A peer-reviewed article of this preprint also exists.
Abstract
The persistent issue of bacterial and fungal colonization of artificial implantable materials and decreasing efficacy of conventional systemic antibiotics used to treat implant-associated infections has led to the development of a wide range of antifouling and antibacterial strategies. This article reviews one such strategy where inherently biologically active renewable resources, i.e. secondary plant metabolites (SPMs) and their naturally occurring combinations (i.e. essential oils) are used for surface functionalization and synthesis of polymer thin films. With a distinct mode of antibacterial activity, broad spectrum of action and diversity of available chemistries, secondary plant metabolites present an attractive alternative to conventional antibiotics. However, their conversion from liquid to solid phase without significant loss of activity is not trivial. Using select examples, this article shows how plasma techniques provide a sufficiently flexible and chemically reactive environment to enable the synthesis of biologically-active polymer-coatings from volatile renewable resources.
Keywords:
Subject:
Chemistry and Materials Science - Surfaces, Coatings and Films
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.