Preprint
Article

Evaluation of Climate Change Impacts on Wetland Vegetation in Dunhuang Yangguan National Nature Reserve in Northwest China Using Landsat Derived NDVI

Altmetrics

Downloads

492

Views

386

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

27 March 2018

Posted:

28 March 2018

You are already at the latest version

Alerts
Abstract
Based on 541 Landsat images between 1988 and 2016, the normalized difference vegetation indices (NDVIs) of the wetland vegetation at Xitugou (XTG) and Wowachi (WWC) inside the Dunhuang Yangguan National Nature Reserve (YNNR) in northwest China were calculated for assessing impacts of climate change on wetland vegetation in the YNNR. It was found that the wetland vegetation at the XTG and WWC both had shown a significant increasing trend in the past 30 years, and the increase in both annual mean temperature and peak snow depth over the Altun Mountains led to the increase of wetland vegetation. The influence of local precipitation on the XTG wetland vegetation was greater than on the WWC wetland vegetation, which demonstrates that in extremely arid regions, the major constrain to the wetland vegetation is water availability in soils which is greatly related to the surface water detention and discharge of groundwater. At both XTG and WWC, snowmelt from the Altun Mountains is the main contributor to the groundwater discharge, while local precipitation plays a less role in influencing the wetland vegetation at the WWC than at the XTG, because the wetland vegetation grows on a relatively flat terrain at the WWC, while in a stream channel at the XTG.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated