved PARP and cleaved
 205 caspase 3 were found at the dose range where Stattic can effectively bind to STAT3 (i.e. 0.3-0.4 μ M
 206 for U266 and 0.6-0.8 μ M for RPMI8226) (**Figure S5A and S5B**).

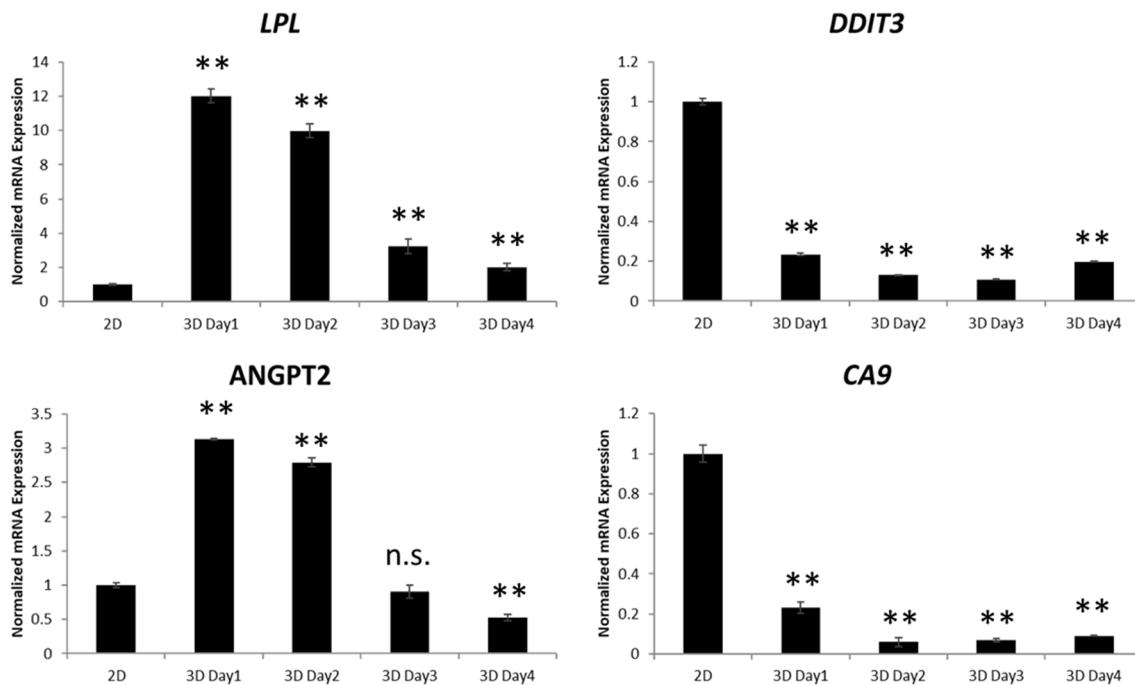

207

208 **Figure 4.** MM cells cultured in 3D are more sensitive to STAT3 inhibition. CETSA of (A) U266 and (B) RPMI8226 cells in conventional or 3D culture after 1 hour of Stattic treatment. Vinculin was blotted as a loading control. The STAT3/vinculin ratios were quantified using ImageJ and shown on the right. Error bars represent the standard deviation from two independent experiments. (C) The effect of STAT3 inhibition on cell viability of U266 and RPMI8226 cells in conventional or 3D culture. The cells were treated with Stattic for 24 hours. Cell viability was measured by MTS assay and normalized to cells with no Stattic treatment. The error bars represent standard deviation from a triplicate experiment, * $p<0.05$, Student's t-test. (D) The effect of STAT3 inhibition on apoptosis in U266- and RPMI8226-3D cells. The cells were treated with Stattic for 24 hours and stained with an apoptotic marker Annexin V. The percentage of Annexin V-positive cells was analyzed by flow cytometry. (E) The expression levels of two apoptotic markers, cleaved PARP and cleaved caspase 3, in U266- and RPMI8226-3D cells after 24 hours of Stattic treatment were examined by Western blot analysis. β -actin was probed as a loading control. For all the experiments above, U266 and RPMI8226 cells were cultured for 2 and 1 days before the Stattic treatment to reach a substantial pSTAT3 level, respectively. 2.5×10^5 cells were seeded initially.

223 2.5. STAT3 inhibition sensitizes MM-3D cells to bortezomib

224 Since EGFR-induced STAT3 activation has been shown to promote resistance to proteasome
 225 inhibitors in MM cells [21], we asked if the STAT3 activation in MM-3D cells contributes to resistance
 226 to bortezomib, a proteasome inhibitor commonly used in treating MM patients. To address this
 227 question, we tested if Stattic can sensitize the STAT3-active MM-3D cells to bortezomib-induced
 228 cytotoxicity. Thus, we cultured U266 cells in 3D for 48 hours, and this resulted in a relatively high
 229 expression level of pSTAT3 in these cells (Figure 2). We then treated these cells with bortezomib at

230 dose (i.e. 7 nM) that we had already confirmed to be slightly lower than that of the inhibitory
 231 concentration at 50% (IC_{50}). For Stattic treatment, we used two doses where substantial Stattic can
 232 bind to STAT3, as illustrated in **Figure 4A and 4B**. As shown in **Figure 5A**, treatment with a
 233 combination of 7 nM of bortezomib and 3 or 4 μ M of Stattic resulted in a significantly higher
 234 reduction in the number of viable U266-3D cells, as compared to cells treated with bortezomib or
 235 Stattic alone ($p<0.001$). Similar results were observed for RPMI8226-3D cells (**Figure 5B**). In contrast,
 236 Stattic treatment did not improve the cytotoxic effect to both MM cell lines cultured conventionally
 237 (**Figure S6**).



238

239 **Figure 5.** STAT3 inhibition in MM-3D cells sensitizes them to bortezomib. Cell viability of (A) U266-
 240 and (B) RPMI8226-3D cells was measured after treatment with Stattic, bortezomib (BTB) or both for
 241 48 hours. U266 and RPMI8226 were pre-cultured in 3D for 2 days and 1 day before drug treatment to
 242 reach a substantial pSTAT3 level, respectively. Cell viability was measured by MTS assay and
 243 normalized to the cell viability of untreated cells. 2.5×10^5 cells were seeded initially. The error bars
 244 represent standard deviation from a triplicate experiment, $^{**}p<0.001$, Student's t-test.

245 2.6. Gene expression profiling in MM-3D cells

246 To better understand the biochemical changes induced by the 3D culture, we performed an
 247 oligonucleotide array comparing U266-3D and U266 cultured conventionally. The RT² Profiler
 248 Human Cancer PathwayFinder PCR Array containing 90 genes implicated in oncogenesis was used,
 249 as detailed in Supplementary Document. Compared to U266 cells grown conventionally, U266-3D
 250 cells showed an increase in the expression of lipoprotein lipase (*LPL*, 14.1 folds), angiopoietin 2
 251 (*ANGPT2*, 6.8 folds) and Snail homolog 3 (*SNAI3*, 3.5 folds), and a decrease in the expression of DNA-
 252 damage-inducible transcript 3 (*DDIT3*, -35.9 folds), carbonic anhydrase 9 (*CA9*, -22.3 folds) and
 253 ovalbumin (*SERPINB2*, -19.4 folds) (**Figure S9A**). By performing signaling pathway analysis using
 254 Pathway Common Network Visualizer (www.pathwaycommons.org/pcviz), we found that 4 out of these
 255 6 most modulated genes (*LPL*, *ANGPT2*, *DDIT3* and *CA9*) are directly or indirectly related to STAT3
 256 (**Figure S9B**). The upregulation of *LPL* and *ANGPT2* and downregulation of *DDIT3* and *CA9* in 3D
 257 culture were confirmed by quantitative RT-PCR (**Figure 6C**). Specifically, the mRNA levels of *LPL*
 258 and *ANGPT2* increased by approximately 10 and 2.8 folds on day 2 in 3D culture compared to
 259 conventional culture on day 2, respectively ($p<0.001$). The mRNA levels of *DDIT3* and *CA9* decreased
 260 by approximately 10 folds in 3D culture compared to conventional culture on day 2 ($p<0.001$).
 261

262

263 **Figure 6. 3D culture changes the gene expression in MM cells.** Quantitative RT-PCR of *LPL*,
 264 *ANGPT2*, *DDIT3* and *CA9* mRNA levels in U266 cells in conventional culture (2D) or day 1 to 4 in 3D
 265 culture. 2.5×10^5 cells were seeded initially. The primers used for each gene are described in
 266 Supplementary Appendix. The error bars represent standard deviation from a triplicate experiment,
 267 n.s. not significant and **p<0.001 compared to 2D, one-way ANOVA with Dunnett's multiple t-test.

268 **3. Discussion**

269 The phenotype of cancer cells dedicating features such as chemoresistance, the rate of growth,
 270 morphology and mobility, is known to be greatly influenced by the microenvironment in which the
 271 cells exist. These findings suggest that it may be more biologically relevant to employ 3D culture
 272 models to study cancer biology [35]. In support of this concept, many studies comparing malignant
 273 epithelial or neurogenic cells cultured in 3D and those cultured conventionally have revealed
 274 substantial phenotypic and biochemical differences [36]. For instance, glioblastoma cells cultured in
 275 a 3D environment were found to have high levels of proliferation, invasiveness and IL-8 secretion
 276 when compared to the same cells grown in monolayer [4]. Furthermore, several studies have shown
 277 that experimental manipulations of cancer cells can generate vastly different results, depending on
 278 whether cells were cultured in 3D or conventionally. For example, inhibition of β -integrin was found
 279 to normalize the architecture of breast cancer cells, but only when the cells were cultured in 3D but
 280 not in monolayer [37]. There is direct evidence that results generated from using the 3D study models
 281 are more representative of the *in vivo* scenarios. As mentioned above, glioblastoma cell lines
 282 established from patient derived xenografts were found to have a drug resistant profile that
 283 correlated with the clinical outcome, but only if the cells were grown in a 3D environment [5]. Overall,
 284 it appears that studying cancer biology using 3D models is biologically and clinically relevant.

285 To our knowledge, most of the published cancer studies using 3D models have focused on
 286 epithelial malignant cells (such as breast cancer) or neurogenic tumors (such as glioblastoma). In the
 287 field of MM research, we notice a relatively small number of studies on 3D culture. 3D dynamic
 288 devices such as bioreactor and microfluidic flow provide continuous nourishment to MM cells, but
 289 the equipment is expensive and does not allow high throughput drug screening [14,38]. In another
 290 model, de la Puente *et al.* employed cross-linked supplemented by patient-derived bone marrow
 291 mononuclear cells and supernatants, and they successfully expanded fresh primary MM cells derived
 292 from 3 different patients [15]. However, the observation that there was a 2.5-fold increase in primary
 293 MM cells within 7 days appears to be inconsistent with the fact that the proliferation index of MM is

294 generally low (i.e. average 6.5% Ki-67 positivity in Stage III MM patients) [39]. In our 3D culture
295 system, which was adapted from Kirshner *et al.* [16,17], we employed a mixture of extracellular matrix
296 proteins and Matrigel® designed to mimic the bone marrow matrix. This 'reconstructed' bone marrow
297 matrix was previously shown to support the proliferation of primary MM cells for up to 30 days, a
298 task that is difficult to achieve in conventional culture [16]. The value of this 3D system was further
299 demonstrated in the same study that a relatively high dose of bortezomib eliminated only a subset of
300 MM cells growing in the 3D culture [16], and this finding contrasted with the observation in
301 conventional culture in previous studies in which nano-molar doses of bortezomib were sufficient to
302 induce substantial cytotoxicity [40,41]. Importantly, as reported by Krishner *et al.*, the partial
303 resistance to bortezomib seen in the 3D model was found to correlate with a poor clinical response to
304 bortezomib monotherapy in MM patients [42,43]. In light of these findings, two more recent studies
305 have adapted the same 3D model for assessment of the efficacy of novel anti-MM agents. Specifically,
306 one study reported that anti-CD56-conjugated maytansinoid is able to overcome drug resistance in a
307 co-culture system including MM cells and stromal cells [44]. In another study, two NF-κB inhibitors
308 were found to induce cytotoxicity to putative MM cancer stem cells in the 3D model [45].

309 The biochemical effects of 3D culture on MM cells are not well understood. In this study, we
310 have confirmed that the reconstructed bone marrow matrix can exert phenotypic and biochemical
311 changes. Specifically, cells grown in this 3D culture system grew in large clusters instead of single
312 cells or small clusters, as seen in the conventional culture system. In addition, the constitutive
313 activation of STAT3 was observed in 3D cells but not in cells cultured conventionally. The
314 upregulation of STAT3 was found to be rapid (i.e. within 24 hours), and we have evidence that this
315 biochemical abnormality is dependent on the continuous 3D culture, as STAT3 became inactive when
316 MM cells were brought back to conventional culture. The mechanism of STAT3 activation in 3D is
317 likely multi-factorial. First, as shown in this study, there were increases in the expression of cytokines
318 (i.e. IL6, IL21 and IL10) known to activate STAT3 in MM. Second, the physical support of MM cells
319 in 3D culture likely promotes whole-surface contact with extracellular matrix proteins, and this
320 phenomenon leads to the 3D-induced spheroid formation and contributes to STAT3 activation.
321 Similar observations were made in 3D cultured breast cancer cells [46]. We have found that the
322 pSTAT3 nuclear staining was present in the vast majority of cells in the 3D culture, confirming that
323 the elevated STAT3 activity is generalized phenomenon and not restricted to a small cell population.
324 The 3D-induced upregulation of STAT3 activity may have contributed to the fact that the cell growth
325 in the 3D environment caught up with that of conventional culture after a few days (i.e. **Figure 1**). In
326 keeping with this concept, pharmacologic inhibition of STAT3 in MM-3D cells indeed resulted in a
327 significant reduction in cell growth. The validity of these findings is also supported by the
328 observation that MM cells in conventional culture were not sensitive to Stattic.

329 The oncogenic characteristics of STAT3 have been extensively reviewed [47–50]. In MM, STAT3
330 is believed to upregulate various proteins which are responsible for enhancing cell survival,
331 proliferation and drug resistance [51–53]. STAT3 has been reported to be constitutively active in MM
332 patients [22,54,55]. Pharmacological agents such as curcumin, piperlongumine, icaritin and LLL12
333 which blocked STAT3 phosphorylation were reported to suppress primary MM cell viability and/or
334 MM tumor growth in animal models [22,56–58]. Clinically, a high pSTAT3 level has been reported to
335 correlate with poorer progress-free survival and overall survival in newly diagnosed MM patients
336 [59]. While constitutively high STAT3 activity was observed in >50% of primary MM samples, MM
337 cell lines typically showed no evidence or a low level of STAT3 activity [22,60]. This discrepancy may
338 be resulted from the fact that various STAT3-activating cytokines and/or factors are abundant *in vivo*
339 and in 3D culture models, but they are either absent or present in a low concentration in cell
340 suspension. In this regard, extracellular matrix proteins, which are present *in vivo* and in 3D but not
341 in cell suspension, have been found to be an important source of STAT3 activation in MM [61,62]. In
342 support of this concept, MM cells cultured on fibronectin-coated surface had more robust IL6-
343 induced STAT3 activation than those cultured in cell suspension [61]. In another study, it was found
344 that MM cell lines showed STAT3 activation that could be enhanced by Reelin, an extracellular matrix
345 protein [62]. Overall, there is ample evidence that extracellular matrix proteins contribute to the

346 aberrant STAT3 activity in MM, and this phenomenon is recapitulated in 3D culture systems but not
347 in cell suspension.

348 Our oligonucleotide array studies have revealed dramatic differences in the gene expression
349 between MM-3D cells and cells cultured conventionally. Interestingly, *LPL* and *AGPNT2* (being
350 significantly higher in MM-3D cells) as well as *DDIT3* (being significantly lower in MM-3D cells) are
351 reported to be associated with STAT3 signaling. *LPL*, known to hydrolyze triglycerides into free fatty
352 acids and glycerol, has been shown to be upregulated by STAT3 in chronic lymphatic leukemia (CLL)
353 [63]. *LPL* is known to have oncogenic potential. As the result of the activity of *LPL*, it is believed that
354 the generated free fatty acids bind to PPAR α so as to promote the cell survival and proliferation of
355 CLL cells [64]. *ANGPT2* concentrations in bone marrow have been found to be significantly higher
356 in patients with active MM compared to those with smoldering MM, MGUS or healthy donors [65].
357 *ANGPT2* serum level is positively correlated with bone marrow microvascular vessel density in
358 patients with active MM [65]. Additionally, it was found that bone marrow mononuclear cells from
359 MM patients secreted substantially more *ANGPT2* compared to those from healthy donors in a 3D
360 bioreactor model [14]. *DDIT3* was found to be decreased in MM-3D cells and has been reported to
361 have tumor suppressor effects. *DDIT3* is a protein that induces apoptosis in various types of cancer
362 cells upon endoplasmic reticulum stress [66]. It is also reported that *DDIT3* expression is suppressed
363 by STAT3, leading to enhanced survival in mesothelioma [67].

364 4. Materials and Methods

365 4.1. Cell lines, patient samples and materials

366 Two human MM cell lines, U266 and RPMI8226 cells were obtained from Dr. Linda Pilarski.
367 Karpas 299 and SupM2 cells were purchased from ATCC. All cell lines were grown in RPMI1640
368 medium supplied with 10% FBS with 1% streptomycin and penicillin except U266 cells, which were
369 grown in RPMI1640 medium supplied with 15% FBS. Ficoll-Paque isolated bone marrow
370 mononuclear cells from two MM patients and reconstituted bortezomib in sterile water (1 mg/ml)
371 were obtained from Cross Cancer Institute, University of Alberta. Both patients #1 and #2 contained
372 10-20% monoclonal plasma cells according to their biopsy section. Stattic (Sigma) powder was
373 dissolved in DMSO into 1 mg/ml solution. Bone marrow mononuclear cells from two MM patients
374 were obtained from Cross Cancer Institute, University of Alberta (Ethics approval by Human
375 Research Ethics Board, University of Alberta, #Pro00058140). Animal procedures for this study was
376 approved by Animal Care and Use Committee, University of Alberta (#Pro00000282).

377 4.2. 3D culture

378 The method for 3D culture was adapted from a previous publication [17]. In brief, 48-well plates
379 were pre-coated with 100 μ l of reconstructed endosteum (77 μ g/ml fibronectin and 29 μ g/ml collagen
380 I in PBS) before seeding of 3D cultures. U266 or RPMI8226 cell pellets were resuspended first with
381 20 μ l PBS. Matrigel[®] (Corning), 1 mg/ml fibronectin and 2 mg/ml collagen IV were added to the
382 resuspended cells in 4:2.5:1 ratio. 100 μ l of cell matrix was loaded to each well and incubated at 37°C
383 for 1 hour to allow polymerization. Finally, 1 ml of pre-warmed growth medium was added to the
384 3D culture. For recovery of 3D cells, 1 ml of cell recovery solution containing 5 mM EDTA, 1 mM
385 sodium vanadate and 1.5 mM sodium fluoride was used.

386 4.3. Preparation of cells for immunocytochemistry

387 The procedure of preparing U266-3D cells for immunocytochemistry is outlined in **Figure S10**.
388 Histogel wells for each sample were created by inserting an Eppendorf tube into a well (24- or 48-
389 well plate) with 400 μ l of liquid histogel (Thermo Scientific). Upon solidification of histogel, the
390 Eppendorf tube was gently removed, leaving a concaved up and U-shaped well for 3D culture
391 loading. The 3D cell culture was loaded into the well and allowed to solidify for 1 hour at 37°C. ~300
392 μ l of growth medium was added to the 3D cell culture and incubated for two days. On the day of
393 embedding, the growth medium was removed and 200 μ l of liquid histogel was added on top to

394 encapsulate the 3D cell culture within the histogel. The entire histogel was then fixed in 4%
395 formaldehyde at 4°C overnight and processed for paraffin wax embedding. For U266 and Karpas 299
396 cells, 2x10⁶ cells were pelleted, resuspended in 100 µl histogel, transferred to a 7x7x5 mm plastic mold
397 (Simport) and fixed in 4% paraformaldehyde for embedding. For U266 xenograft cells, 5 x 10⁵ U266
398 cells stably transduced with luciferase gene were injected into a severe combined immunodeficient
399 diabetic (SCID) mouse intravenously via tail vein. The mouse was euthanized when it became
400 immobile and lost more than 20% body weight. The total bone marrow cells were isolated from the
401 femur, resuspended in 100 µl histogel and transferred to a plastic mold for embedding. All of isolated
402 bone marrow cells were confirmed to be U266 cells by bioluminescence imaging. After embedding,
403 processing and sectioning, the sample slides were rehydrated in xylene and decreasing
404 concentrations of ethanol. The antigens were retrieved using 1X citrate buffer (Sigma) by
405 microwaving in a pressure cooker for 20 minutes. The pSTAT3 antibody (Santa Cruz, clone B-7) was
406 diluted as 1:50 in antibody diluent (DAKO). MACH2 mouse HRP polymer (Biocare Medical) was
407 used as a secondary antibody. The chromogen and substrate were mixed and applied to each slide
408 for 2 minutes for color development (DAKO).

409 4.4. DNA pulldown assay

410 Cell pellets from MM or MM-3D cells were lysed with CellLytic M (Sigma) with protease
411 inhibitor and phosphatase inhibitor cocktails (Millipore) on ice for 30 minutes. 300 µg of total cell
412 lysate was mixed with 3 pmol of STAT3 DNA probe (Biotin-5'-GATCTAGGAATTCCCAGAAGG-3')
413 for 30 minutes on a rotator at room temperature. 75 µl of streptavidin agarose beads (Fisher Scientific)
414 was added to the DNA-lysate mix. The whole solution was incubated on a rotator at 4°C overnight.
415 The beads were washed three times with ice-cold PBS. SDS loading buffer was added to beads and
416 boiled for 5 minutes to dissociate bound proteins. The beads were spun down and the supernatant
417 was subject to SDS-PAGE.

418 4.5. Cellular thermal shift assay (CETSA)

419 The original protocol of CETSA was followed [34]. In brief, both MM and MM-3D cells were
420 cultured for 48 hours. Cells were harvested using cell recovery solution and incubated on ice for 1
421 hour with brief vortex every 15 minutes. Cells were pelleted and washed once with cold and sterile
422 PBS. Cells were resuspended in PBS supplied with 5% protease inhibitor cocktail and 2.5% PMSF
423 prior to heating. Resuspended cells were heated at 54°C for U266 cells and 52°C for RPMI8226 cells
424 for 3 minutes using a thermal cycler. Cells were lysed by three freeze-thaw cycles in liquid nitrogen.
425 Aggregated proteins were precipitated at 20,000 g for 20 minutes at 4°C. The supernatant was
426 collected, heated (70°C for 10 minutes) and dissolved in 4X SDS loading buffer prior to SDS-PAGE.

427 4.6. Cell viability and apoptosis assays

428 Both MM and MM-3D cells on 48-well plates after drug treatment were recovered by cell
429 recovery solution and resuspended in fresh growth medium. 100 µl resuspended cells were
430 transferred to a 96-well plate. Cell viability was measured by CellTiter 96® AQueous One Solution
431 Cell Proliferation Assay (i.e. MTS assay, Promega) or trypan blue exclusion assay (Amresco). The
432 apoptosis was measured by following the instructions of FITC Annexin V Apoptosis Detection Kit I
433 (BD Biosciences).

434 4.7. Oligonucleotide array

435 Total RNA of both U266 and U266-3D cells were prepared using RNeasy Mini Kit (Qiagen). First
436 strand cDNA was synthesized using RT2 First Strand Kit (Qiagen). All PCR reactions were prepared
437 by adding cDNA, RT2 SYBR Green ROX qPCR Mastermix (Qiagen) into the 96-well plates of RT2
438 Profiler Human Cancer PathwayFinder PCR Array (Qiagen). The array contains 84 representative
439 genes which are responsible for 9 biological pathways which are complicated in human cancers. The
440 CT values were obtained and standardized using the CT value of GAPDH. The logarithmic ratio of

441 mRNA expression fold changes (3D to 2D) for each gene was calculated and ranked from highest to
 442 lowest.

443 *4.8. Reverse transcriptase polymerase chain reaction (RT-PCR)*

444 First strand cDNA was prepared using SuperScript® Reverse Transcriptase kit (Invitrogen). RT-
 445 PCR reactions were prepared using SYBR® Select Master Mix (Applied Biosystems). The sequence
 446 of all forward and reverse primers used in this study are summarized in Table 1. The fluorescence
 447 signal was detected and measured by 7900HT Fast Real-Time PCR System and analyzed by SDS2.3.
 448 The gene expression was normalized to GAPDH.

449 **Table 1. Forward and reverse primers used in this study**

Gene	Forward Primer	Reverse Primer
<i>IL6</i>	5'-TCCAGTTGCCCTCTGGGAC-3'	5'-GTAATCCAGAAGACCAAGAGG-3'
<i>IL21</i>	5'-TGTGAATGACTTGGTCCCTGAA-3'	5'-AACAGGAAAAAGCTGACCAC-3'
<i>IL10</i>	5'-GCCTAACATGCTCGAGATC-3'	5'-TGATGTCTGGGTCTTGGTTC-3'
<i>LPL</i>	5'-ACAAGAGAGAACCAAGACTCCAA-3'	5'-GCGGACACTGGTAATGCT-3'
<i>ANGPT2</i>	5'-AACTTCGGAAGAGCATGGAC-3'	5'-CGAGTCATCGTATTGAGCGG-3'
<i>DDIT3</i>	5'-GGAAACAGAGTGGTCATTCCC-3'	5'-CTGCTTGAGCCGTTATTCTC-3'
<i>CA9</i>	5'-GGATCTACCTACTGTTGAGGCT-3'	5'-CATAGGCCAATGACTCTGGT-3'
<i>GAPDH</i>	5'-GGTCTCCTCTGACTTCAACAGCG-3'	5'-ACCACCTGTTGCTGTAGCCAA-3'

450 *4.9. Western blot analysis*

451 Both MM and MM-3D cell pellets were lysed by 1X RIPA buffer (Millipore) with protease
 452 inhibitor and phosphatase inhibitor cocktails (Millipore) on ice for 30 minutes. Protein concentration
 453 of each lysate was measured using BCA protein assay kit (Thermo Scientific). Equal amount of
 454 protein was loaded on 10% homemade polyacrylamide gels for SDS-PAGE at 100 volts. Proteins in
 455 polyacrylamide gel were transferred to nitrocellulose membrane (Bio-Rad) at 100V for 2 hours.
 456 Primary antibodies used were anti-pSTAT3 (Y705) (1:2000, CST, #9145), anti-STAT3 (1:1000, CST),
 457 anti-pErk (T202/Y204) (1:2000, CST, #4377), anti-Erk (1:1000, Enzo, #ADI-KAP-MA001), anti-pAkt
 458 (S473) (1:1000, CST, #4060), anti-Akt (1:1000, CST, #9272), anti-cleaved (V1744) Notch1 (1:1000, CST,
 459 #4147), anti-Notch1 (1:1000, CST, #3439), anti-pIκB α (S32) (1:1000, CST, #9241), anti-IκB α (1:1000,
 460 CST, #4812), anti- β -actin (1:1000, CST, #58169), anti-PARP (1:1000, CST, #9532) and anti-Caspase3
 461 (1:1000, CST, #9665). Secondary antibodies used were HRP-conjugated anti-mouse (1:2000, CST,
 462 #7076) and anti-rabbit (1:2000, CST, #7074). Signals on the membrane were developed using Pierce™
 463 ECL Western Blotting Substrate (Thermo Scientific) and exposed to X-ray films (Fuji).

464 *4.10. Statistical analysis*

465 All numerical data in this study was presented as the mean from experiment replicates or
 466 independent experiments as described in the figure legends. Statistical significance between groups
 467 were analyzed using Student's t-test with $\alpha=0.05$ except Figure 6, which one-way ANOVA with
 468 Dunnett's multiple t-test ($\alpha=0.05$) were employed. The analysis was done using Microsoft Excel 365
 469 except Figure 6, which GraphPad Prism 7 was used for analysis.

470 **5. Conclusions**

471 Our studies have revealed that culturing MM cells in our 3D, reconstructed bone marrow model
 472 consistently and effectively induces STAT3 activation in MM cells, and this biochemical aberrancy
 473 mimics the majority of primary MM patient samples and *in vivo* xenograft. These observations
 474 suggest that the use of 3D culture systems to study MM is biologically and clinically meaningful. Our
 475 study results also suggest that further evaluation of the therapeutic efficacy of anti-STAT3 agents in
 476 should be done *in vivo* or in 3D culture systems. The value of anti-STAT3 therapeutic agents in

477 treating MM can be further highlighted by its additive or synergistic effectiveness with bortezomib.
478 Lastly, since our protocol has greatly facilitated immunocytochemical studies of MM-3D cells, it may
479 be useful to investigate MM-stromal cell interactions in the future.

480 **Supplementary Materials:** The following are available online at www.mdpi.com/link, Figure S1. MM-3D cells
481 form larger cell spheroids. Figure S2. MM cells cultured conventionally do not acquire STAT3 activity. Figure
482 S3. Stattic does not induce apoptosis in conventionally cultured MM cells. Figure S4. Stattic does not improved
483 bortezomib-induced cytotoxicity in MM cells cultured conventionally. Figure S5. Gene expression changes in
484 MM-3D cells are STAT3-relevant. Figure S6. Schematic procedure of immunocytochemistry of MM-3D cells.

485 **Acknowledgments:** This study is supported by the funding of Alberta Innovates Health Solution (Collaborative
486 Research and Innovation Opportunities—Project).

487 **Author Contributions:** YH, OM and RL wrote the manuscript. YH, OM, AL and RL designed experiments. MPC,
488 CPV, IS and ACP provided patient bone marrow samples with patient consent. AA, MH and QW performed
489 portions of the experiments, data analysis and intellectual input. All authors read and approved the manuscript.

490 **Conflicts of Interest:** The authors declare no conflict of interest.

491 References

1. Wang, K.; Kievit, F. M.; Erickson, A. E.; Silber, J. R.; Ellenbogen, R. G.; Zhang, M. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells. *Adv. Healthc. Mater.* **2016**, doi:10.1002/adhm.201600684.
2. Yim, E. K. F.; Darling, E. M.; Kulangara, K.; Guilak, F.; Leong, K. W. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. *Biomaterials* **2010**, *31*, 1299–1306, doi:10.1016/j.biomaterials.2009.10.037.
3. Ghosh, S.; Spagnoli, G. C.; Martin, I.; Ploegert, S.; Demougin, P.; Heberer, M.; Reschner, A. Three-dimensional culture of melanoma cells profoundly affects gene expression profile: A high density oligonucleotide array study. *J. Cell. Physiol.* **2005**, *204*, 522–531, doi:10.1002/jcp.20320.
4. Fischbach, C.; Chen, R.; Matsumoto, T.; Schmelzle, T.; Brugge, J. S.; Polverini, P. J.; Mooney, D. J. Engineering tumors with 3D scaffolds. *Nat. Methods* **2007**, *4*, 855–860, doi:10.1038/nmeth1085.
5. Gomez-Roman, N.; Stevenson, K.; Gilmour, L.; Hamilton, G.; Chalmers, A. J. A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses. *Neuro. Oncol.* **2016**, *17*, now164, doi:10.1093/neuonc/now164.
6. Gozzetti, A.; Candi, V.; Papini, G.; Bocchia, M. Therapeutic Advancements in Multiple Myeloma. *Front. Oncol.* **2014**, *4*, 241, doi:10.3389/fonc.2014.00241.
7. Becker, N. Epidemiology of Multiple Myeloma. In *Recent Results in Cancer Research*; Moehler, T., Goldschmidt, H., Eds.; Springer: New York, 2011; Vol. 183, pp. 25–35 ISBN 9783540857716.
8. Kumar, S. K.; Rajkumar, S. V.; Dispenzieri, A.; Lacy, M. Q.; Hayman, S. R.; Buadi, F. K.; Zeldenrust, S. R.; Dingli, D.; Russell, S. J.; Lust, J. A.; Greipp, P. R.; Kyle, R. A.; Gertz, M. A. Improved survival in multiple myeloma and the impact of novel therapies. *Blood* **2008**, *111*, 2516–2520, doi:10.1182/blood-2007-10-116129.
9. Dankbar, B.; Padró, T.; Leo, R.; Feldmann, B.; Kropff, M.; Mesters, R. M.; Serve, H.; Berdel, W. E.; Kienast, J. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. *Blood* **2000**, *95*, 2630–6, doi:10.1182/blood-2007-10-078022.
10. Menu, E.; Asosingh, K.; Van Riet, I.; Croucher, P.; Van Camp, B.; Vanderkerken, K. Myeloma cells (5TMM) and their interactions with the marrow microenvironment. *Blood Cells. Mol. Dis.* **2004**, *33*, 111–9, doi:10.1016/j.bcmd.2004.04.012.
11. Tong, A. W.; Huang, Y. W.; Zhang, B. Q.; Netto, G.; Vitetta, E. S.; Stone, M. J. Heterotransplantation of

521 human multiple myeloma cell lines in severe combined immunodeficiency (SCID) mice. *Anticancer Res.*
522 1993, 13, 593–597.

523 12. Calimeri, T.; Battista, E.; Conforti, F.; Neri, P.; Di Martino, M. T.; Rossi, M.; Foresta, U.; Piro, E.; Ferrara,
524 F.; Amorosi, A.; Bahlis, N.; Anderson, K. C.; Munshi, N.; Tagliaferri, P.; Causa, F.; Tassone, P. A unique
525 three-dimensional SCID-polymeric scaffold (SCID-synth-hu) model for in vivo expansion of human
526 primary multiple myeloma cells. *Leukemia* 2011, 25, 707–711, doi:10.1038/leu.2010.300.

527 13. Ferrarini, M.; Mazzoleni, G.; Steinberg, N.; Belloni, D.; Ferrero, E. Innovative Models to Assess Multiple
528 Myeloma Biology and the Impact of Drugs. *InTech* 2013, 39–60, doi:10.5772/56515.

529 14. Ferrarini, M.; Steinberg, N.; Ponzoni, M.; Belloni, D.; Berenzi, A.; Girlanda, S.; Caligaris-Cappio, F.;
530 Mazzoleni, G.; Ferrero, E. Ex-Vivo Dynamic 3-D Culture of Human Tissues in the RCCS™ Bioreactor
531 Allows the Study of Multiple Myeloma Biology and Response to Therapy. *PLoS One* 2013, 8, e71613,
532 doi:10.1371/journal.pone.0071613.

533 15. de la Puente, P.; Muz, B.; Gilson, R. C.; Azab, F.; Luderer, M.; King, J.; Achilefu, S.; Vij, R.; Azab, A. K.
534 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in
535 multiple myeloma. *Biomaterials* 2015, 73, 70–84, doi:10.1016/j.biomaterials.2015.09.017.

536 16. Kirshner, J.; Thulien, K. J.; Martin, L. D.; Debes Marun, C.; Reiman, T.; Belch, A. R.; Pilarski, L. M. A
537 unique three-dimensional model for evaluating the impact of therapy on multiple myeloma. *Blood* 2008,
538 112, 2935–2945, doi:10.1182/blood-2008-02-142430.

539 17. Parikh, M. R.; Belch, A. R.; Pilarski, L. M.; Kirshner, J. A Three-dimensional Tissue Culture Model to
540 Study Primary Human Bone Marrow and its Malignancies. *J. Vis. Exp.* 2014, e50947–e50947,
541 doi:10.3791/50947.

542 18. Veirman, K. De; Van Ginderachter, J. A.; Lub, S.; Beule, N. De; Thielemans, K.; Bautmans, I.; Oyajobi, B.
543 O.; Bruyne, E. De; Menu, E.; Lemaire, M.; Riet, I. Van; Vanderkerken, K.; Valckenborgh, E. Van; Veirman,
544 K. De; Van Ginderachter, J. A.; Lub, S.; Beule, N. De; Thielemans, K.; Bautmans, I.; Oyajobi, B. O.; Bruyne,
545 E. De; Menu, E.; Lemaire, M.; Riet, I. Van; Vanderkerken, K.; Valckenborgh, E. Van Multiple myeloma
546 induces Mcl-1 expression and survival of myeloid-derived suppressor cells. *Oncotarget* 2015, 6, 10532–
547 10547, doi:10.18632/oncotarget.3300.

548 19. Romagnoli, M.; Séveno, C.; Wuillème-Toumi, S.; Amiot, M.; Bataille, R.; Minvielle, S.; Barillé-Nion, S.
549 The imbalance between Survivin and Bim mediates tumour growth and correlates with poor survival in
550 patients with multiple myeloma. *Br. J. Haematol.* 2009, 145, 180–189, doi:10.1111/j.1365-2141.2009.07608.x.

551 20. Spets, H.; Stromberg, T.; Georgii-Hemming, P.; Siljason, J.; Nilsson, K.; Jernberg-Wiklund, H. Expression
552 of the bcl-2 family of pro- and anti-apoptotic genes in multiple myeloma and normal plasma cells.
553 Regulation during interleukin-6 (IL-6)-induced growth and survival. *Eur. J. Haematol.* 2002, 69, 76–89,
554 doi:10.1034/j.1600-0609.2002.01549.x.

555 21. Zhang, X. D.; Baladandayuthapani, V.; Lin, H.; Mulligan, G.; Li, B.-Z.; Esseltine, D. L. W.; Qi, L.; Xu, J.;
556 Hunziker, W.; Barlogie, B.; Usmani, S. Z.; Zhang, Q.; Crowley, J.; Hoering, A.; Shah, J. J.; Weber, D. M.;
557 Manasanch, E. E.; Thomas, S. K.; Li, B. Z.; Wang, H. H.; Zhang, J.; Kuiatse, I.; Tang, J. Le; Wang, H.; He,
558 J.; Yang, J.; Milan, E.; Cenci, S.; Ma, W. C.; Wang, Z. Q.; Davis, R. E.; Yang, L.; Orlowski, R. Z. Tight
559 Junction Protein 1 Modulates Proteasome Capacity and Proteasome Inhibitor Sensitivity in Multiple
560 Myeloma via EGFR/JAK1/STAT3 Signaling. *Cancer Cell* 2016, 29, 639–652, doi:10.1016/j.ccr.2016.03.026.

561 22. Bharti, A. C.; Shishodia, S.; Reuben, J. M.; Weber, D.; Alexanian, R.; Raj-Vadhan, S.; Estrov, Z.; Talpaz,
562 M.; Aggarwal, B. B. Nuclear factor- κ B and STAT3 are constitutively active in CD138 + cells derived from
563 multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. *Blood* 2004,

564 103, 3175–3184, doi:10.1182/blood-2003-06-2151.

565 23. Colombo, M.; Galletti, S.; Garavelli, S.; Platonova, N.; Paoli, A.; Basile, A.; Taiana, E.; Neri, A.;
566 Chiaramonte, R. Notch signaling deregulation in multiple myeloma: A rational molecular target.
567 *Oncotarget* **2015**, *6*, 26826–40, doi:10.18632/oncotarget.5025.

568 24. Bezieau, S.; Devilder, M.-C.; Avet-Loiseau, H.; Mellerin, M.-P.; Puthier, D.; Pennarun, E.; Rapp, M.-J.;
569 Harousseau, J.-L.; Moisan, J.-P.; Bataille, R. High incidence of N and K-Ras activating mutations in
570 multiple myeloma and primary plasma cell leukemia at diagnosis. *Hum. Mutat.* **2001**, *18*, 212–224,
571 doi:10.1002/humu.1177.

572 25. Liu, P.; Leong, T.; Quam, L.; Billadeau, D.; Kay, N. E.; Greipp, P.; Kyle, R. A.; Oken, M. M.; Van Ness, B.
573 Activating mutations of N- and K-ras in multiple myeloma show different clinical associations: analysis
574 of the Eastern Cooperative Oncology Group Phase III Trial. *Blood* **1996**, *88*, 2699–706,
575 doi:10.1002/humu.1177.

576 26. Zhu, J.; Wang, M.; Cao, B.; Hou, T.; Mao, X. Targeting the phosphatidylinositol 3-kinase/AKT pathway
577 for the treatment of multiple myeloma. *Curr. Med. Chem.* **2014**, *21*, 3173–3187,
578 doi:10.2174/0929867321666140601204513.

579 27. Steinbrunn, T.; Stühmer, T.; Gatterlöhner, S.; Rosenwald, A.; Mottok, A.; Unzicker, C.; Einsele, H.;
580 Chatterjee, M.; Bargou, R. C. Mutated RAS and constitutively activated Akt delineate distinct oncogenic
581 pathways, which independently contribute to multiple myeloma cell survival. *Blood* **2011**, *117*, 1998–
582 2004, doi:10.1182/blood-2010-05-284422.

583 28. Fuchs, O. Targeting of NF-κappaB signaling pathway, other signaling pathways and epigenetics in
584 therapy of multiple myeloma. *Cardiovasc Hematol Disord Drug Targets* **2013**, *13*, 16–34,
585 doi:10.2174/1871529X11313010003.

586 29. Khouri, J. D.; Medeiros, L. J.; Rassidakis, G. Z.; Yared, M. A.; Tsoli, P.; Leventaki, V.; Schmitt-Graeff, A.;
587 Herling, M.; Amin, H. M.; Lai, R. Differential expression and clinical significance of tyrosine-
588 phosphorylated STAT3 in ALK+ and ALK- anaplastic large cell lymphoma. *Clin Cancer Res* **2003**, *9*, 3692–
589 3699.

590 30. Kolosenko, I.; Grandér, D.; Tamm, K. P. IL-6 Activated JAK/STAT3 Pathway and Sensitivity to Hsp90
591 Inhibitors in Multiple Myeloma. *Curr. Med. Chem.* **2014**, *46*, 3042–3047,
592 doi:10.2174/0929867321666140414100831.

593 31. Yang, T.; Liu, J.; Yang, M.; Huang, N.; Zhong, Y.; Zeng, T.; Wei, R.; Wu, Z.; Xiao, C.; Cao, X.; Li, M.; Li,
594 L.; Han, B.; Yu, X.; Li, H.; Zou, Q.; Yang, T.; Liu, J.; Yang, M.; Huang, N.; Zhong, Y.; Zeng, T.; Wei, R.;
595 Wu, Z.; Xiao, C.; Cao, X.; Li, M.; Li, L.; Han, B.; Yu, X.; Li, H.; Zou, Q.; Yang, T.; Liu, J.; Yang, M.; Huang,
596 N.; Zhong, Y.; Zeng, T.; Wei, R.; Wu, Z.; Xiao, C.; Cao, X.; Li, M.; Li, L.; Han, B.; Yu, X.; Li, H.; Zou, Q.
597 Cucurbitacin B exerts anti-cancer activities in human multiple myeloma cells in vitro and in vivo by
598 modulating multiple cellular pathways. *Oncotarget* **2017**, *8*, 5800–5813, doi:10.18632/oncotarget.10584.

599 32. Brenne, A.-T.; Ro, T. B.; Waage, A.; Sundan, A.; Borset, M.; Hjorth-Hansen, H. Interleukin-21 is a growth
600 and survival factor for human myeloma cells. *Blood* **2002**, *99*, 3756–3762, doi:10.1182/blood.V99.10.3756.

601 33. Schust, J.; Sperl, B.; Hollis, A.; Mayer, T. U.; Berg, T. Stattic: A Small-Molecule Inhibitor of STAT3
602 Activation and Dimerization. *Chem. Biol.* **2006**, *13*, 1235–1242, doi:10.1016/j.chembiol.2006.09.018.

603 34. Jafari, R.; Almqvist, H.; Axelsson, H.; Ignatushchenko, M.; Lundbäck, T.; Nordlund, P.; Molina, D. M.
604 The cellular thermal shift assay for evaluating drug target interactions in cells. *Nat. Protoc.* **2014**, *9*, 2100–
605 2122, doi:10.1038/nprot.2014.138.

606 35. Xu, X.; Farach-Carson, M. C.; Jia, X. Three-dimensional in vitro tumor models for cancer research and

607 drug evaluation. *Biotechnol. Adv.* **2014**, *32*, 1256–1268, doi:10.1016/j.biotechadv.2014.07.009.

608 36. Edmondson, R.; Broglie, J. J.; Adcock, A. F.; Yang, L. Three-Dimensional Cell Culture Systems and Their
609 Applications in Drug Discovery and Cell-Based Biosensors. *Assay Drug Dev. Technol.* **2014**, *12*, 207–218,
610 doi:10.1089/adt.2014.573.

611 37. Weaver, V. M.; Petersen, O. W.; Wang, F.; Larabell, C. A.; Briand, P.; Damsky, C.; Bissell, M. J. Reversion
612 of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin
613 blocking antibodies. *J. Cell Biol.* **1997**, *137*, 231–45, doi:10.1083/jcb.137.1.231.

614 38. Zhang, W.; Lee, W. Y.; Siegel, D. S.; Tolias, P.; Zilberberg, J. Patient-Specific 3D Microfluidic Tissue
615 Model for Multiple Myeloma. *Tissue Eng. Part C. Methods* **2014**, *20*, 663–70,
616 doi:10.1089/ten.TEC.2013.0490.

617 39. Gastinne, T.; Leleu, X.; Duhamel, A.; Moreau, A. S.; Franck, G.; Andrieux, J.; Lai, J. L.; Coiteux, V.;
618 Yakoub-Agha, I.; Bauters, F.; Harousseau, J. L.; Zandecki, M.; Facon, T. Plasma cell growth fraction using
619 Ki-67 antigen expression identifies a subgroup of multiple myeloma patients displaying short survival
620 within the ISS stage I. *Eur. J. Haematol.* **2007**, *79*, 297–304, doi:10.1111/j.1600-0609.2007.00915.x.

621 40. Huang, X.; Di Liberto, M.; Jayabalan, D.; Liang, J.; Ely, S.; Bretz, J.; Shaffer, A. L.; Louie, T.; Chen, I.;
622 Randolph, S.; Hahn, W. C.; Staudt, L. M.; Niesvizky, R.; Moore, M. A. S.; Chen-Kiang, S. Prolonged early
623 G 1 arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell
624 cycle-coupled loss of IRF4. *Blood* **2012**, *120*, 1095–1106, doi:10.1182/blood-2012-03-415984.

625 41. Catley, L.; Weisberg, E.; Kiziltepe, T.; Tai, Y. T.; Hideshima, T.; Neri, P.; Tassone, P.; Atadja, P.; Chauhan,
626 D.; Munshi, N. C.; Anderson, K. C. Aggresome induction by proteasome inhibitor bortezomib and alpha-
627 tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma
628 cells. *Blood* **2006**, *108*, 3441–3449, doi:10.1182/blood-2006-04-016055.

629 42. Richardson, P. G.; Chanan-Khan, A.; Schlossman, R. L.; Munshi, N. C.; Wen, P.; Briemberg, H.; Kuter,
630 D.; Oaklander, A.-L.; Lonial, S.; Hassoun, H.; Doss, D.; Colson, K.; McKenney, M.; Hande, K.; Koryzna,
631 A.; Stoklas, B.; Lunde, L.; Gorelik, S.; McAlister, C.; Freeman, A.; Warren, D.; Collins, D.; Esseltine, D.;
632 Amato, A.; Anderson, K. C. Phase II Trial of Single Agent Bortezomib (VELCADE®) in Patients with
633 Previously Untreated Multiple Myeloma (MM). *Blood* **2015**, *104*.

634 43. Richardson, P. G.; Barlogie, B.; Berenson, J.; Singhal, S.; Jagannath, S.; Irwin, D.; Rajkumar, S. V.;
635 Srkalovic, G.; Alsina, M.; Alexanian, R.; Siegel, D.; Orlowski, R. Z.; Kuter, D.; Limentani, S. A.; Lee, S.;
636 Hideshima, T.; Esseltine, D.-L.; Kauffman, M.; Adams, J.; Schenkein, D. P.; Anderson, K. C. A Phase 2
637 Study of Bortezomib in Relapsed, Refractory Myeloma. *N. Engl. J. Med.* **2003**, *348*, 2609–2617,
638 doi:10.1056/NEJMoa030288.

639 44. Nierste, B. A.; Gunn, E. J.; Whiteman, K. R.; Lutz, R. J.; Kirshner, J. Maytansinoid immunoconjugate
640 IMGN901 is cytotoxic in a three-dimensional culture model of multiple myeloma. *Am. J. Blood Res.* **2016**,
641 6, 6–18.

642 45. Gunn, E. J.; Williams, J. T.; Huynh, D. T.; Iannotti, M. J.; Han, C.; Barrios, F. J.; Kendall, S.; Glackin, C. A.;
643 Colby, D. A.; Kirshner, J. The natural products parthenolide and andrographolide exhibit anti-cancer
644 stem cell activity in multiple myeloma. *Leuk. Lymphoma* **2011**, *52*, 1085–1097,
645 doi:10.3109/10428194.2011.555891.

646 46. Park, M. C.; Jeong, H.; Son, S. H.; Kim, Y. H.; Han, D.; Goughnour, P. C.; Kang, T.; Kwon, N. H.; Moon,
647 H. E.; Paek, S. H.; Hwang, D.; Seol, H. J.; Nam, D. H.; Kim, S. Novel morphologic and genetic analysis of
648 cancer cells in a 3D microenvironment identifies STAT3 as a regulator of tumor permeability barrier
649 function. *Cancer Res.* **2016**, *76*, 1044–1054, doi:10.1158/0008-5472.CAN-14-2611.

650 47. Zhang, H.-F. F.; Lai, R. STAT3 in cancer-friend or foe? *Cancers (Basel)*. **2014**, *6*, 1408–1440, doi:10.3390/cancers6031408.

651 48. Yu, H.; Lee, H.; Herrmann, A.; Buettner, R.; Jove, R. Revisiting STAT3 signalling in cancer: New and unexpected biological functions. *Nat. Rev. Cancer* **2014**, *14*, 736–746.

652 49. Levy, D. E.; Lee, C.; Darnell, J.; Kerr, I.; Stark, G.; Levy, D.; Darnell, J.; Takeda, K.; Takeda, K.; Akira, S.; Hirano, T.; Ishihara, K.; Hibi, M.; Akira, S.; Lütticken, C.; Zhong, Z.; Wen, Z.; Darnell, J.; Raz, R.; Durbin, J.; Levy, D.; Taga, T.; Kishimoto, T.; Heinrich, P.; Behrmann, I.; Müller-Newen, G.; Schaper, F.; Graeve, L.; Guschin, D.; Greenlund, A.; Farrar, M.; Viviano, B.; Schreiber, R.; Decker, T.; Kovarik, P.; Zhang, J.; Boeuf, H.; Hauss, C.; Graeve, F.; Baran, N.; Kedinger, C.; Niwa, H.; Burdon, T.; Chambers, I.; Smith, A.; Raz, R.; Lee, C.; Cannizzaro, L.; D'Eustachio, P.; Levy, D.; Matsuda, T.; Alonzi, T.; McLemore, M.; Boccaccio, C.; Riley, J.; Takeda, K.; Akira, S.; Schreiber, R.; Levy, D.; Gilliland, D.; Bromberg, J.; Yu, C.-L.; Duncan, S.; Zhong, Z.; Wen, Z.; Darnell, J.; Yoshida, K.; Stewart, C.; Oppenheim, R.; Ernst, M.; Oates, A.; Dunn, A.; Rodig, S.; Sibilia, M.; Wagner, E.; Threadgill, D.; Cirri, P.; Soriano, P.; Montgomery, C.; Geske, R.; Bradley, A.; Klinghoffer, R.; Sachsenmaier, C.; Cooper, J.; Soriano, P.; Stein, P.; Vogel, H.; Soriano, P.; Takeda, K.; Sano, S.; Sano, S.; Akaishi, H.; Takeda, K.; Chapman, R.; Alonzi, T.; Schweizer, U.; Yoo, J.; Huso, D.; Nathans, D.; Desiderio, S. What does Stat3 do? *J. Clin. Invest.* **2002**, *109*, 1143–8, doi:10.1172/JCI15650.

653 667 50. Bromberg, J. F.; Wrzeszczynska, M. H.; Devgan, G.; Zhao, Y.; Pestell, R. G.; Albanese, C.; Darnell, J. E. Stat3 as an oncogene. *Cell* **1999**, *98*, 295–303, doi:10.1016/S0092-8674(00)81959-5.

654 668 51. Bommert, K.; Bargou, R. C.; Stühmer, T. Signalling and survival pathways in multiple myeloma. *Eur. J. Cancer* **2006**, *42*, 1574–1580, doi:10.1016/j.ejca.2005.12.026.

655 669 52. Sikka, S.; Surana, R.; Dai, X.; Zhang, J.; Kumar, A. P.; Tan, B. K. H.; Sethi, G.; Bishayee, A. Targeting the STAT3 signaling pathway in cancer: Role of synthetic and natural inhibitors. *Biochim. Biophys. Acta - Rev. Cancer* **2014**, *1845*, 136–154.

656 670 53. Hideshima, T.; Anderson, K. C. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. *Nat. Rev. Cancer* **2002**, *2*, 927–937.

657 671 54. Marni, S.; Brancalion, A.; Mandato, E.; Tubi, L. Q.; Colpo, A.; Pizzi, M.; Cappellessi, R.; Zaffino, F.; Di Maggio, S. A.; Cabrelle, A.; Marino, F.; Zambello, R.; Trentin, L.; Adami, F.; Gurrieri, C.; Semenzato, G.; Piazza, F. Protein Kinase CK2 Inhibition Down Modulates the NF-κB and STAT3 Survival Pathways, Enhances the Cellular Proteotoxic Stress and Synergistically Boosts the Cytotoxic Effect of Bortezomib on Multiple Myeloma and Mantle Cell Lymphoma Cells. *PLoS One* **2013**, *8*, e75280, doi:10.1371/journal.pone.0075280.

658 672 55. Brown, R.; Yang, S.; Weatherburn, C.; Gibson, J.; Ho, P. J.; Suen, H.; Hart, D.; Joshua, D. Phospho-flow detection of constitutive and cytokine-induced pSTAT3/5, pAKT and pERK expression highlights novel prognostic biomarkers for patients with multiple myeloma. *Leukemia* **2015**, *29*, 483–490, doi:10.1038/leu.2014.204.

659 673 56. Yao, Y.; Sun, Y.; Shi, M.; Xia, D.; Zhao, K.; Zeng, L.; Yao, R.; Zhang, Y.; Li, Z.; Niu, M.; Xu, K. Piperlongumine induces apoptosis and reduces bortezomib resistance by inhibiting STAT3 in multiple myeloma cells. *Oncotarget* **2016**, *7*, 73497–73508, doi:10.18632/oncotarget.11988.

660 674 57. Zhu, S.; Wang, Z.; Li, Z.; Peng, H.; Luo, Y.; Deng, M.; Li, R.; Dai, C.; Xu, Y.; Liu, S.; Zhang, G. Icaritin suppresses multiple myeloma, by inhibiting IL-6/JAK2/STAT3. *Oncotarget* **2015**, *6*, 10460–10472, doi:10.18632/oncotarget.3399.

661 675 58. Lin, L.; Benson, D. M.; Deangelis, S.; Bakan, C. E.; Li, P. K.; Li, C.; Lin, J. A small molecule, LLL12 inhibits

693 constitutive STAT3 and IL-6-induced STAT3 signaling and exhibits potent growth suppressive activity
694 in human multiple myeloma cells. *Int. J. Cancer* **2012**, *130*, 1459–1469, doi:10.1002/ijc.26152.

695 59. Jung, S.-H.; Ahn, S.; Choi, H.-W.; Shin, M.-G.; Lee, S.; Yang, D.-H.; Ahn, J.-S.; Kim, Y.; Kim, H.-J.; Lee, J.-
696 J. STAT3 expression is associated with poor survival in non-elderly adult patients with newly diagnosed
697 multiple myeloma. *Blood Res.* **2017**, *52*, 293, doi:10.5045/br.2017.52.4.293.

698 60. Wada, A.; Ito, A.; Itsuka, H.; Tsuneyama, K.; Miyazono, T.; Murakami, J.; Shibahara, N.; Sakurai, H.;
699 Saiki, I.; Nakayama, T.; Yoshie, O.; Koizumi, K.; Sugiyama, T. Role of chemokine CX3CL1 in progression
700 of multiple myeloma via CX3CR1 in bone microenvironments. *Oncol. Rep.* **2015**, *33*, 2935–2939,
701 doi:10.3892/or.2015.3941.

702 61. Shain, K. H.; Yarde, D. N.; Meads, M. B.; Huang, M.; Jove, R.; Hazlehurst, L. A.; Dalton, W. S. Beta-1
703 Integrin Adhesion Enhances IL-6-Mediated STAT3 Signaling in Myeloma Cells: Implications for
704 Microenvironment Influence on Tumor Survival and Proliferation. *Cancer Res.* **2009**, *69*, 1009–1015,
705 doi:10.1158/0008-5472.CAN-08-2419.

706 62. Lin, L.; Yan, F.; Zhao, D.; Lv, M.; Liang, X.; Dai, H.; Qin, X.; Zhang, Y.; Hao, J.; Sun, X.; Yin, Y.; Huang,
707 X.; Zhang, J.; Lu, J.; Ge, Q.; Lin, L.; Yan, F.; Zhao, D.; Lv, M.; Liang, X.; Dai, H.; Qin, X.; Zhang, Y.; Hao,
708 J.; Sun, X.; Yin, Y.; Huang, X.; Zhang, J.; Lu, J.; Ge, Q. Reelin promotes the adhesion and drug resistance
709 of multiple myeloma cells via integrin β 1 signaling and STAT3. *Oncotarget* **2016**, *7*, 9844–9858,
710 doi:10.18632/oncotarget.7151.

711 63. Rozovski, U.; Grgurevic, S.; Bueso-Ramos, C.; Harris, D. M.; Li, P.; Liu, Z.; Wu, J. Y.; Jain, P.; Wierda, W.;
712 Burger, J.; O'Brien, S.; Jain, N.; Ferrajoli, A.; Keating, M. J.; Estrov, Z. Aberrant LPL Expression, Driven
713 by STAT3, Mediates Free Fatty Acid Metabolism in CLL Cells. *Mol. Cancer Res.* **2015**, *13*.

714 64. Spaner, D. E.; Lee, E.; Shi, Y.; Wen, F.; Li, Y.; Tung, S.; McCaw, L.; Wong, K.; Gary-Gouy, H.; Dalloul, A.;
715 Ceddia, R.; Gorczynski, R. PPAR-alpha is a therapeutic target for chronic lymphocytic leukemia. *Leukemia* **2013**, *27*, 1090–1099, doi:10.1038/leu.2012.329.

716 65. Belloni, D.; Marcatti, M.; Ponzoni, M.; Ciceri, F.; Veschini, L.; Corti, A.; Caligaris Cappio, F.; Ferrarini,
717 M.; Ferrero, E. Angiopoietin-2 in Bone Marrow milieu promotes Multiple Myeloma-associated
718 angiogenesis. *Exp. Cell Res.* **2015**, *330*, 1–12, doi:10.1016/j.yexcr.2014.10.017.

719 66. Li, Y.; Guo, Y.; Tang, J.; Jiang, J.; Chen, Z. New insights into the roles of CHOP-induced apoptosis in ER
720 stress. *Acta Biochim. Biophys. Sin. (Shanghai)* **2014**, *46*, 629–640, doi:10.1093/abbs/gmu048.

721 67. Canino, C.; Luo, Y.; Marcato, P.; Blandino, G.; Pass, H. I.; Cioce, M. A STAT3-NFKB/DDIT3/CEBP β axis
722 modulates ALDH1A3 expression in chemoresistant cell subpopulations. *Oncotarget* **2015**, *6*, 12637–12653,
723 doi:10.18632/oncotarget.3703.

724

725