

1 Article

2 **S-Phase Synchronization Facilitates the Early Progression of** 3 **Induced-Cardiomyocyte Reprogramming through Enhanced Cell-Cycle Exit**

5 **Emre Bektik** ^{1,2,3}, **Adrienne Dennis** ¹, **Gary Pawlowski** ¹, **Danielle Maleski** ¹, **Satoru Takahashi** ^{2,3},
6 **Kenneth R. Laurita** ¹, **Isabelle Deschênes** ¹, **Ji-dong Fu** ^{1,*}

8 ¹ Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve
9 University, Cleveland, OH 44109, USA.

10 ² Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba,
11 Ibaraki Prefecture, 305-8577, Japan

12 ³ Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan

14 * Correspondence: jidong.fu@case.edu; Tel.: +1-216-778-4466

15

16 **Abstract:** Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great
17 promise for regenerative medicine and has been studied in several major directions. However,
18 cell-cycle regulation, a fundamental biological process, has not been investigated during
19 iCM-reprogramming. Here, our time-lapse imaging on iCMs, reprogrammed by Gata4, Mef2c, and
20 Tbx5 (GMT) monocistronic retroviruses, revealed that iCM-reprogramming was majorly initiated
21 at late-G1- or S-phase and nearly half of GMT-reprogrammed iCMs divided soon after
22 reprogramming. iCMs exited cell cycle along the process of reprogramming with decreased
23 percentage of EdU⁺/αMHC-GFP⁺ cells. S-phase synchronization post-GMT-infection could enhance
24 cell-cycle exit of reprogrammed iCMs and yield more GFP^{high} iCMs, which achieved an advanced
25 reprogramming with more expression of cardiac genes than GFP^{low} cells; however, S-phase
26 synchronization didn't enhance the polycistronic-MGT reprogramming, in which cell-cycle exit
27 had been accelerated. In conclusion, post-infection synchronization of S-phase facilitated the early
28 progression of GMT-reprogramming through a mechanism of enhanced cell-cycle exit.

29 **Keywords:** induced cardiomyocyte; epigenetic reprogramming; cell division; cell-cycle
30 synchronization; cell-cycle exit.

31

32 **1. Introduction**

33 Cardiomyocytes (CMs) in the adult heart have limited regenerative capacity [1]. At the onset
34 of heart disease, lost CMs are typically replaced with fibrotic scar tissue, subsequently leading to
35 chronic heart failure, which remains one of the leading causes of death worldwide. Recent studies
36 have found that mouse [2-5] and human [6-9] fibroblasts can be directly reprogrammed into
37 induced CMs (iCMs), which holds a great promise to develop a new therapeutic approach for heart
38 disease. In order to improve induction efficiency and quality of iCMs, studies have focused on
39 developing optimized reprogramming methods and investigating the mechanism of direct cardiac
40 reprogramming, including optimized gene-delivery approaches of reprogramming factors [10, 11],
41 suppression of critical epigenetic barriers [12, 13] and pro-fibrotic signaling [14-16], and
42 optimization of culture conditions [17, 18]. However, the cell-cycle regulation, a fundamental
43 biological process, has not been investigated during iCM-reprogramming.

44 Many epigenetic barriers interfere reprogramming process right at the priming stage of
45 reprogramming, therefore many cells fail to convert their fate toward CM-like state and remain as
46 fibroblasts [19]. This suggests that initiation and early progression of iCM reprogramming have to
47 be studied to understand and advance this nascent technology. Cell cycle and cell-cycle exit
48 constitute an important part of iCM-reprogramming particularly at the priming of reprogramming;
49 therefore cell-cycle related epigenetics might be a barrier to iCM-reprogramming. Similar to fully
50 differentiated adult CMs, it has been recognized that reprogrammed iCMs exit the cell cycle. No
51 cardiac troponin-T (cTnT)⁺ iCMs were positively stained with Ki67 at week-2 of reprogramming
52 [20]; 5-ethynyl-20-deoxyuridine (EdU) assay didn't show any EdU⁺ iCMs from week-2 to week-4
53 post-induction [17]. More recently, none of the α -Actinin⁺ iCMs expressed proliferation marker,
54 Ki67, at DPI-28 [21]. These studies indicate that cell-cycle exit is an important event of
55 iCM-reprogramming; however, it is unknown whether cell-cycle exit of reprogrammed iCMs
56 happens right upon reprogramming induction or at a later stage of reprogramming process. A cell
57 cycle constitutes a critically important chain of interconnected events with a dynamic fluctuation of
58 epigenetic chromatin modifications [22], including genomic DNA methylation and histone
59 modification, which have significant influence on epigenetic reprogramming of somatic cell fate
60 [23]. Indeed, it has been reported that pre-synchronization of fibroblasts at the G0/G1-phase by
61 transient serum starvation could significantly improve the reprogramming yield of induced
62 pluripotent stem cells (iPSCs) [24]. In addition, cell-cycle pre-synchronization at the G1-phase could
63 markedly enhance the reprogramming efficiency of induced dopaminergic neurons [25]. These
64 studies suggested that manipulation of cell-cycle progression has a significant impact on epigenetic
65 reprogramming; however, it is unknown whether a particular cell-cycle phase favors for
66 reprogramming initiation and if manipulating the cell cycle (i.e. synchronization) of post-infected
67 fibroblasts influences the progression of reprogramming.

68

69 In this study, we first performed 48-hour time-lapse recordings to monitor the early
70 progression of iCM-reprogramming and found that α MHC-GFP⁺ iCMs went through cell division
71 at the early stage of reprogramming. We calculated the time from the initial expression of
72 α MHC-GFP to cell division and estimated which cell-cycle phase iCM-reprogramming was
73 initiated at. After we confirmed that iCMs exited cell cycle along the process of reprogramming, we
74 synchronized cell cycle of fibroblasts at various time points post GMT-retrovirus infection and
75 found that this post-infection synchronization of S-phase enhanced cell-cycle exit of reprogrammed
76 iCMs and accelerated the early progression of reprogramming.

77 2. Results

78 2.1. *iCMs go through cell division and exit cell cycle along with the progress of reprogramming*

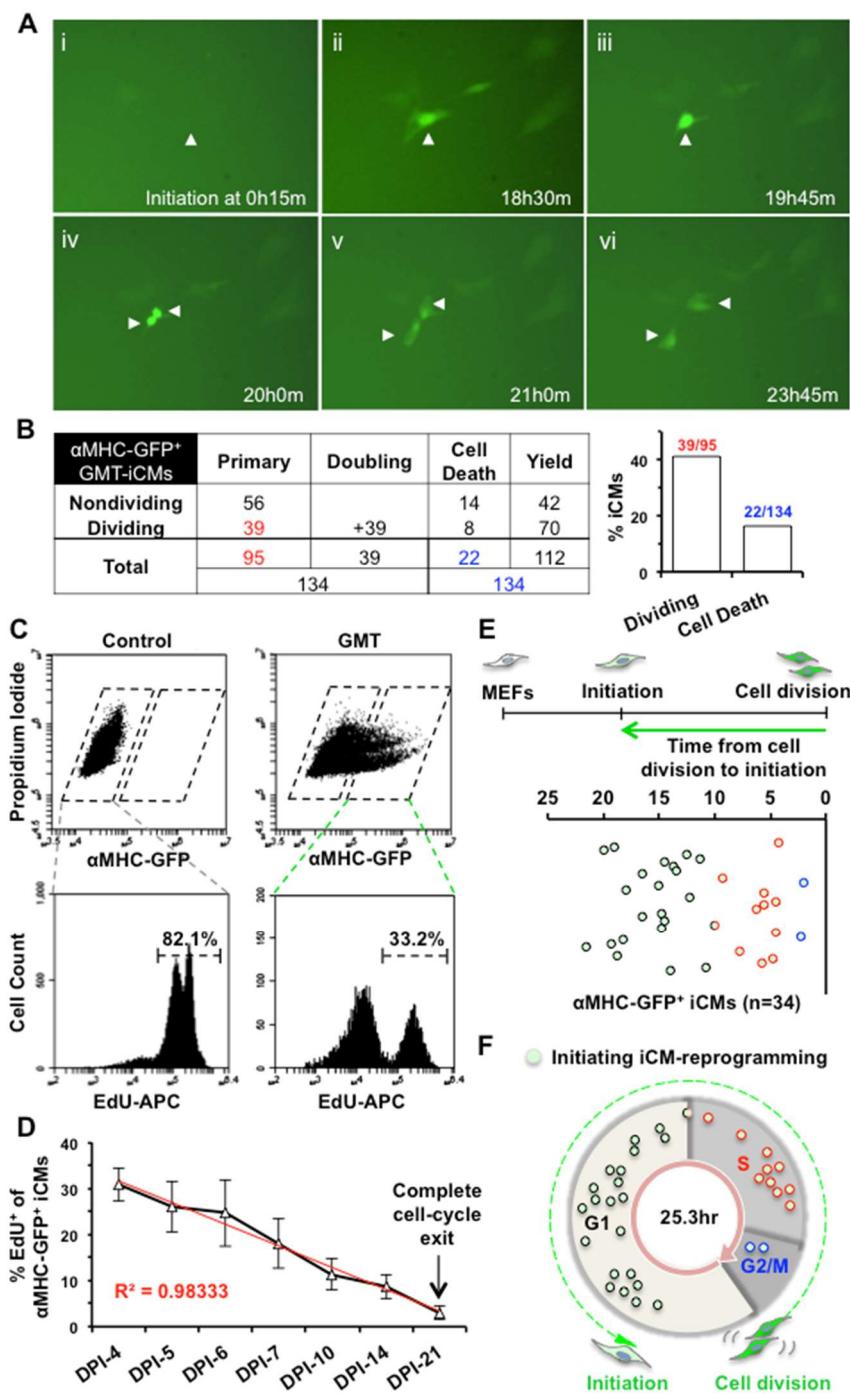
79

80 For iCM reprogramming, we infected α MHC-GFP transgenic mouse embryonic fibroblasts
81 (MEFs) with a cocktail of monocistronic Gata4, Mef2c, and Tbx5 (GMT) retroviruses and found that
82 GFP could be first observed from day 2 post-infection (DPI-2), which was consistent with the
83 observation that a high-level overexpression of GMT was achieved around 48 hours post-infection
84 (Figure S1A). We recorded a 48-hour time-lapse at DPI-2 through DPI-4 to monitor the activation of
85 α MHC-GFP during the early progression of iCM-reprogramming and to determine if cell division

86 occurs during iCM-reprogramming. We purposely set a three-second-exposure time for GFP
87 recording to recognize very faint α MHC-GFP fluorescence, indicative of initial activation of
88 reprogramming (Figure 1A, frame I); we found that the fluorescence of α MHC-GFP was gradually
89 enhanced during the process of reprogramming. Surprisingly, we found that ~41% (39 out of 95) of
90 α MHC-GFP⁺ primary GMT-reprogrammed iCMs (GMT-iCMs) underwent cell division once within
91 the 48-hour recording time (Figure 1A and 1B, Movie S1). Noticeably, ~16% (22 out of 134) of
92 GMT-iCMs died before or after cell division (Figure 1B). Our time-lapse recordings revealed that
93 iCMs at the early stage of reprogramming could still actively divide.

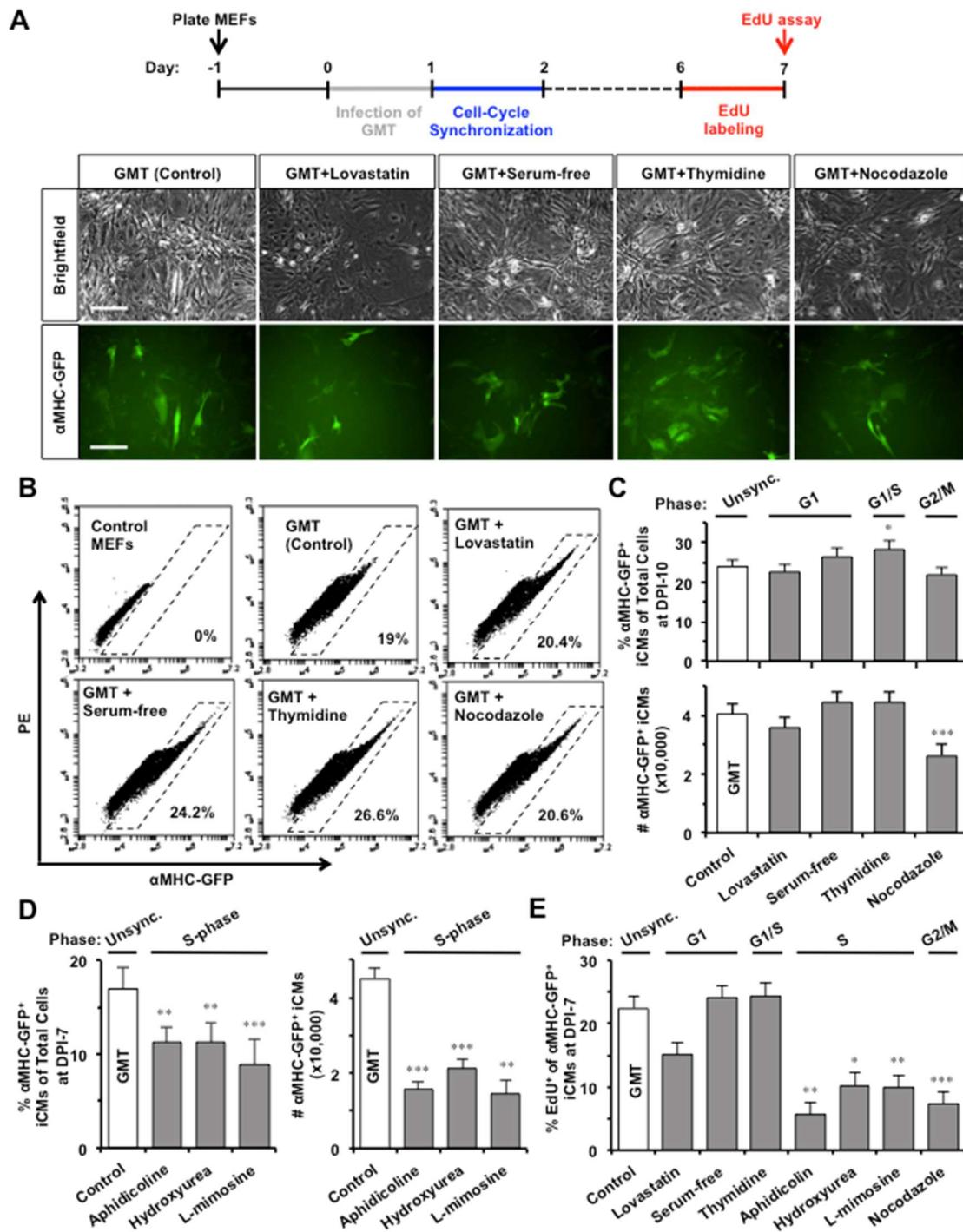
94

95 We next performed an EdU assay to quantify cell division of α MHC-GFP⁺ iCMs from DPI-4 to
96 later stages of the reprogramming process. Consistent with our previous study [2], the percentage
97 of reprogrammed- α MHC-GFP⁺ iCMs gradually increased from DPI-4 to DPI-7, then decreased after
98 two weeks (Figure S1B). We then incubated retrovirus-infected MEFs with EdU for 24 hours to label
99 all the dividing cells within that time; we found that more than 80% of uninfected MEFs had gone
100 through cell division within 24 hours (Figure 1C). Noticeably, 30.8±3.5% of GMT-iCMs at DPI-4
101 entered cell division and was positively stained for EdU, which is consistent with our time-lapse
102 results (DPI-2 to DPI-4). Furthermore, the percentage of EdU⁺-iCMs gradually decreased from
103 DPI-4 to DPI-21 and almost none of the α MHC-GFP⁺ iCMs at DPI-21 were stained positively for
104 EdU (n=5, Figure 1D), indicating that all iCMs, which were α MHC-GFP⁺/EdU⁻, had exited cell cycle
105 at this late stage of reprogramming.


106

107 2.2. *iCM-reprogramming is predominantly initiated at late-G1- and S-phase*

108


109 We next asked in which phase of the cell cycle is iCM-reprogramming initiated. To answer this
110 question, we carefully calculated the time between two consecutive cell divisions of MEFs in our
111 time-lapse recordings and estimated that MEFs had an average of 25.3±7.4 hours of cell-cycle length
112 (n=42, Figure S1C). We performed EdU assay with two-hour EdU-labeling and measured the
113 average percentages of G1 (~60%), S (~29%), and G2/M (~11%) in MEFs (Figure S1D-E, n=4), which
114 represent the percentages of the time spent in each phase out of whole cell-cycle duration [26].
115 Therefore, the duration of G1 phase was calculated as ~15.2 hours (~60% of 25.3 hours), S phase ~7.3
116 hours, and G2/M phase ~2.8 hours (Figure S1F). We then measured the time from the completed
117 cell-division back to the first appearance of the α MHC-GFP reporter (Figure 1E, Table S1) and
118 determined in which cell-cycle phase reprogramming of individual iCMs was initiated. For
119 example, the reprogramming initiation of one iCM in Figure 1A (indicated by arrow head) was
120 started from 15 minutes with the first appearance of faint GFP-fluorescence (Figure 1A, frame I) and
121 cell division happened at 21 hours (Figure 1A, frame V); therefore, reprogramming of this iCM was

122

Figure 1. iCMs undergo cell division and exit cell cycle along the process of reprogramming. A)

Representative images of a time-lapse recording showing that one primary GMT-iCM (arrowhead) divided into two daughter iCMs 20.75 hours after the activation of α MHC-GFP. A scale bar indicates 50 μ m. **B)** A table summarizing all three batches time-lapse results of GMT-iCMs. Bar graph shows the percentage of dividing GMT-iCMs and iCMs that underwent cell death. **C)** Representative FACS plots of α MHC-GFP⁺ iCMs and of 24-hour-incubation EdU assay assessing cell division of MEFs and α MHC-GFP⁺ iCMs at day 4 post-infection (DPI-4). **D)** Percentage of dividing EdU⁺/ α MHC-GFP⁺ GMT-iCMs from DPI-4 to DPI-21 (n=5). **E)** The time duration from the reprogramming-initiation to cell division in dividing GMT-iCMs (n=34; three batches). **F)** A cell-cycle-distribution chart of dividing iCMs (panel E) at the time point of reprogramming initiation.

Figure 2. S- or G2/M-phase synchronization at DPI-1 enhances cell-cycle exit in GMT-reprogrammed iCMs. **A)** At DPI-1, MEFs were synchronized at G1, G0/G1, G1/S, or G2/M-phase by lovastatin, serum-free media, thymidine, or nocodazole, respectively. Representative pictures showing GMT-reprogrammed MEFs at DPI-10 with or without (Control) cell-cycle synchronization. Scale bars indicate 100μm. **B)** Representative FACS plots of reprogrammed αMHC-GFP⁺ iCMs at DPI-10. **C)** The effect of G1-, G1/S-, or G2/M-phase synchronization on GMT-iCMs (n=10), including the percentage (upper panel) and absolute number (lower panel) of αMHC-GFP⁺ iCMs at DPI-10. **D)** The effect of S-phase synchronization by aphidicolin, hydroxyurea, or L-mimosine on GMT-iCMs (n=5) at DPI-7. **E)** The percentage of EdU⁺ cells in αMHC-GFP⁺ iCM-population at DPI-7 with or without cell-cycle synchronization at DPI-1 (n=3). *p<0.05, **p<0.01 vs. GMT group.

124 initiated at G1 phase and took 20.75 hours to pass through G1 (10.65 hours), S (7.3 hours), and G2/M
125 (2.8 hours) phases for a completion of cell division. These transition times from reprogramming
126 initiation to cell division of GMT-iCMs (n=34, Figure 1E) were converted into a distribution chart of
127 cell-cycle phases. We found that 23 iCMs initiated the activation of α MHC-GFP at G1-phase,
128 including 15 at late-G1-phase, 10 at S-phase, and 2 at G2/M-phase (Figure 1F), suggesting that
129 iCM-reprogramming was mostly initiated at late-G1- and S-phase.

130

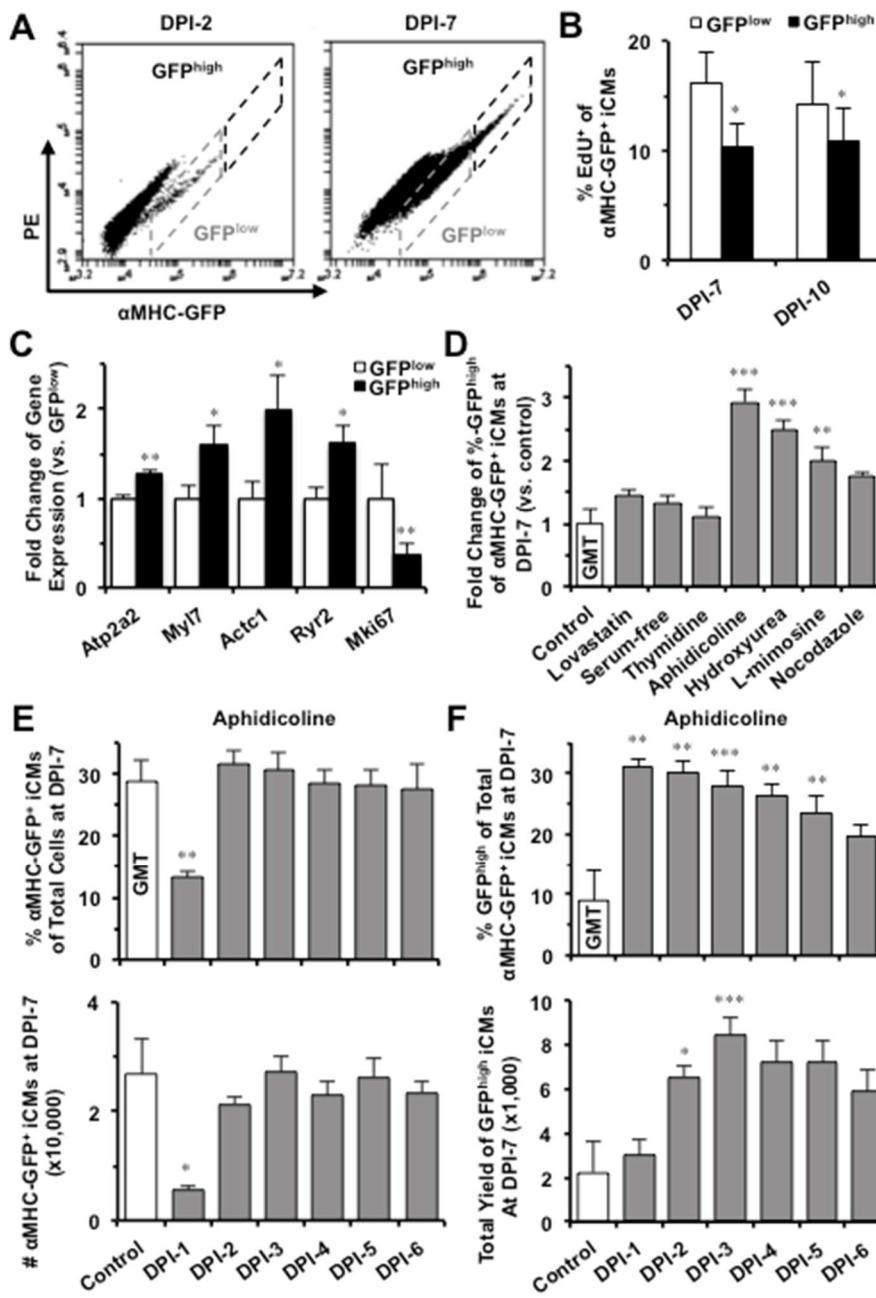
131 *2.3. S- or G2/M-phase synchronization at DPI-1 facilitates cell-cycle exit of GMT-iCMs*

132

133 Since the epigenetic status dynamically fluctuates throughout the cell cycle [22], we then
134 investigated if synchronizing a specific cell-cycle phase in GMT-infected fibroblasts could improve
135 iCM-reprogramming. At DPI-1, GMT-infected MEFs were synchronized at G1-, G0/G1-, G1/S-, or
136 G2/M-phase, by a 24-hour incubation with lovastatin, serum-free media, thymidine, or nocodazole
137 (Figure 2A), respectively; the morphology of synchronized MEFs displayed cell-cycle related
138 changes (Figure S2A), as previously reported [26]. We found that thymidine-induced
139 G1/S-synchronization could increase the percent yield of reprogrammed α MHC-GFP⁺ iCMs, while
140 lovastatin-induced G1 synchronization had no significant influence (Figure 2B-C). However, the
141 absolute number (i.e. yield) of α MHC-GFP⁺ iCMs was not significantly improved by
142 thymidine-synchronization (n=10, Figure 2C) but was dramatically decreased by
143 G2/M-synchronization of nocodazole.

144

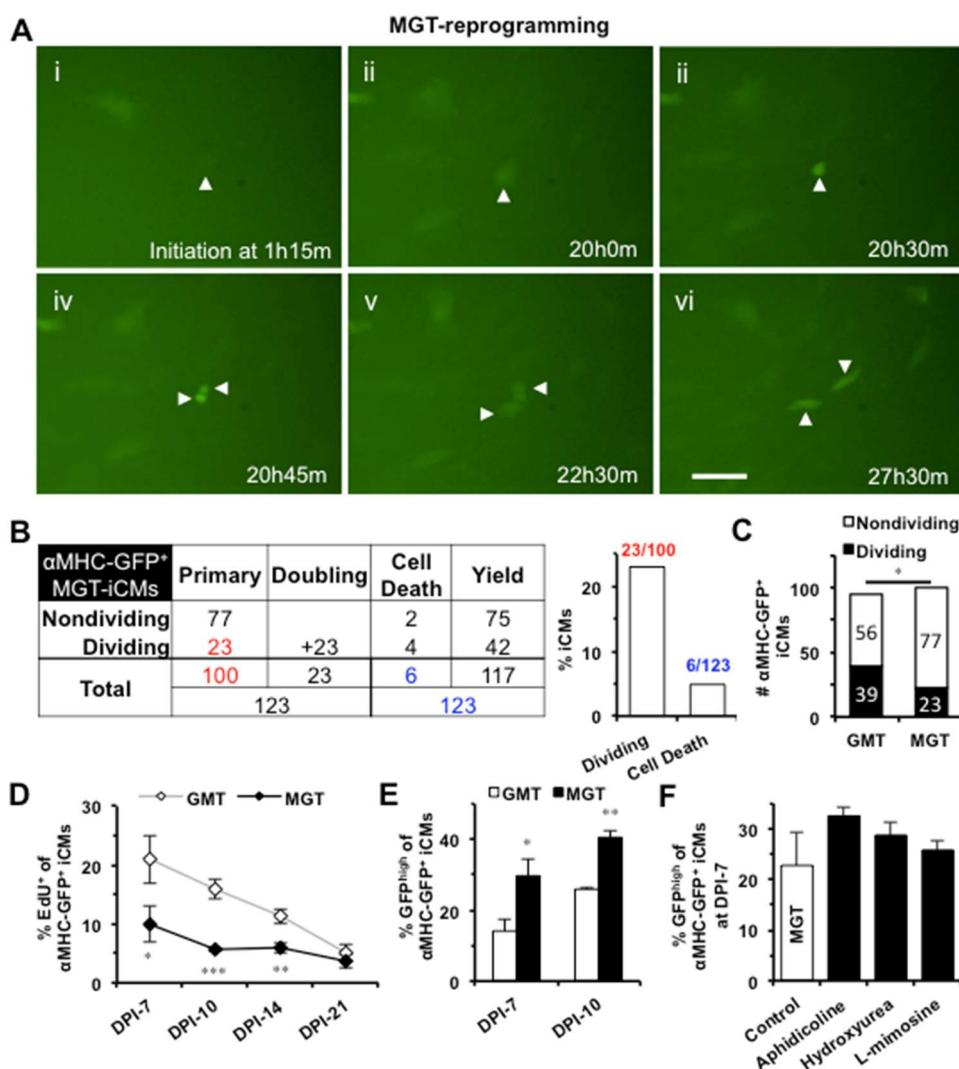
145 We also investigated the effect of S-phase synchronization (Figure S2A), mediated by
146 aphidicolin, hydroxyurea, or L-mimosine, [28] on iCM-reprogramming and found that all three
147 compounds significantly suppressed iCM-reprogramming with decreased percentage and absolute
148 number of α MHC-GFP⁺ iCMs (n=5, Figure 2D). None of the synchronization treatments inhibited
149 the protein expressions of GMT in infected MEFs (Figure S2B). While un-reprogrammed MEFs
150 could quickly recover from cell-cycle arrest and reenter cell cycle 24 hours after removing
151 compounds (Figure S2A), we found that S- or G2/M-synchronization, but not G1-synchronization,
152 at DPI-1 significantly decreased the percentage of dividing EdU⁺/ α MHC-GFP⁺ GMT-iCMs at DPI-7
153 (n=3, Figure 2E). Our data suggested that S- or G2/M- synchronization at DPI-1 decreased iCM yield
154 by enhancing cell-cycle exit in GMT-reprogrammed iCMs.


155

156 *2.4. S-phase synchronization accelerates the early progression of iCM-reprogramming*

157

158 Our time-lapse recordings showed that iCMs initially expressed a low amount of α MHC-GFP
159 (GFP^{low}) and gradually turned into brighter GFP⁺ cells (GFP^{high}) along with the progress of
160 reprogramming (Figure 1A), which was also disclosed with varying intensities of GFP fluorescence
161 across iCMs by FACS assay (Figure 3A), suggesting that the intensity of GFP fluorescence might
162 indicate different stages of reprogramming achieved in individual iCMs. We then gated all
163 reprogrammed- α MHC-GFP⁺ cells at DPI-2, which were newly reprogrammed in theory, as a GFP^{low}


164

165

Figure 3. S-phase synchronization accelerates the early progression of reprogramming and increases the yield of GFP^{high} iCMs. **A)** Reprogrammed iCMs were classified into GFP^{low} and GFP^{high} populations. **B)** Significantly less GFP^{high} iCMs were stained positive for EdU than GFP^{low} cells at DPI-7 (n=3) and DPI-10 (n=6). **C)** Comparisons of gene expression in GFP^{low} and GFP^{high} iCMs at DPI-7 (n=6). **D)** Only synchronization of S-phase (n=6), but not other-phases (n=3), at DPI-1 significantly increased GFP^{high} population of GMT-iCMs at DPI-7. **E)** The effect of S-phase synchronization by aphidicolin (n=3) from DPI-1 to DPI-6 on the percentage and absolute number of GMT-iCMs. **F)** The effect of aphidicolin-synchronization (n=4) from DPI-1 to DPI-6 on the percentage and absolute number yield of GFP^{high} iCMs. *p<0.05; **p<0.01, ***p<0.001 vs. control.

166 sub-population (Figure 3A) and gated remaining α MHC-GFP $^+$ cells with more intense
 167 GFP-fluorescence as a GFP $^{\text{high}}$ sub-population. We found a significantly smaller portion of EdU $^+$
 168 cells in GFP $^{\text{high}}$ iCM-population than that in GFP $^{\text{low}}$ population at DPI-7 (n=3) and DPI-10 (n=6)
 169 (Figure 3B), suggesting that a bigger portion of GFP $^{\text{high}}$ iCMs had exited cell cycle. We then sorted
 170 out GFP $^{\text{low}}$ and GFP $^{\text{high}}$ populations and found that, compared to GFP $^{\text{low}}$ cells, GFP $^{\text{high}}$ iCMs
 171 expressed many cardiac genes at a significantly higher level, including *Atp2a2*, *Myl7*, *Actc1*, and
 172 *Ryr2* (n=6, Figure 3C and Figure S3A-B), while the expression of *Mki67*, a proliferation marker gene,
 173 was significantly lower in GFP $^{\text{high}}$ cells. These results demonstrated that a more advanced degree of

Figure 4. S-phase synchronization couldn't further improve the enhanced reprogramming of polycistronic construct (MGT). **A)** Representative images of time-lapse recording showing that one MGT-iCM (arrowhead) divided into two daughter iCMs. Scale bar indicates 50 μ m. **B)** A table summarizing the time-lapse result of all three batches of MGT-reprogrammed α MHC-GFP $^+$ iCMs. Bar graph shows the percentage of dividing MGT-reprogrammed iCMs and cells that underwent cell death. **C)** Time-lapse recordings revealed significantly less dividing cells among MGT-iCMs than GMT-iCMs. **D)** EdU assays showed that MGT-iCMs exited cell cycle earlier than GMT-iCMs (n=4). **E)** MGT-reprogramming yielded more GFP $^{\text{high}}$ iCMs than GMT-reprogramming at DPI-7 (n=7) and DPI-10 (n=3). **F)** S-phase synchronization at DPI-1. * p<0.05, ** p<0.01 vs. control.

174 reprogramming had been achieved in GFP^{high} iCMs. Importantly, S-phase synchronization (n=6),
175 but no other cell-cycle phase synchronizations (n=3), at DPI-1 significantly increased the portion of
176 GFP^{high} iCMs at DPI-7 (Figure 3D).

177

178 We next investigated how S-phase synchronization influences the yield of iCMs along the
179 process of GMT-reprogramming and found that, unlike at DPI-1, S-phase synchronization from
180 DPI-2 to DPI-6 had no inhibition on the yield of α MHC-GFP⁺ iCMs (n=3, Figure 3E and S3C-D).
181 Importantly, S-phase synchronization from DPI-2 to DPI-5 actually yielded 2 to 4 times more
182 number of GFP^{high}-iCMs than unsynchronized control (n=4, Figure 3F and S3E), suggesting that
183 S-phase synchronization accelerated the early progression of GMT-reprogramming.

184

185 We next investigated the effect of S-phase synchronization on iCM-reprogramming mediated by
186 a polycistronic construct (MGT), which expresses an optimal stoichiometry of three reprogramming
187 factors and could yield a better efficiency and a better quality of iCM-reprogramming in mouse
188 cardiac fibroblasts than GMT monocistronic constructs [10]. We found that GMT- and
189 MGT-reprogramming of MEFs yielded a similar number of iCMs at DPI-3 through DPI-10 (n=3,
190 Figure S4A). Our 48-hour time-lapse recordings also captured cell division and cell death in
191 MGT-reprogrammed iCMs (MGT-iCMs) from DPI-2 to DPI-4 (Figure 4A-B, Movie S2); however, the
192 number of dividing cells was significantly less in MGT-iCMs than in GMT-iCMs (Figure 4C).
193 Consistently, there were significantly less EdU⁺ cells in MGT-iCMs than in GMT-iCMs within the
194 first two weeks of reprogramming (n=4, Figure 4D); moreover, MGT-reprogramming was
195 processed faster and yielded significantly higher portion of GFP^{high} iCMs than
196 GMT-reprogramming at DPI-7 (n=7) and DPI-10 (n=3) (Figure 4E). These results demonstrated that
197 an advanced progression with enhanced cell-cycle exit was achieved in iCMs reprogrammed by
198 polycistronic MGT. Importantly, we found that S-phase synchronization failed to further increase
199 the percentage of GFP^{high} population among MGT-iCMs (n=4, Figure 4F), suggesting that the
200 facilitated progression of GMT-reprogramming by S-phase synchronization was mediated through
201 a mechanism of enhanced cell-cycle exit.

202

203 3. Discussion

204 In this study, we focused on understanding the early progression of iCM-reprogramming and
205 found that iCMs did go through cell division at the early stage of reprogramming and ultimately
206 exited cell cycle during the process of reprogramming. Importantly, we found that post-infection
207 S-phase synchronization facilitated the early progression of GMT-reprogramming and yielded
208 more GFP^{high} iCMs through a mechanism of enhanced cell-cycle exit.

209

210 Cell cycle includes two critical phases—a synthesis phase (S-phase) of accurate DNA
211 duplication and a mitosis phase of chromosome segregation—which are preceded by two gap
212 phases, G1- and G2-phase respectively. The epigenetic status at S-phase suppresses global RNA
213 transcription and protein synthesis, with the exception of histone proteins [22]; however, we
214 observed that the activation of α MHC-GFP could be also initiated at S-phase, suggesting that
215 iCM-reprogramming is conducted throughout different phases of cell cycle and might continue

216 through more than one cell cycle. Indeed, our time-lapse recordings revealed that
217 iCM-reprogramming was processed and continued through at least one cell-cycle as shown by cell
218 division of iCMs following α MHC-GFP activation in both monocistronic GMT- and polycistronic
219 MGT-mediated reprogramming. Consistently, a recent study of single-cell transcriptomics
220 reconstructed a path of cell-fate conversion from fibroblast to iCMs and disclosed a population of
221 early-stage reprogrammed iCMs that underwent cell division [19]. Therefore, iCMs remain active in
222 cell cycle at the early stage of reprogramming.

223

224 Moreover, our study also demonstrated that iCMs exited cell cycle at a later stage of
225 reprogramming and S-phase synchronization following the initiation of reprogramming could
226 enhance cell-cycle exit in GMT-iCMs. Interestingly, the enhanced cell-cycle exit by S-phase
227 synchronization was accompanied with an improved progression of GMT-reprogramming and
228 yielded significantly more GFP^{high} iCMs, which achieved a more advanced reprogramming than
229 GFP^{low} cells. This might be due to that cell-cycle exit prevents a dilution of GMT expression in
230 dividing iCMs and subsequently induce high cardiac gene expression and better reprogramming.
231 This facilitated progression is also validated in iCM-reprogramming of polycistronic MGT [10],
232 which accelerated cell-cycle exit and yielded more GFP^{high} iCMs. Because of this accelerated
233 progression of MGT-reprogramming, S-phase synchronization failed to further increase the GFP^{high}
234 portion in MGT-iCMs, indicating that a common mechanism of enhanced cell-cycle exit is shared by
235 both methods. Consistently, the active cell-cycle status at later stages of reprogramming was found
236 to negatively correlate to the maturity of reprogrammed iCMs [19, 21] and iCM-reprogramming
237 was significantly suppressed in an immortalized cardiac fibroblast line, which never exits cell cycle
238 [19]. These all together demonstrate that cell-cycle exit is an essential process of
239 iCM-reprogramming. In addition, our time-lapse recordings also found that some iCMs
240 reprogrammed by either GMT or MGT underwent cell death, possibly apoptosis, which could
241 explain why inhibitors of ROCK signaling increased the yield of reprogrammed iCMs in a previous
242 study [16].

243

244 One limitation is that our study focuses on cell-cycle regulation during the early progression of
245 iCM-reprogramming; it is unknown how much the overall functional maturation of iCMs could be
246 achieved at later stages of reprogramming by the strategy of accelerated cell-cycle exit. Cell cycle
247 and cell-cycle exit constitute an important part of iCM-reprogramming especially at the initiation of
248 reprogramming, indicating that epigenetics of different cell-cycle phases might play a critical role to
249 initiate iCM-reprogramming. Our S-phase synchronization data implies that S-phase epigenetics at
250 early progression of reprogramming might benefit iCM reprogramming, although more
251 comprehensive study is needed to validate it in future. On the other hand, our approach for
252 cell-cycle synchronization might have limited the benefits of S-phase synchronization on iCM
253 reprogramming; thus other approaches could be tested to study impact of S-phase in future studies.

254

255

256

257

258

259 **5. Conclusion**

260

261 In summary, our study provides direct evidence that iCMs actually go through cell division at
262 an early reprogramming stage and exit cell cycle along the process of reprogramming. Importantly,
263 our studies suggest that cell-cycle exit is one critical event or an indicator of the transition into a
264 more advanced reprogramming. Enhanced cell-cycle exit by S-phase synchronization promotes the
265 early progression of iCM-reprogramming so that accelerates iCM-maturation progress. Our study
266 improves the understanding of iCM-reprogramming process by enlightening potential roles of
267 cell-cycle regulation during iCM-reprogramming, which will guide us to further optimize this
268 nascent reprogramming approach for future translational applications.

269

270 **5. Materials and Methods**

271

272 *Animal Use Protocol*

273

274 All animal protocols have been reviewed and approved by Case Western Reserve University
275 Institutional Animal Care and Use Committee (Approval#: 2015-0058; Approval Date: April 22,
276 2015).

277

278 *Mouse Embryonic Fibroblast Isolation*

279

280 Mouse embryonic fibroblasts (MEFs) were isolated from transgenic α MHC-GFP mouse
281 embryos (E12.5-13.5) with modifications in a previously reported method [17]. Briefly, embryos
282 were extracted from pregnant mice under sterile conditions and only embryos with α MHC-GFP $^+$
283 expression in the hearts were used for MEF isolation. To prevent any cardiomyocyte contamination,
284 embryonic hearts were carefully removed as well as other internal organs and head. Embryos were
285 chopped into small pieces (1-2mm³) and incubated in 2ml of 0.125% trypsin/EDTA per embryo for
286 20min in a water bath at 37°C. Every 5 min, tissue pieces were pipetted up and down 5-10 times to
287 dissociate the tissue. Then, 1ml additional Trypsin per embryo was added and incubated for
288 approximately 10 min until there is no visible tissue chunks. To stop enzyme digestion, an equal
289 volume of DMEM media with 10% FBS (Hyclone, ThermoScientific) was added and cells were
290 filtered through a 40uM cell strainer (Falcon, Fisher Scientific) followed by centrifugation at
291 1,500rpm for 3min. The pellet was dissolved in MEF medium (DMEM with 10% heat-inactivated
292 FBS) and cultured in a 10cm dish per 3 embryos without gelatin coating. 2-3 days after growth in
293 cell culture until they reach nearly 100% confluency, primary MEFs were passaged freshly for
294 reprogramming or stored in liquid nitrogen for later use.

295

296 *Direct Cardiac Reprogramming and Flow Cytometry*

297

298 For iCM-reprogramming, retroviruses were generated as previously reported [2, 10]. Briefly,
299 pMX retroviral Gata4, Mef2c, or Tbx5 plasmid [2] or polycistronic Mef2c-P2A-Gata4-T2A-Tbx5
300 (MGT) plasmid [10] was transfected into PlatE cells (at ~90% confluence) with FugeneHD

301 transfection reagent (Promega) as per manufacturer's protocol. Next day, media was refreshed with
302 PlatE media (DMEM with 10% FBS). Viruses were harvested 48 hours after transfection and filtered
303 through 0.45uM low protein-binding filter (Nalgene, ThermoSci). MEFs, which were seeded into
304 6-well plates ~24hrs in advance at the density of 120,000cells/well without any gelatin coating, were
305 infected with a mixture of three viruses of Gata4, Mef2c, and Tbx5 (GMT, 0.5ml each) or 0.5ml MGT
306 for 24 hours in the presence of polybrene (8 μ g/ml, Millipore). Infected MEFs were maintained in
307 cardiac reprogramming media, which is consisted of DMEM/M199 (4:1) with 10% heat-inactivated
308 FBS, NEAA (Gibco), and L-glutamine (Gibco), with media changing every 2 to 3 days. For
309 evaluating reprogramming efficiency at either day 7 post-infection (DPI-7) or DPI-10, iCMs were
310 harvested by 0.05% trypsin/EDTA and dissolved in FACS buffer (2mM EDTA, 5% FBS in PBS). The
311 percentage and absolute number of α MHC-GFP $^+$ iCMs reprogrammed by monocistronic GMT
312 (GMT-iCMs) or polycistronic MGT (MGT-iCMs) were evaluated by BD Accuri C6 flow cytometer
313 (BD Biosciences).

314

315 *Cell-cycle Synchronization*

316

317 For cell-cycle synchronization, GMT-retrovirus-infected MEFs were incubated with thymidine
318 (2mmol/L Sigma), lovastatin (25 μ mol/L, Sigma), nocodazole (50ng/ml, Sigma), aphidicolin (2 μ g/ml,
319 Sigma), hydroxyurea (2mmol/L, Sigma), L-mimosine (0.5mmol/L, Sigma), or serum-free DMEM
320 media at DPI-1 for 24 hours. After synchronization, MEFs were extensively washed with PBS to
321 remove drugs and were cultured in cardiac reprogramming media for iCM-reprogramming.

322

323 *Time-lapse Imaging of iCM-reprogramming*

324

325 To understand the early progression of iCM-reprogramming, retrovirus-infected MEFs were
326 cultured in a micro-incubator (STXG-WSKMX, Tokai Hit) at 37°C, 5% CO₂ and were monitored
327 from DPI-2 to DPI-4 by DMi8 Leica fluorescent microscope (Leica Microsystems). Brightfield and
328 GFP-fluorescent images were recorded from the same sites every 15 minutes for 48 hours. A
329 three-second-exposure time was purposely set up for GFP-fluorescence recording so that the
330 initiation of iCM-reprogramming with very faint GFP-fluorescence could be recognized. Recorded
331 pictures were analyzed by MetaMorph software (Molecular Devices) to assess cell division in
332 reprogrammed-iCMs and non-reprogrammed MEFs.

333

334 *Cell-cycle Assays*

335

336 For analysis of cell-cycle phases, plain MEFs with or without cell-cycle synchronization were
337 incubated with EdU (10mmol/L) for 2 hours and then harvested for staining with anti-EdU
338 antibodies (1:200) and propidium iodide (0.08 μ g/ μ L, Sigma) using Click-iT™ Plus EdU Alexa
339 Fluor™ 647 Flow Cytometry Assay Kit (ThermoFisher Scientific) with some modifications in the
340 protocol. Briefly, the cells were harvested in 0.05% trypsin/EDTA, washed with 1X PBS, and fixed
341 by 4% PFA in pellet, followed by staining with EdU at room temperature and propidium iodide at
342 37°C, respectively. The cells were kept on ice in propidium iodide staining solution prior to
343 cell-cycle analysis by BD Accuri C6 flow cytometer.

344

345 For analysis of cell division in iCMs, GMT-retrovirus-infected MEFs were incubated with EdU
346 (10mmol/L) for 24 hours and harvested for immunostaining with anti-EdU (1:200) and
347 anti-GFP-FITC antibodies (1:100, Novus Biologicals). EdU⁺/αMHC-GFP⁺ GMT-iCMs were analyzed
348 by BD Accuri C6.

349

350 *Western Blot Analysis*

351

352 To estimate the expression level of reprogramming factors, total proteins were extracted from
353 MEFs at various time points after GMT-retrovirus infection and used for a standard western blot
354 assay with antibodies of Gata4 (1:5000, Santa Cruz), Mef2c (1:5000, Aviva Systems Biology), and
355 Tbx5-Flag (1:500, Thermo Scientific). β-Actin (1:1000, Sigma) or GAPDH (1:1000, Santa Cruz) were
356 used as the housekeeping gene control. Pierce ECL Plus Chemiluminescence Detection Kit (Thermo
357 Scientific) was used to detect the proteins.

358

359 *Real-time qPCR Assay*

360

361 Reprogrammed GFP^{low} and GFP^{high} iCMs (~10,000 cells) were sorted out separately by HAPS1
362 cell sorter (iCyt, Sony) and used for reverse transcription to generate cDNA by CellsDirect One-Step
363 qRT-PCR Kit (Invitrogen). After pre-amplification with pooled primers, standard quantitative PCR
364 assays were performed by a 7300 Real-Time PCR system (Applied Biosystems). The expression
365 levels of cardiac and proliferation genes (Table S2) were normalized to a housekeeping gene
366 GAPDH.

367

368 *Statistical Analyses*

369

370 All data were analyzed with at least three biological replicates and expressed as mean±SEM.
371 The statistical significance was examined by two-way paired or unpaired student's t-test or
372 chi-square test. P values of <0.05 were recognized as statistically significant. *p<0.05, **p<0.01,
373 ***p<0.001.

374 **Supplementary Materials:** Supplementary materials can be found at www.mdpi.com/link.

375 **Acknowledgments:** We are grateful to Dr. Jill Dunham for editorial assistance and Dr. Hiromi Yanagisawa at
376 University of Tsukuba for helpful discussion and review of the manuscript. We thank Dr. Li Qian at University
377 of North Carolina for generously sharing us the polycistronic MGT vector. This study was supported by the
378 Start-up Fund from The MetroHealth System (to J.D.F.) and grants from the American Heart
379 Association-13SDG14580035 (to J.D.F.), the NIH-1R01HL139006 (to I.D. and J.D.F.), and the NIH-1R01HL124245
380 and NIH-1R01HL132520 (to I.D.). E.B. was supported with a fellowship from Program for Leading Graduate
381 Schools of the Japan Society for the Promotion of Science (JSPS).

382 **Author Contributions:** E.B. and JD.F. conceived and designed the experiments; E.B., A.D., G.P., D.M.
383 performed the experiments; E.B. and JD.F. analyzed the data; A.D. contributed reagents/materials/analysis
384 tools; E.B., JD.F., S.T., K.R.L., and I.D. wrote the paper.

385 **Conflicts of Interest:** The authors declare no conflict of interest. The founding sponsors had no role in the
386 design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in
387 the decision to publish the results.

388

389 **Abbreviations**

iCM	Induced cardiomyocytes
MEF	Mouse embryonic fibroblasts
αMHC	α-myosin heavy chain
GMT	Gata4, Mef2c, and Tbx5 (monocistronic constructs)
GMT-iCMs	αMHC-GFP ⁺ iCMs reprogrammed by GMT
MGT	Mef2c-P2A-Gata4-T2A-Tbx5 (polycistronic construct)
MGT-iCMs	αMHC-GFP ⁺ iCMs reprogrammed by MGT
DPI	Days post-infection
EdU	5-ethynyl-20-deoxyuridine

390 **References**

1. Berlo, J. H. van; Molkentin, J. D. An emerging consensus on cardiac regeneration. *Nat. Med.* **2014**, *20*, 1386–93. DOI: 10.1038/nm.3764
2. Ieda, M.; Fu, J.-D. D.; Delgado-Olguin, P.; Vedantham, V.; Hayashi, Y.; Bruneau, B. G.; Srivastava, D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. *Cell* **2010**, *142*, 375–86. DOI: 10.1016/j.cell.2010.07.002
3. Jayawardena, T. M.; Egemenazarov, B.; Finch, E. A.; Zhang, L.; Payne, J. A.; Pandya, K.; Zhang, Z.; Rosenberg, P.; Mirotsou, M.; Dzau, V. J. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. *Circ. Res.* **2012**, *110*, 1465–73. DOI: 10.1161/CIRCRESAHA.112.269035
4. Song, K.; Nam, Y.-J. J.; Luo, X.; Qi, X.; Tan, W.; Huang, G. N.; Acharya, A.; Smith, C. L.; Tallquist, M. D.; Neilson, E. G.; Hill, J. A.; Bassel-Duby, R.; Olson, E. N. Heart repair by reprogramming non-myocytes with cardiac transcription factors. *Nature* **2012**, *485*, 599–604. DOI: 10.1038/nature11139
5. Qian, L.; Huang, Y.; Spencer, C. I.; Foley, A.; Vedantham, V.; Liu, L.; Conway, S. J.; Fu, J. D.; Srivastava, D. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. *Nature* **2012**, *485*, 593–8. DOI: 10.1038/nature11044
6. Fu, J.-D. D.; Stone, N. R.; Liu, L.; Spencer, C. I.; Qian, L.; Hayashi, Y.; Delgado-Olguin, P.; Ding, S.; Bruneau, B. G.; Srivastava, D. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. *Stem Cell Reports* **2013**, *1*, 235–47. DOI: 10.1016/j.stemcr.2013.07.005
7. Nam, Y.-J. J.; Song, K.; Luo, X.; Daniel, E.; Lambeth, K.; West, K.; Hill, J. A.; DiMaio, J. M.; Baker, L. A.; Bassel-Duby, R.; Olson, E. N. Reprogramming of human fibroblasts toward a cardiac fate. *Proc. Natl. Acad. Sci. U.S.A.* **2013**, *110*, 5588–93. DOI: 10.1073/pnas.1301019110
8. Wada, R.; Muraoka, N.; Inagawa, K.; Yamakawa, H.; Miyamoto, K.; Sadahiro, T.; Umei, T.; Kaneda, R.; Suzuki, T.; Kamiya, K.; Tohyama, S.; Yuasa, S.; Kokaji, K.; Aeba, R.; Yozu, R.; Yamagishi, H.; Kitamura, T.; Fukuda, K.; Ieda, M. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. *Proc. Natl. Acad. Sci. U.S.A.* **2013**, *110*, 12667–72. DOI: 10.1073/pnas.1304053110
9. Bektik, E.; Dennis, A.; Prasanna, P.; Madabhushi, A.; Fu, J.-D. Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes. *Plos One* **2017**, *12*, e0183000. DOI: 10.1371/journal.pone.0183000
10. Wang; Liu; Yin; Asfour; Chen; Li; Bursac; Liu; Qian Stoichiometry of Gata4, Mef2c, and Tbx5 Influences the Efficiency and Quality of Induced Cardiac Myocyte Reprogramming. *Circulation Research* **2015**, *116*, 237–244. DOI: 10.1161/CIRCRESAHA.116.305547
11. Miyamoto, K.; Akiyama, M.; Tamura, F.; Isomi, M.; Yamakawa, H.; Sadahiro, T.; Muraoka, N.; Kojima, H.; Haginiwa, S.; Kurotsu, S.; Tani, H.; Wang, L.; Qian, L.; Inoue, M.; Ide, Y.; Kurokawa, J.; Yamamoto, T.; Seki, T.; Aeba, R.; Yamagishi, H.; Fukuda, K.; Ieda, M. Direct In Vivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction. *Cell Stem Cell* **2018**, *22*, 91–103.e5. DOI: 10.1016/j.stem.2017.11.010
12. Zhou, H.; Dickson, M. E.; Kim, M. S.; Bassel-Duby, R.; Olson, E. N. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes. *Proc. Natl. Acad. Sci. U.S.A.* **2015**, *112*, 11864–9. DOI: 10.1073/pnas.1516237112

430 13. Zhou, Y.; Wang, L.; Vaseghi, H. R.; Liu, Z.; Lu, R.; Alimohamadi, S.; Yin, C.; Fu, J.-D. D.; Wang, G. G.; Liu, J.; Qian, L. *Bmi1* Is a Key Epigenetic Barrier to Direct Cardiac Reprogramming. *Cell Stem Cell* **2016**, *18*, 382–95. DOI: 10.1016/j.stem.2016.02.003

431 14. Muraoka, N.; Yamakawa, H.; Miyamoto, K.; Sadahiro, T.; Umei, T.; Isomi, M.; Nakashima, H.; Akiyama, M.; Wada, R.; Inagawa, K.; Nishiyama, T.; Kaneda, R.; Fukuda, T.; Takeda, S.; Tohyama, S.; Hashimoto, H.; Kawamura, Y.; Goshima, N.; Aeba, R.; Yamagishi, H.; Fukuda, K.; Ieda, M. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. *EMBO J.* **2014**, *33*, 1565–81. DOI: 10.15252/embj.201387605

432 15. Ifkovits, J. L.; Addis, R. C.; Epstein, J. A.; Gearhart, J. D. Inhibition of TGF β signaling increases direct conversion of fibroblasts to induced cardiomyocytes. *PLoS ONE* **2014**, *9*, e89678. DOI: 10.1371/journal.pone.0089678

433 16. Zhao, Y.; Londono, P.; Cao, Y.; Sharpe, E. J.; Proenza, C.; O'Rourke, R.; Jones, K. L.; Jeong, M. Y.; Walker, L. A.; Buttrick, P. M.; McKinsey, T. A.; Song, K. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. *Nat Commun* **2015**, *6*, 8243. DOI: 10.1038/ncomms9243

434 17. Yamakawa, H.; Muraoka, N.; Miyamoto, K.; Sadahiro, T.; Isomi, M.; Haginiwa, S.; Kojima, H.; Umei, T.; Akiyama, M.; Kuishi, Y.; Kurokawa, J.; Furukawa, T.; Fukuda, K.; Ieda, M. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions. *Stem Cell Reports* **2015**, *5*, 1128–1142. DOI: 10.1016/j.stemcr.2015.10.019

435 18. Mohamed, T. M.; Stone, N. R.; Berry, E. C.; Radzinsky, E.; Huang, Y.; Pratt, K.; Ang, Y.-S. S.; Yu, P.; Wang, H.; Tang, S.; Magnitsky, S.; Ding, S.; Ivey, K. N.; Srivastava, D. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming. *Circulation* **2017**, *135*, 978–995. DOI: 10.1161/CIRCULATIONAHA.116.024692

436 19. Liu, Z.; Wang, L.; Welch, J. D.; Ma, H.; Zhou, Y.; Vaseghi, H. R.; Yu, S.; Wall, J. B.; Alimohamadi, S.; Zheng, M.; Yin, C.; Shen, W.; Prins, J. F.; Liu, J.; Qian, L. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. *Nature* **2017**. DOI: 10.1038/nature24454

437 20. Addis, R. C.; Ifkovits, J. L.; Pinto, F.; Kellam, L. D.; Esteso, P.; Rentschler, S.; Christoforou, N.; Epstein, J. A.; Gearhart, J. D. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. *J. Mol. Cell. Cardiol.* **2013**, *60*, 97–106. DOI: 10.1016/j.yjmcc.2013.04.004

438 21. Zhou, Y.; Wang, L.; Liu, Z.; Alimohamadi, S.; Yin, C.; Liu, J.; Qian, L. Comparative Gene Expression Analyses Reveal Distinct Molecular Signatures between Differentially Reprogrammed Cardiomyocytes. *Cell Reports* **2017**, *20*, 3014–3024. DOI: 10.1016/j.celrep.2017.09.005

439 22. Kheir, T. Bou; Lund, A. H. Epigenetic dynamics across the cell cycle. *Essays Biochem.* **2010**, *48*, 107–20. DOI: 10.1042/bse0480107

440 23. Buganim, Y.; Faddah, D.; Jaenisch, R. Mechanisms and models of somatic cell reprogramming. *Nat Rev Genet* **2013**, *14*, 427–439. DOI: 10.1038/nrg3473

441 24. Chen, M.; Huang, J.; Yang, X.; Liu, B.; Zhang, W.; Huang, L.; Deng, F.; Ma, J.; Bai, Y.; Lu, R.; Huang, B.; Gao, Q.; Zhuo, Y.; Ge, J. Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming. *PLoS ONE* **2012**, *7*, e28203. DOI: 10.1371/journal.pone.0028203

442 25. Jiang, H.; Xu, Z.; Zhong, P.; Ren, Y.; Liang, G.; Schilling, H.; Hu, Z.; Zhang, Y.; Wang, X.; Chen, S.; Yan, Z.; Feng, J. Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. *Nat Commun* **2015**, *6*, 10100. DOI: 10.1038/ncomms10100

443 26. Weider, R. Selection of Methods for Measuring Proliferation. In *Cell Growth, Differentiation, and Senescence: A Practical Approach*. Studzinski, G. P., Ed. Oxford: Oxford University Press, 1999:1–32.

444 27. Rosner, M.; Schipany, K.; Hengstschläger, M. Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle. *Nat Protoc* **2013**, *8*, 602–26. DOI: 10.1038/nprot.2013.011

445 28. Ma, H. T.; Poon, R. Y. Synchronization of HeLa cells. *Methods Mol. Biol.* **2011**, *761*, 151–61. DOI: 10.1007/978-1-61779-182-6_10