

1 *Review*2

Recent Microdevice-based Aptamer Sensors

3 **Donny Nugraha Mazaafrianto** ¹, **Masatoshi Maeki** ², **Akihiko Ishida** ², **Hirofumi Tani** ²,
4 **Manabu Tokeshi** ^{2,3,4,5*}5 ¹ Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku,
6 Sapporo 060-8628, Japan; donnymaza@eis.hokudai.ac.jp (D.N.M.)7 ² Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku,
8 Sapporo 060-8628, Japan; m.maeki@eng.hokudai.ac.jp (M.M.); ishida-a@eng.hokudai.ac.jp (A.I.);
9 tani@eng.hokudai.ac.jp (H.T.)10 ³ ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku,
11 Nagoya 464-8603, Japan12 ⁴ Innovative Research Center for Preventive Medical Engineering, Nagoya University, Furo-cho, Chikusa-ku,
13 Nagoya 464-8601, Japan14 ⁵ Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601,
15 Japan

16 * Correspondence: tokeshi@eng.hokudai.ac.jp; Tel.: +81-11-706-6744; Fax: +81-11-706-6745

17 **Abstract:** Since the systematic evolution of ligands by exponential enrichment (SELEX) method
18 was developed, aptamers have made significant contributions as bio-recognition sensors.
19 Microdevice systems allow for low reagent consumption, high-throughput of samples, and
20 disposability. Due to these advantages, there has been an increasing demand to develop
21 microfluidic-based aptasensors for analytical technique applications. This review introduces the
22 principal concepts of aptasensors and then presents some advanced applications of
23 microdevice-based aptasensors on several platforms. Highly sensitive detection techniques such as
24 electrochemical and optical detection have been integrated into lab-on-a-chip devices and
25 researchers have moved towards the goal of establishing point-of-care diagnoses for target
26 analyses.27 **Keywords:** microdevice; aptamer; biosensor; SELEX; lab-on-chip; point-of-care
2829

1. Introduction

30 In the past decade, technologies for analytical detection sensors have undergone significant
31 growth. Conventional sensors are robust, reliable, and provide high reproducibility of
32 measurements. However, their main drawback is that they cannot be integrated into a compact
33 packaging flow, which in many analysis cases is critical. Beyond this, expensive instrumentation and
34 long analysis time are general problems to be considered. For these reasons, microdevice platforms
35 offer an attractive alternative to conventional techniques [1]. Furthermore, microdevices are also
36 important for reducing the amount of sample required, for alleviating interferences or
37 cross-contamination by their disposable design, and for integrating of multiple sensor arrays to
38 increase the throughput. Sensors perform three functions; targeting an analyte, recognizing an
39 element and transducing a signal. The analyte interacts in a selective way with the recognition site
40 which shows some affinity or a catalytic reaction. In a biosensor, the recognition system is based on
41 biochemical or biological sensing elements such as antibodies, enzymes, nucleic acids or aptamers
42 [2]. These elements are commonly immobilized on a physicochemical transducer and combined with
43 a detector to generate an electronic signal readout that is proportional to the quantity of the target.
44 The biosensor can be applied to in-vivo sensor monitoring of chemical or biological species. For
45 example, an application on biomedical such as implantable sensor. The operation of a long-life
46 biosensor involves a preliminary calibration and some kind of conditioning after each run, which is
47 not easily achievable in the field or in point-of-care applications [3]. That is why it is preferable in

48 certain cases to design small, inexpensive, easy to use, and disposable biosensors for a single
49 application.

50 Oligonucleotides such as RNA, DNA or peptides can be used as the receptor for the recognition
51 of specific small organic molecules or even a complementary strand by a hybridization process. The
52 name of such an oligonucleotide is aptamer ("aptus" meaning "fitted" and "meros" meaning "part")
53 [4]. Some aptamers contort into three-dimensional (3D) conformations that can bind to target
54 molecules in stable complexes and they commonly rely on van der Waals forces, hydrogen bonds, or
55 electrostatic interactions [5]. Aptamers play a role similar to antibodies. They are easily obtained by
56 chemical synthesis and thermally stable. After performing the recognition function, aptamers can be
57 efficiently regenerated without loss of either sensitivity or selectivity [6]. High affinity to a specific
58 target makes aptamers very useful as a receptor in analytical applications including biosensor
59 development.

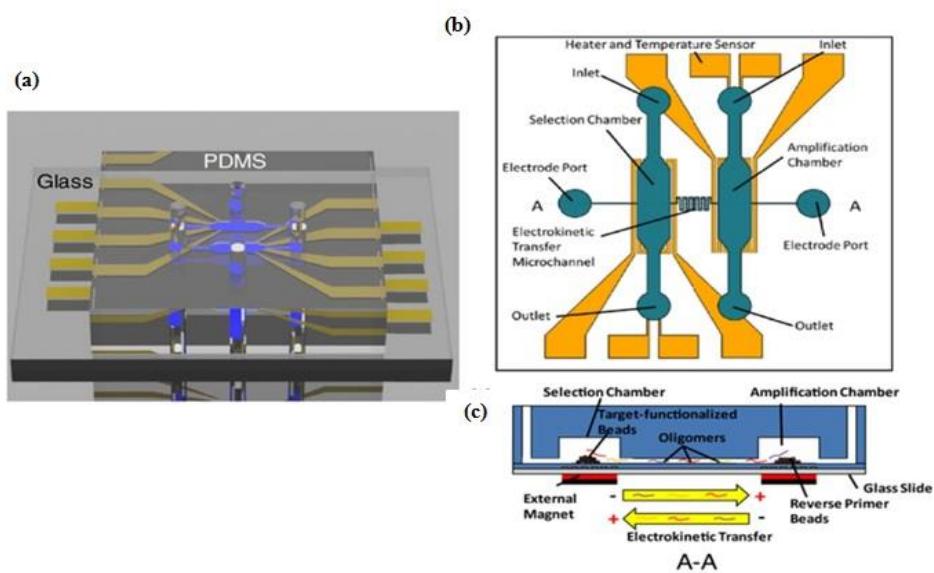
60 This review addresses the current state of research related to microdevice instruments and the
61 advantage of emerging aptamer biosensor for numerous applications and target analysis. It is
62 divided into three parts: (i) classification of microdevice platforms; (ii) detection methods and assay
63 formats; and (iii) applications to actual samples. Current work in aptamer selection-based
64 microdevices and characterizations are also covered, and future perspectives in the field are offered.

65 **2. The SELEX method (in-vitro selection)**

66 Aptamers are oligonucleotides, commonly 12–80 nucleotides long, and they have a function to
67 act as specific affinity receptors towards a broad spectrum of numerous targets including small
68 organic molecules, proteins, cells, viruses, and bacteria. New aptamers are originated by an in-vitro
69 selection process known as the SELEX (Systematic Evolution of Ligands by EXponential enrichment)
70 method. This method was simultaneously developed by Tuerk and Gold [7] and Ellington and
71 Szostak [8], in 1990. The SELEX method contains several steps such as incubation, separation,
72 amplification, and purification. Briefly, a library of randomized RNA or DNA sequences is
73 incubated with the target of interest. The sequences with no affinity or only a weak affinity to the
74 target are removed from the library, while the sequences that have strong binding are then
75 recovered and amplified using a polymerase chain reaction (PCR), this process narrows down the
76 aptamer candidates. The selection process is repeated approximately 7 to 15 times to create a
77 sufficiently narrow pool of aptamer candidates which can then be characterized to determine their
78 efficiency.

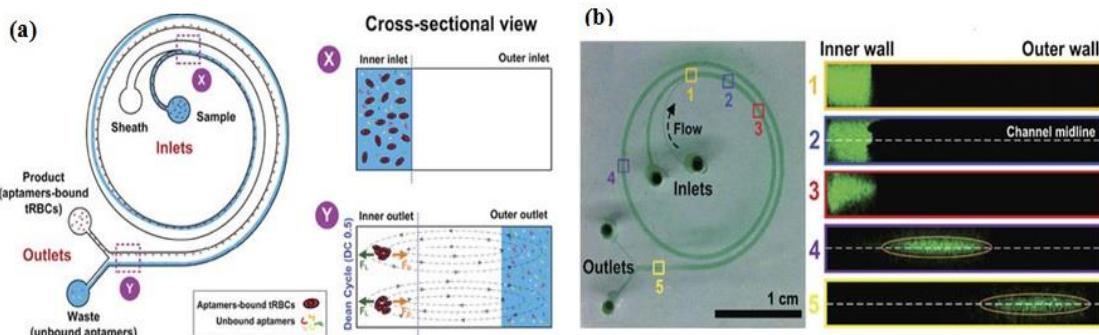
79 Conventional SELEX method requires extensive manual handling of reagents, and it is
80 time-consuming, typically requiring a dozen or more rounds of repeating the method and weeks to
81 months to achieve suitable affinity. Integrating of several SELEX steps in a single small platform is
82 an appealing trend in the field. It offers a range of capabilities of high-resolution separation between
83 oligonucleotide candidates using small quantities of reagents and samples. A single-round screening
84 of aptamers was reported and this marked the innovation of a fully automated and integrated
85 miniaturized SELEX process [9].

86 **3. Classification of microdevices**


87 *3.1. Microfluidic devices*

88 Microfluidics, also known as "lab-on-a-chip," is an emerging technology that represents a
89 revolution in laboratory experimentation, bringing the benefits of integration, miniaturization, and
90 automation to many research areas. It is the science and technology of systems that control small
91 amounts (10^{-9} – 10^{-18} L) of fluids in channels with dimensions of submillimeter to submicrometer [10].
92 The reduced dimensions and volumes in microfluidic channels allow all task to be done with much
93 less sample than what otherwise might be used. It is beneficial to improve transport of analyte from
94 the sample volume to the biorecognition element, in particular for a surface-bound sensing element
95 [11]. In recent years, the development of microfluidic chips as a miniaturized diagnostic platform
96 has attracted the attention of researchers. The basic operating units of biochemistry analysis, e.g.

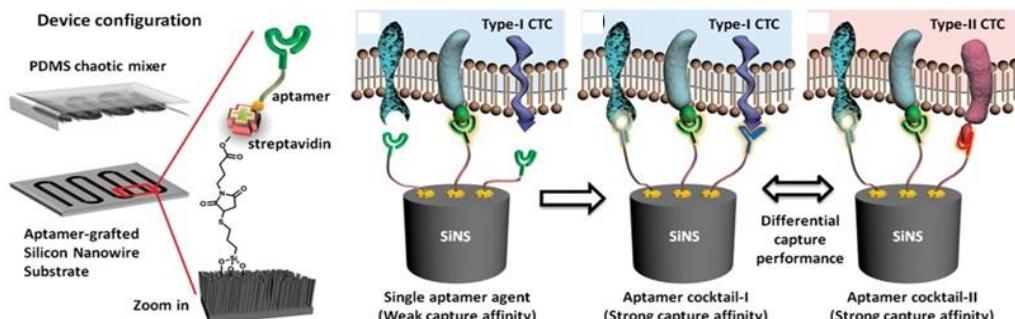
97 sample preparation, reaction, and separation tests, can be integrated into a micron scale chip, and
 98 then the whole analysis process can be completed automatically.


99 3.1.1. Microfluidic SELEX devices

100 One example that combines the advantages of the SELEX method and microfluidic systems into
 101 a compact platform design is a competitive assay test of the selected aptamer to reduce the number
 102 of sequences subjected to sequencing and affinity characterization. The entire SELEX process is
 103 shortened and the possibility to produce the aptamer as a biorecognition element is increased [12].
 104 Integration of the affinity selection and amplification steps in SELEX by combining bead-based
 105 biochemical reactions has been demonstrated [13-17]. A simple microfluidic SELEX device was
 106 developed by Olsen *et al.* [16], this device was fabricated using single layer soft lithography (Figure
 107 1). In this work, an electrokinetic microfluidic device for aptamer enrichment was demonstrated as
 108 an integrated microfluidic device without requiring an offline process. The electrokinetic
 109 microfluidic device features a microchamber and an electrokinetic transfer microchannel which
 110 allows oligonucleotide migration under an electric field. A heater and temperature sensor are used
 111 to control the target-aptamer binding and amplification process through PCR thermal cycling. In
 112 another example, Birch *et al.* [18] developed an inertia microfluidic SELEX or I-SELEX device to
 113 establish a system for continuous partitioning of cell-bound aptamers away from unbound nucleic
 114 acids in a bulk solution. The device was fabricated from polydimethylsiloxane (PDMS) and bonded
 115 to microscopic glass slides and had bi-loop spiral with double inlets-outlets (Figure 2). The working
 116 process start by pumping the target-aptamer library and buffer through the each inlet, then
 117 unbound aptamers migrate along the outer wall towards the waste outlet. Using this strategy, they
 118 successfully identified a high-affinity aptamer that was a subset of specific interactions with distinct
 119 epitopes on a malaria-parasite infected red blood cells. In order to improve efficiency and selectivity,
 120 some groups have developed techniques such as the volume dilution challenge microfluidic SELEX
 121 (VDC-MSELEX) [19], dielectrophoresis and electrophoresis SELEX [20], SELEX assisted by graphene
 122 oxide (GO) [21], surface plasmon resonance (SPR)-based SELEX methods [22,23]. SPR-based SELEX
 123 methods have attracted attention in recent years because selection and evaluation can be performed
 124 simultaneously without labeling the sensor.

125

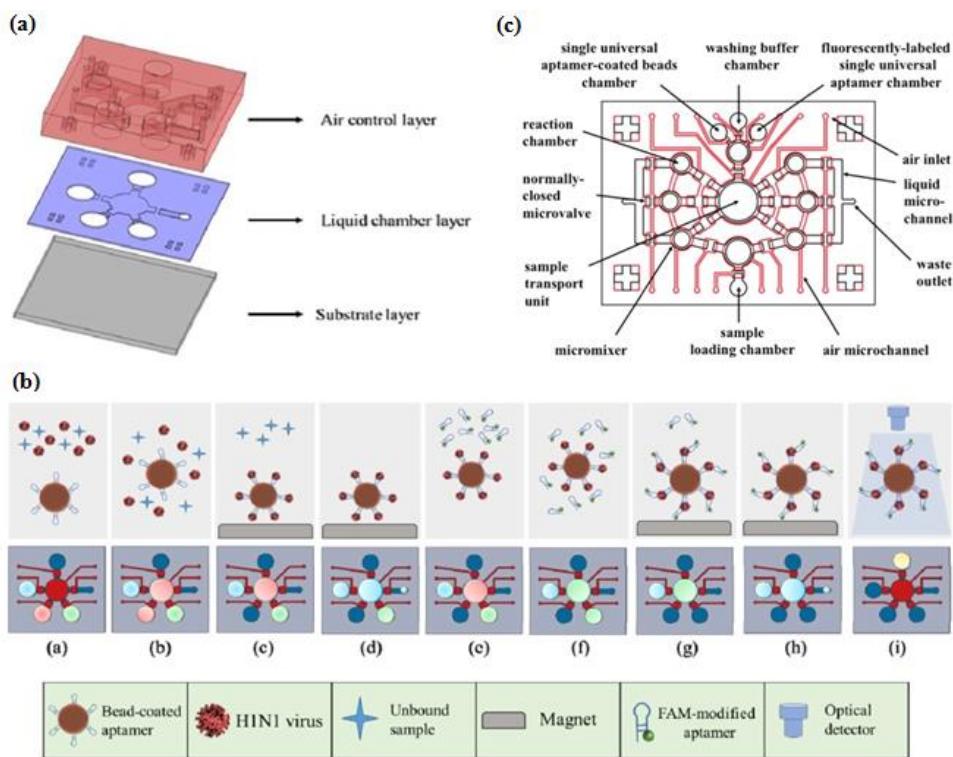
126 **Figure 1.** Schematic of microfluidic SELEX device which integrates selection and amplification steps.
 127 (a) PDMS channel on glass substrate. (b) Top view with detailed features. (c) Selection and
 128 amplification microchamber connected by a single serpentine shaped microchannel. Reprinted from
 129 reference [16] with permission. Copyright 2017 Electrochemical Society



130

131 **Figure 2.** Bi-loop spiral design of inertial microfluidic SELEX (I-SELEX) with dual inlets and outlets.
 132 (a) The unbound oligonucleotide/any particles migrate towards the outer-side wall (blue color) and
 133 are separated with the desired target. (b) Numbers 1-5 represent cross sections inside the channel.
 134 Fluorescence-labeled aptamer was used to identify each position. Reprinted from reference [18] with
 135 permission. Copyright 2015 Macmillan.

136 3.1.2. Microfluidic chip aptasensors

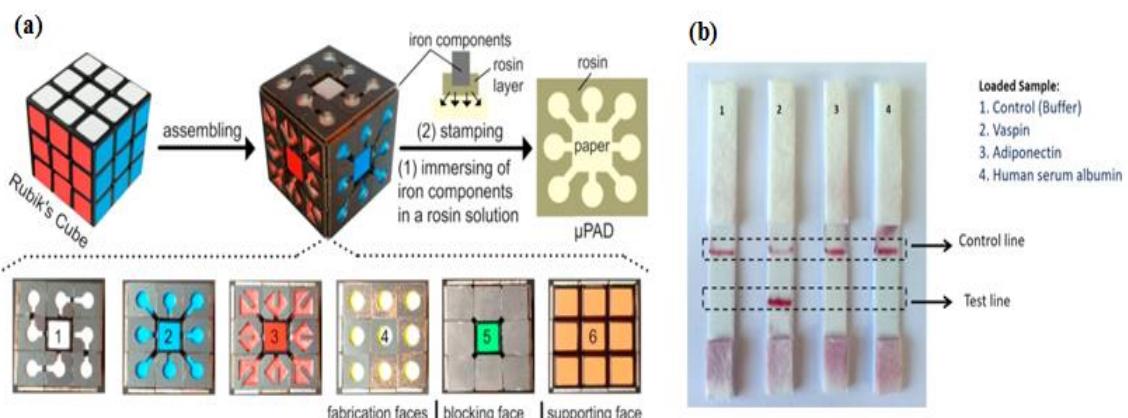

137 Microfluidic chips are a device or micro-channel that integrates a fluidic system including steps
 138 for transporting, mixing, preparing, and detecting a sample. Dimensions of the device must be in the
 139 range of a millimeter to a few square centimeters [24]. In recent years, microfluidic chips have
 140 aroused increasing interest for various application because of their desirable features such as smaller
 141 sample amount needed and lowered reagent consumption. The substrate materials of microfluidic
 142 chips such as polymers (e.g. PDMS, PMMA, PS) [25-32,102], ceramics (e.g. glass)
 143 [12,13,15-18,20,24,33-60], and semiconductors (e.g. silicon) [61-70], are currently used to obtain
 144 mechanical strength. Many researchers utilize PDMS and the soft lithography technique to fabricate
 145 microfluidic devices due to their easiness of use and simple process. Prototypes can be rapidly build
 146 and tested; researchers do not waste time in laborious fabrication protocols. Contrary to common
 147 beliefs, soft lithography does not require hundreds of square meters of clean room space. Indeed, a
 148 small bench space under a lab fume hood is sufficient for placing PDMS prototyping instruments to
 149 quickly assess a microfluidic technique. Recently, Ma *et al.* [60] developed a very attractive design for
 150 a volumetric bar chart chip (V-chip) aptasensor. This group applied a distance-readout method
 151 combined with aptamer-responsive hydrogel. Platinum nanoparticles (PtNPs) were used to
 152 encapsulate aptamer and hydrogel. Upon introduction of target, the aptamer bound with the target
 153 then induced disruption of the hydrogel and released the PtNPs. Subsequently, the hydrogel was
 154 loaded into the volumetric bar chart chip while the PtNPs catalyzed the reaction of H_2O_2 to produce
 155 O_2 . The colored ink flow in the V-chip was triggered by O_2 and was quantitatively related to the
 156 concentration of target. The results were measured by the naked eye. Zhao *et al.* [65] fabricated an
 157 aptamer-grafted silicon nanowire substrate (SiNS) embedded microfluidic chip and chaotic mixer
 158 PDMS for sensitive detection of circulating tumor cells (CTCs). As a cancer marker, the presence of
 159 CTCs in blood is very rare and it difficult to repeatedly observe them during the treatment, so Zhao
 160 *et al.* developed an aptamer-cocktail form with a synergistic effect (two or more aptamers may work
 161 synergistically, this phenomenon leads to increased cell affinity) (Figure 3). They constructed the
 162 cell-SELEX to produce multiple aptamers that were immobilized on the microfluidic device. In order
 163 to ensure the synergistic effect, they switched the position and number of aptamers to examine
 164 optimal conditions. Furthermore, they also evaluated the cell capture efficiency as a function of
 165 aptamer density and found that the efficiency gradually increased with aptamer density.

166

167 **Figure 3.** A representative chaotic mixer microfluidic device combined with an aptamer
 168 cocktail-grafted silicon nanowire substrate (SiNS). The different aptamers work synergistically to
 169 enhance capture affinity in a low-concentration target. Reprinted from reference [65] with
 170 permission. Copyright 2016 John Wiley and Son.

171 Automatic and integrated detection in a microfluidic device was demonstrated by Lee's group
 172 [44,45,54]. They fabricated two layers of PDMS structures and a glass substrate into a device having
 173 several chambers and including an external magnet, a micropump and a microvalve. As shown
 174 schematically in Figure 4, the experiment started by immobilizing the first aptamer on magnetic
 175 beads (MBs) then incubating the target in the micro chamber to form a complex aptamer-MBs-target.
 176 The external magnet was used to collect the complex molecules during washing process, while
 177 the unbound and interfering molecules were washed away (Figure 4b step c-d). When the magnetic
 178 field was removed, the complex aptamer-MBs-target still remained at the micro-pump. In the next
 179 step, FAM-labeled aptamer was introduced to determine the fluorescent intensity. Taking advantage
 180 of another feature of microfluidic design, Dou *et al.* [46] developed microfluidic droplets-based
 181 aptamer-functionalized graphene oxide (GO) to detect low-solubility molecules. The droplet-based
 182 design enables rapid mixing of fluids in the droplet with high reaction efficiency, even between two
 183 different phases of compounds like 17 β -estradiol with solvent. The graphene oxide (GO) was used
 184 for fluorescence quenching and bonded with aptamer. Their microfluidic device consisted of two
 185 layers, the top layer was PDMS channel with three inlets and one outlet (as the detection zone) and
 186 the bottom layer was a glass substrate. The target estradiol was dissolved in ethyl acetate as the oil
 187 phase, whereas an aptamer-GO was the aqueous phase. To generate droplets, Dou *et al.* used a
 188 T-junction channel. When the water and the oil phase introduced at different flow rates meet at the
 189 T-junction, water-in-oil emulsion droplets will be generated and the aptamer-GO-target complex
 190 starts to form at this time. The principle detection of the microfluidic droplets is based on the
 191 distance-dependent fluorescence quenching properties of GO. Competitive binding of the aptamer
 192 and the target decrease the affinity of the adsorption by GO, this condition may release the aptamer
 193 from the GO surface, thus resulting in the fluorescence recovery ("turn-on" of fluorescence intensity).
 194 Giuffrida *et al.* [32] also used microfluidic droplets with a T-junction channel to detect lysozyme.
 195 However, their device had six inlets, and was equipped with a mixing region, and a chaotic mixer
 196 channel to allow chemiluminescence detection. The AuNPs was used to enhance chemiluminescence
 197 intensity and it was conjugated with the aptamer. Giuffrida *et al.* reported that their device had
 198 several advantages over conventional devices: such as greater sensitivity (femtomolar level), faster
 199 detection (10 min), and a low background signal in the absence of the target. Several groups have
 200 utilized a microfluidic device for the separation process called microchip electrophoresis (MCE). Lin
 201 *et al.* [39] developed separation techniques on a MCE device based on a tunable aptamer. Different
 202 lengths of aptamers could modulate the electrophoretic mobility of proteins and promote effective
 203 separation in hydroxyethyl cellulose buffer. Pan *et al.* [35] proposed laser-induced fluorescence
 204 detection (LIF) on MCE device to detect tumor marker carcinoembryonic antigen (CEA). Application
 205 of magnetic beads (MBs) to assist in the target-induced strand cycle would increase the sensitivity.

206


207 **Figure 4.** Integrated microfluidic chip system using a sandwich aptamer. (a) The device was
 208 composed of PDMS structures (air control layer & liquid chamber layer) and a glass substrate. (b)
 209 Schematic illustration of experimental procedure performed on the integrated microfluidic chip
 210 system. Reprinted from reference [45] with permission. Copyright 2016 Elsevier. (c) The
 211 configuration of the inlet-outlet, chambers, micromixers, and microvalve. Reprinted from reference
 212 [44] with permission. Copyright 2016 Elsevier.

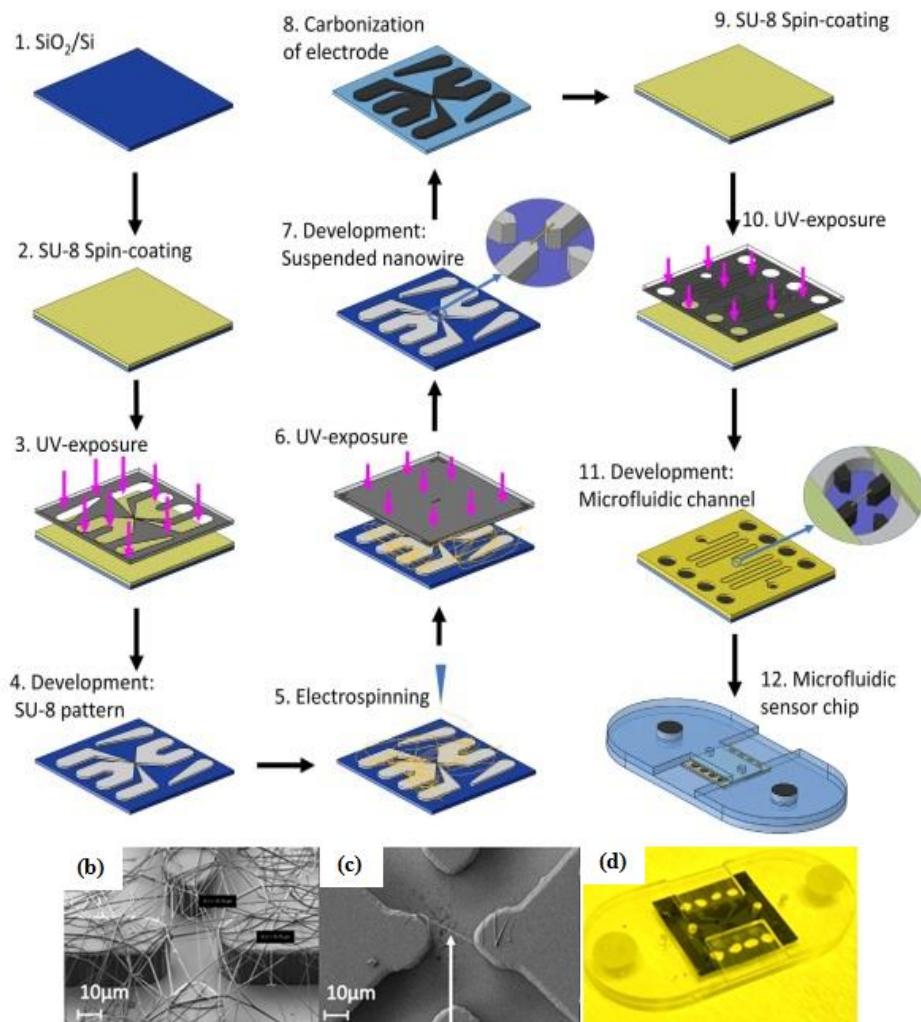
213 3.2. Paper-based microdevice aptasensors

214 Paper as a substrate in microdevices is a very promising material because its properties provide
 215 a versatility of functions. First of all, the cellulose structure allows a passive pump dispenser to be
 216 made, the fluid moves by capillary force which precludes the need for an external instrument.
 217 Second, the porous cellulose structure serves to immobilize particles easily. Colorimetry is a
 218 common signaling method for obtaining qualitative or semiquantitative results [71]. Since
 219 Whitesides's group revitalized the field of microfluidic paper-based devices in 2007 [72],
 220 applications of paper devices have significantly increased due to their simple and low-cost
 221 fabrication. Paper-based microdevices can be classified into three main types: microfluidic paper
 222 analytical devices, dipstick assays, and lateral flow strip assays [73]. Integrating a paper analytical
 223 device and an aptamer to develop sensitive and efficient diagnosis point-of-care-test (POCT) devices
 224 for on-site detection was reported by Zhang *et al.* [74], who developed equipment-free quantitative
 225 aptamer-based assays with naked-eye readout to detection adenosine. The super-paramagnetic
 226 particles was modified with a short DNA strand for anchoring an aptamer probe. In the present of
 227 the target, the complex aptamer-target was released from the magnetic surface which then triggered
 228 a hybridization chain reaction (HCR) and glucose oxidase was activated to oxidize glucose to H_2O_2
 229 and glucose acid. The number of glucose oxidase molecules was proportional to the target
 230 concentration. The unique fabrication of a micro paper-based analytical devices (μ PAD) aptasensor
 231 was demonstrated by Fu *et al.* [75] who were inspired by Rubik's Cube (RC) toys and formed with
 232 small iron components to generate hydrophobic barriers through a stamp-mode. The six-faced RCs
 233 have different patterns and can be tailored to make multiple combination channels. Fu *et al.*
 234 integrated the portable glucometer readout to detect signals (Figure 5a). During the stamping
 235 process, rosin (wax) penetrated into the paper, forming the hydrophobic channel and sample test

236 zone. Although the RC stamp method has good potential for instrument-free sensing, preparing the
 237 aptamer sensor, supporting enzyme and carrying out reagent loading remain a challenging tasks.

238 Origami paper analytical devices (oPADs) have been introduced by several groups [76-78]. For
 239 example, Liu *et al.* [77] used a glucose oxidase tag to modify the relative concentrations of an
 240 electroactive redox couple, and a digital multimeter (DMM) to transduce the result. They folded the
 241 chromatography paper into two layers: the first layer, including the sample inlet, was fabricated by
 242 wax printing and the second layer was fabricated by screen printing conductive carbon ink.
 243 Furthermore, this paper was covered with plastic lamination to prevent fluid evaporation and any
 244 contamination. The biotin-labeled aptamer was immobilized on microbeads trapped within the
 245 paper fluidic channel and the electrochemical current rise with increasing adenosine concentration.
 246 Yan *et al.* [76] presented a novel porous Au-paper working electrode on a compatible design
 247 origami-electrochemiluminescence (o-ECL). In order to amplify the signal, they used AuNPs due to
 248 their large surface area, stability, and biocompatibility especially with aptamers. The ECL intensity
 249 increased only when ATP (adenosine triphosphate) was present. On the other hand, Ma *et al.* [78]
 250 developed the specific recognition of an aptamer and the amplification strategy of a hybridization
 251 chain reaction (HCR) using an electrochemiluminescence (ECL) probe ($\text{Ru}(\text{phen})_3^{2+}$). Lateral flow
 252 strip assays (LFSAs) are another type of paper-based microdevices. Their simple design allows for
 253 on-site detection. Several groups have successfully developed LFSAs combined with
 254 aptamer-functionalized AuNPs. As an example, Raston *et al.* [79] performed an easy fabrication of an
 255 LFSAs using a sandwich aptamer conjugated with AuNPs for sensitive vaspin detection. A strip
 256 contained three pads: sample pad, nitrocellulose membrane pad, and absorption pad. Two aptamers
 257 probes were used which basically functioned as a capturing probe and a signaling probe. When the
 258 sample containing vaspin was loaded on a sample pad, the primary aptamer in the test zone capture
 259 the vaspin. Thus, the color could be observed in the test zone. For the control experiment, a
 260 complementary aptamer in the control zone captured the remaining AuNP-labeled aptamer, thus
 261 the signal could always be observed as the control. The signal could only be observed in the presence
 262 of vaspin, while no signal was observed in the test zone for adiponectin, HSA (human serum
 263 albumin) and buffer as shown in Figure 5b. Wu *et al.* [80] and Zhou *et al.* [81] applied this assay strip
 264 to get a sensitive and rapid detection of *Escherichia coli* O157:H7 and Ochratoxin A. They covered the
 265 LFSAs device with a plastic cover and utilized a portable strip reader to quantify the result.

266


267 **Figure 5.** Paper-based analytical device aptasensor. (a) Rubik's cube-based μPAD aptasensor to
 268 generate a hydrophobic barrier and a testing zone. Parts 1-5 have different functions while the
 269 6th part acts as a "bare" or support part only. Reprinted from reference [75] with permission. Copyright
 270 2017 Elsevier. (b) Lateral strip test for specific detection of vaspin. This device was equipped with a
 271 control as indicator. Reprinted from reference [79] with permission. Copyright 2017 Elsevier.

272 **4. Detection methods and assay formats**

273 **4.1. Electrochemical detection methods**

274 In general, an electrochemical reaction is defined as electron transfer from a reactant to form a
275 product that gives a rise to an electrical current flowing through the cell. Electrochemical detection
276 methods can be divided into three types of dynamic methods. The first type are known as
277 amperometric methods and the current measured at a given electrode potential represents an
278 analytical response that is dependent on the reactant concentration. The second type are known as
279 voltammetric methods and the current is measured at a particular potential to obtain good sensitivity
280 and low interference (the current-potential curve is archived for analytical purposes). The third type
281 are called galvanostatic methods and the response is acquired in the form of a potential-time curve.
282 Electrochemical measurements are typically performed using a cell comprised of three electrodes:
283 (1) A working electrode (WE) where the main reaction such as a redox and immobilization of a
284 probe occur; (2) A reference electrode (RE) which measures the potential of the WE without passing
285 the current through it; and (3) A counter electrode (CE) which serves to set the WE potential and
286 balance current.

287 Many electrochemical techniques are used in analytical chemistry. The most commonly used
288 ones for microfluidic devices or aptamer biosensors are amperometry [41], voltammetry
289 [30,38,42,77,82,102], and electrochemical impedance spectroscopy [31,33,69,83-86]. Liu *et al.* [84]
290 developed ZnO/graphene (ZnO/G) composite with S6 aptamer for a photoelectrochemical (PEC)
291 detector. The AuNPs were electrodeposited on ZnO/G composite that was immobilized with the S6
292 aptamer, then indium tin oxide (ITO) was used as an electrode to facilitate the ZnO/G composite
293 reaction. As a supporting electrolyte, Liu *et al.* utilized ascorbic acid as an electron donor for
294 scavenging photogenerated holes under mild solution medium. The electrochemical impedance
295 spectra were applied to characterize the PEC biosensor and examine each condition (bare, after
296 ZnO/G composite was dropped onto the ITO surface, and the aptamer-target complex form).
297 Sanghavi *et al.* [38] proposed a unique microfluidic aptasensor that features glassy carbon
298 electrodes and a nanoslit microwells on a glass substrate. Their method does not require a labeling,
299 immobilizing, or a washing process. Aptamer-functionalized AuNPs were used to enhance the net
300 area available for target cortisol capture and to enable unhindered diffusion of analytes towards the
301 binding surface. Square wave voltammetry (SWV) data were acquired by scanning the potential of
302 the working electrode toward the positive direction in the -0.5 to -1.2 V range with frequency 100 Hz.
303 Another electrochemical technique was developed by Chad *et al.* [63]. They proposed a microfluidic
304 electrolyte-insulator-semiconductor (EIS) chip based on ion-sensitive field-effect transistor with
305 capacitive detection. The working principle of the proposed device is the change of the gate voltage
306 ethat occurs due to the release of protons or intrinsic charge biomolecules during biomolecule
307 interactions. A thiolated aptameric peptide was immobilized on AuNPs for recognition of a protein
308 kinase A (PKA) target. Interaction between the aptamer and target led to a shift in the gate voltage.
309 Recently, Thiha *et al.* [69] presented a fabrication technique for a suspended carbon nanowire sensor
310 (sub-100 nm diameters) by simple electrospinning and applying carbon-microelectromechanical
311 system (C-MEMS) techniques (Figure 6). The C-MEMS techniques provided patterning of the
312 polymer (typically SU-8 photoresist) with high aspect ratio and 3D structures shape. After
313 patterning process, the polymer was pyrolyzed and electrospun to obtain carbon nanostructures,
314 then it was integrated with a microfluidic chip to form a label-free chemiresistive biosensor. The
315 amine-functionalized aptamer was covalently attached to carboxylic groups with the assistance of
316 sulfo-N-hydroxysuccinimide (sulfo-NHS) and N-(3-dimethylaminopropyl)-N-ethylcarbodiimide
317 hydrochloride (EDC). The detection principle is based on conductivity changes that occur when the
318 target binds on the suspended nanowire. The current-potential (*I*-*V*) was characterized before and
319 after incubating with target and the resistance value (R) was obtained from the inverse of the *I*-*V*
320 curve slope. Percent ratio change of the resistance was calculated as $\Delta R/R_0$, where ΔR is the
321 difference in resistance after incubation with target (R) and the original resistance (R_0).

322

323

324 **Figure 6.** Fabrication steps of the carbon nanowire aptasensor. (a) The device was fabricated by
 325 integrating electrospinning and photolithography with carbon-microelectromechanical system
 326 (C-MEMS) technique. (b) Electrospun SU-8 nanowire. (c) Single SU-8 nanowire after
 327 photolithography and development. (d) Microfluidic platform containing the nanowire sensor.
 328 Reprinted from reference [69] with permission. Copyright 2018 Elsevier.

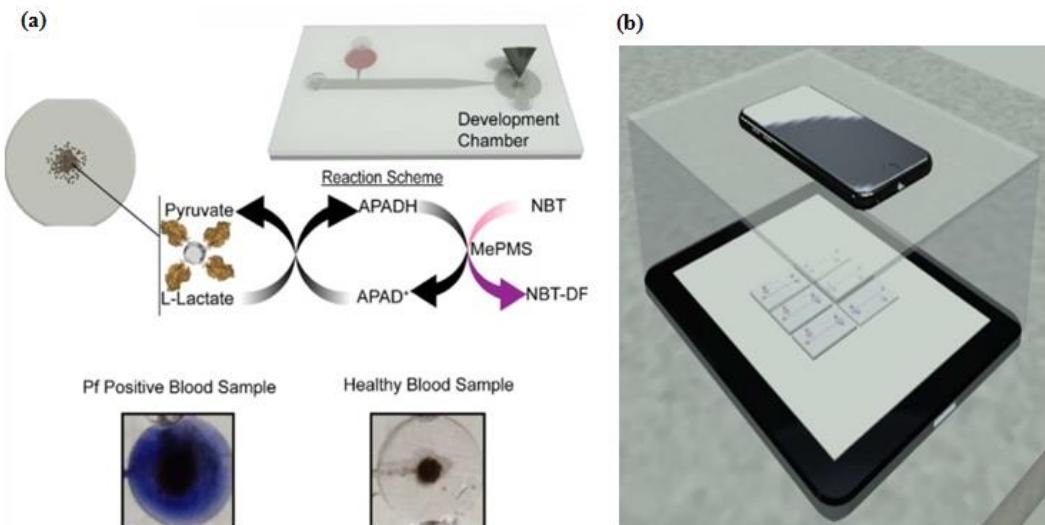

329 *4.2. Optical detection methods*

330 The analytical techniques based on light interaction with a sample are known as optical
 331 detection methods. To obtain an optical sensor, a specific reagent is involved in a sensing layer and
 332 its reaction process is monitored by a light beam that is conveyed by optical fibers. An optical
 333 transducer was obtained after measuring the absorbed or emitted light power on the sensing layer.
 334 As the dependence of light power on the wavelength represents an optical spectrum, consequently
 335 the application of this method needs a component that is able to absorb or emit light. Otherwise,
 336 some external molecule may be used as an optical label. Fluorescent materials
 337 [12,16,18,20,27,35,36,40,43-46,48,51-54,58,59,65,66,87-92], and dyes (colorimetry)
 338 [24,61,71,74,75,79,80,81,93,94] are commonly used as labels in microdevices based on aptasensors.

339 *4.2.1. Fluorescence methods*

340 Fluorescence methods consist of light emission by molecules previously excited through light
 341 absorption. Weng and Neethirajan [89] used 6-carboxyfluorescein (6-FAM) as the aptamer label and
 342 multi-walled carbon nanotubes (MWCNTs) or graphene oxide (GO) for the quencher in their device.
 343 When the target norovirus was present, fluorescence was recovered due to the release of the
 344 labeled-aptamer from the MWCNT surface and it was detected at $Ex/Em = 490\text{ nm}/520\text{ nm}$ by the

345 multi-mode reader Figure 7. The "signal-on" fluorescence aptasensor also demonstrated by Ueno *et*
 346 *al.* [53]. They demonstrated a portable design with a multichannel chip for simultaneous detection of
 347 three to five samples. A recent update on a fluorescence aptasensor was presented by Jin *et al.* [92].
 348 This group developed nanocomposites composed of magnetic Fe_3O_4 -aptamer-carbon dots that
 349 exhibited down-conversion fluorescence (DCF) and up-conversion fluorescence (UCF) emissions
 350 simultaneously. The UCF emission wavelength is shorter than its corresponding excitation
 351 wavelength, whereas the DCF (usually called fluorescence) is the opposite. The high binding affinity
 352 between the target and aptamer could induce unwinding of the carbon dots from the target-aptamer
 353 complex and recovery of the UCF signal. Therefore, in the presence of the target, the UCF signal
 354 (peak at 475 nm) gradually increased.



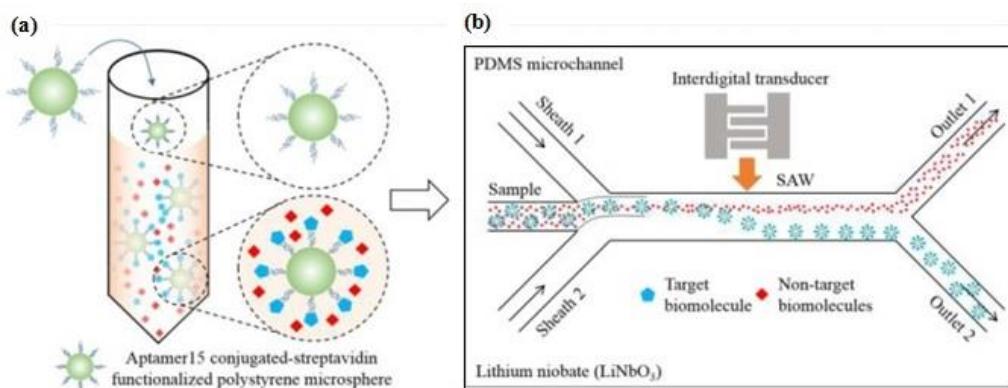
355

356 **Figure 7.** Schematic illustration of "signal-on" aptasensor based on MWCNT and
 357 fluorescence-labeled aptamer. Reprinted from reference [89] with permission. Copyright 2017
 358 Springer.

359 4.2.2. Colorimetry methods

360 Colorimetry methods are commonly used to determine concentration of a solution by
 361 measuring the absorbance of at a specific wavelength, this approach is also applied in lateral strip
 362 detection with a control or known concentration [79-81]. Simple and enable to develop
 363 instrument-free leads colorimetry become more favorable. Wei *et al.* [94] and Zhang *et al.* [74]
 364 developed instrument-free detections using microfluidic aptasensor; the colored result could be
 365 identified easily by naked eye. Another advantage of a colorimetry-integrated microdevice was
 366 utilized by Fraser *et al.* [93]. They designed an integrated Aptamer-Tethered Enzyme Capture
 367 (APTEC) on a microfluidic device and applied it for a telemedicine application. The APTEC
 368 technique has three main steps: First, micromagnetic beads (μ MBs) were coated with the aptamer
 369 via a streptavidin-biotin interaction. Then the coated beads were incubated on lysed sample of
 370 human blood. When the target was present, the aptamer-coated μ MBs bound specifically to the
 371 target (protein PfLDH). Second, the unbound molecules and other contaminants were washed and
 372 removed by the mobile phase. Third, the aptamer-coated μ MBs-target was transferred by mobile
 373 phase to the development chamber which contained the development reagent and a stronger
 374 colorimetry signal was generated. The non-target sample would not develop a colorimetry signal in
 375 the described assay (Figure 8). For signal analysis, the microdevice was placed on the top of an iPad
 376 which displayed a homogenous white light then covered with an opaque box. The smartphone
 377 camera was used for capturing the images and coupled with supporting information like time, date
 378 and GPS coordinates for the telemedicine application. Furthermore, the receiver analyzed the
 379 images with ImageJ software.

380


381 **Figure 8.** Microfluidic APTEC biosensor. (a) The reaction scheme of the reagents and redox reaction
 382 that results in generation of an insoluble purple diformazan dye. There was a color difference
 383 between positive and negative samples. (b) The smartphone camera was used for capturing images
 384 in a telemedicine application. Reprinted from reference [93] with permission. Copyright 2018
 385 Elsevier.

386 *4.3. Miscellaneous methods*387 *4.3.1. Surface plasmon resonance (SPR) methods*

388 Large groups of electrons in an oscillating state form a surface of plasmons, this phenomenon is
 389 known as surface plasmon resonance (SPR). The SPR depends on three factors: angle of incident,
 390 wavelength of the radiation, and refraction index of the sample. These methods are routinely used
 391 for investigated molecular interactions. Dausse *et al.* [22] demonstrated an SPR method for sequence
 392 selection during the SELEX method, called SPR-SELEX, and it could perform selection and
 393 evaluation simultaneously. Other groups utilized microfluidic aptasensor integrated with an SPR
 394 sensor to realize rapid and easy-to-use quantitative analysis [25,95].

395 *4.3.2. Surface acoustic wave (SAW) methods*

396 These methods are based on acoustic excitation by means of two electrodes placed on the same
 397 surface interdigitated transducer (IDT) configuration. The acoustic wave induced by an IDT is
 398 propagated in a thin layer at a piezoelectric surface. Ahmad *et al.* [96] proposed a microfluidic device
 399 that applies acoustic waves to drive functionalized microparticles into a continuous flow
 400 microchannel to separate particle-conjugated target proteins from the sample. This platform utilized
 401 an IDT transducer (with an Au-Cr layer) that was patterned on top of the piezoelectric lithium
 402 niobate (LiNbO_3) substrate to generate high-frequency surface acoustic waves (SAWs). The aptamer
 403 was conjugated to streptavidin-functionalized polystyrene microparticles and incubated with
 404 sample mixture. When the target thrombin was present, the aptamer formed a
 405 microparticle-aptamer-target complex and other molecules remained in a free condition. Once the
 406 high-frequency SAWs was actuated, the complex aptamer was separated from the mixture due to
 407 the lateral migration of fluid under the influence of the acoustic radiation force and collected in
 408 outlet 2 (Figure 9). Furthermore, Zhang *et al.* [97] proposed a microfluidic love-wave sensor that is a
 409 special type of SAW sensor which uses a shear horizontal wave to reduce energy dissipation and to
 410 increase the surface sensitivity. The device was prepared on LiTaO_3 (lithium tantalate) substrate
 411 with an aluminum IDT and functionalized with aptamer.

412

413 **Figure 9.** (a) Specific aptamer to form a microparticle-aptamer-target complex; the unbound
 414 particles remained in a free condition. (b) Separation process of the mixture solution through an
 415 acoustofluidic device. Reprinted from reference [96] with permission. Copyright 2017 American
 416 Chemical Society.

417 4.3.3. Chemiluminescence and electrochemiluminescence methods

418 Luminescence, as a general term is related to the energy transition between molecular orbitals
 419 that produces an emission of light. When the excitation of the molecules is caused by a chemical
 420 reaction, this light emission is chemiluminescence [26,32,34,56,78,68]. The emission that accompanies
 421 an electrochemical reaction is known as electrochemiluminescence [76]. Costantini *et al.* [56]
 422 developed an aptamer-linked immobilized sorbent assay (ALISA) that was performed in a
 423 microfluidic device that had a functionalized poly(2-hydroxyethyl methacrylate) PHEMA polymer
 424 brush layer on a glass substrate. The ALISA relied on the formation of sandwich-like structure
 425 consisting of the target and two target related-aptamers. The first aptamer was bounded on PHEMA
 426 to capture the target and the other aptamer was a biotin-labeled probe. The avidin-labeled HRP
 427 (horseradish peroxidase) would give a chemiluminescent signal after binding with the biotin, this
 428 signal indicated that PHEMA-aptamer was interaction with target.

429 5. Target analytes

430 5.1. Disease markers

431 As described in Section 4, microfluidic aptasensors have numerous advantages for point-of-care
 432 detection, mostly as disease markers. Thrombin is a critical biomarker for Alzheimer's disease and it
 433 is a well-known target for a microfluidic aptasensor and every year several researchers have
 434 reported updates for thrombin detection that offer more sensitivity. Lin *et al.* [61] proposed a very
 435 sensitive detection of thrombin from human plasma serum with a detection limit 0.082 pg mL^{-1} and a
 436 linear range $0.1\text{--}50.000 \text{ pg mL}^{-1}$. On the other hand, some groups focused on improving the detection
 437 method. For example, Zhao *et al.* [24] developed a microfluidic chip without signal amplification and
 438 only using naked-eye detection. The detection limit was 20 pM , this result is quite satisfying for
 439 simple detection purpose. Song *et al.* [58] used a sandwich aptamer-target-aptamer to assay
 440 thrombin with high selective detection even in the presence of concentrated bovine serum albumin
 441 (BSA). They obtained a thrombin detection limit of 25 pM . Uddin *et al.* [28] used a device with
 442 attractive disk and microbeads to reduce the sample-to-result time from 40 min to 15 min while
 443 using only $10 \mu\text{L}$ of sample volume. They obtained a thrombin detection limit of 25 pM .

444 5.2. Viruses and bacteria

445 Detection viruses and bacteria in real samples is important for dealing with environmental
 446 contamination or foodborne diseases. Commonly, their detection rely on culture-based tests,
 447 antibody-based tests, and polymerase chain reaction (PCR)-based tests. Despite their usefulness,
 448 these methods are costly and time-consuming. Neethiarajan group's [30,89] successfully developed a
 449 simple microfluidic aptasensor for norovirus detection with low detection limits (100 pM). The

450 device not only had good sensitivity, but was also selective to norovirus even in the present of
451 interferon. Moreover, the total analysis time was significantly reduced compared with the
452 conventional method. Wang *et al.* [44] demonstrated a fluorescent-labeled universal aptamer to
453 determine three different influenza viruses (influenza A-H1N1, H3N2, and influenza B) at the same
454 time in 20 min. Another multiple detection was developed by Zuo *et al.* [87]. Their microdevice was
455 able to detect multiple bacteria (*Lactobacillus acidophilus*, *Staphylococcus aureus*, *Salmonella enterica*) at
456 the same time. This device was consisted of a ready-to-use microfluidic aptasensor with a detection
457 limit of 11.0 CFU mL⁻¹ and total time for detection was~10 min.

458 **5.3. Antibiotics**

459 Antibiotic residues in foodstuffs pose certain hazards to human health among person who are
460 sensitive to antibiotics, have an imbalance of intestinal microbiota or have bacterial resistance.
461 Unfortunately, many of these residues are unintentionally consumed because some of the
462 conventional methods may not meet the need for fast and high throughput analysis in food safety
463 screening. Recently, detection of multiple antibiotics residues based on a microfluidic aptasensor has
464 been developed to fulfill these needs in food safety screening. The detection principle is based on
465 microchip electrophoresis (MCE) and the target is a catalyzed hairpin assembly. The device could
466 simultaneously detect of kanamycin and oxytetracycline with detection limits of 0.7 pg mL⁻¹ and 0.9
467 pg mL⁻¹ respectively [98]. Using a similar MCE method, Zhou *et al.* [99] developed a label-free and
468 sensitive detection of chloramphenicol that reached a detection limit of 0.003 ng mL⁻¹. Hou *et al.* [83]
469 reported the fast detection of tetracycline using an interdigital array microelectrode (IDAM). The
470 IDAM was integrated with impedance detection into miniaturized conventional electrode and it was
471 able to detect 1 nM of tetracycline in a milk sample.

472 **5.4. Toxins**

473 A rapid, sensitive and specific assay technique was developed for routine analysis in foods and
474 animal feedstuffs. Several researchers proposed a microfluidic aptasensor assay to analyze
475 mycotoxin [48,56,60]. A lateral flow strip aptasensor assay was developed to detect ochratoxin A
476 more easily. To perform a test, only minimum sample volume and reagent volume were needed. The
477 whole process was completed within 15 min and a visual detection limits of 1 ng mL⁻¹ was obtained
478 [81]. This assay was suitable for rapid and on-site detection, especially for screening raw materials in
479 the animal feed production industry. In recent years, marine toxins have drawn attention of
480 scientists due to the increased consumption of sea products. Certain toxins that have identified i.e.
481 saxitoxins, tetrodotoxin, okadaic acid, brevetoxins, and gonyautoxin 1/4. Although these toxins are
482 mostly produced by microalgae, especially dinoflagellates, it is now clear that bacteria are
483 responsible for production of some toxins. Handy *et al.* [23] published the first article related to
484 marine toxin detection with an aptasensor, specifically saxitoxin. They developed saxitoxin-aptamer
485 sequences by the SELEX method and evaluated the binding affinity with the SPR method.
486 Tetrodotoxin is one famous marine toxins because of its involvement in fatal food poisoning that
487 found in puffer fish, starfish, and blue-ringed octopus. Recently, a sensitive detection of tetrodotoxin
488 using a microfluidic aptasensor was developed by Jin *et al.* [92] with a detection limit of 0.06 ng mL⁻¹.
489 Okadaic acid was known as diarrhetic shellfish toxin (DST) that is found in contaminated shellfish.
490 Various microfluidic techniques for okadaic acid detection have been developed, including
491 interdigitated microelectrodes with AuNPs [70], a paper-based aptasensor [59], and an
492 enzyme-linked aptamer assay (ELAA) [21]. In the ELAA competitive assay, the lowest limit of
493 detection reached 0.01 ng mL⁻¹ and the widest detection range was from 0.025 to 10 ng mL⁻¹ in spiked
494 clam samples. The binding affinity of an aptamer to detect brevetoxins and gonyautoxin-1/4 has
495 been tested. The lowest dissociation constants for brevetoxin were 4.83 μM [100] and for
496 gonyautoxin 1/4 17.7 nM [101].

497 **6. Conclusion and future perspectives**

498 Applications of aptasensors on microdevices have led to positive outcomes in bioanalysis. This
499 paper has attempted to offer readers an overview of recent trends and advancements in the

500 development and application of microdevices based on aptamer sensors. Table A1 (Appendix A)
501 summarizes device features including their classifications and assay formats. Microdevice sensors in
502 flow analysis systems, deals with control and manipulation of fluid volumes in the submicroliter
503 region that are constrained to very small size channels. The fluid flow can be prompted by applied
504 pressure or electrokinetic. What distinguishes microdevice systems from conventional flow
505 analysis systems is the integration of a large network of channels and other microdevice (such as
506 actuators and valves) on a small chip. The major concepts and principles of device fabrication still
507 rely on photolithography, etching, bonding, screen printing, doping, and thin film formation. These
508 fabrication techniques give rise to various collaborations in multidisciplinary research. The
509 utilization of new nanomaterials (metal nanoparticles, polymer nanoparticles, carbon dots, magnetic
510 beads, and micro beads) has promoted the development of aptamer sensors that offer high
511 throughput and good sensitivity. Many innovation presented in the literature are still at the
512 proof-of-concept state. However, some are already applied to commercial applications, such as, e.g
513 lateral flow strip assay. This technique does not require a sophisticated instrument or may even be
514 instrument-free because of naked-eye detection.

515 Based on the current circumstances in the field of bioanalysis, several points that can be
516 considered in the future are noted. (1) Despite their many advantages over other conventional
517 methods, scaling down of existing procedures to use microdevice-based aptasensors sometimes
518 needs to be improved from the begin. (2) The simplest design is not always related to the smallest
519 dimensions. Movements towards ergonomic designs, easy to handle, and cost-effective devices will
520 certainly occur. (3) Marine toxins have attracted attention due to increased human consumption of
521 marine products. However, detections using microfluidic-based aptasensors are still limited to only
522 a few toxins. Continued developments of such methods are expected in the near future.

523 Developing simple and sensitive microdevices with relatively easy fabricated, combining
524 automatic and embedded elements in compatible substrates by micro-total analytical system (μ TAS)
525 will certainly keep on increasing in the coming years.

526

527 **Acknowledgments:** Donny Nugraha Mazaafrianto thanks the Ministry of Education, Culture, Sports, Science
528 and Technology, Japan for the Ph.D. research scholarship.

529

530 **Author Contributions:** MT conceived the structure and supervised the work; DNM collected the references
and wrote the paper; MM, AI and HT contributed ideas and revised the paper.

531

Conflicts of Interest: The authors declare no conflict of interest.

532 Appendix A

533

534 **Table A1.** Summary of microdevice-based aptasensors on several platforms and target analytes

Detection Method	Substrate	Aptamer	Target	Matrix Sample	LOD or Linear Range	Device Features	Reference
<i>Electrochemical</i>							
Chronoamperometry	Glass	Peptide	Thrombin	-	10 fg mL ⁻¹ to 1 µg mL ⁻¹	Plasma-functionalized SWCNT	[41]
DPV	PDMS	Biotin-Aptamer-Ferrocene	Norovirus	Bovine Blood	100 pM 100 pM to 3.5 nM	Integrated PDMS-SPCE Graphene-Au composite Switch-off signal	[30]
SWV	Glass	Competitive aptamer	Cortisol	Saliva glucocorticoids in serum	10 pg mL ⁻¹ 30 pg mL ⁻¹ to 10 µg mL ⁻¹	Sample volume (<1 µL) Graphene modified electrode	[38]
SWV	Glass	MB-labeled Aptamer	TGF-β1	Human hepatic stellate cell	1 ppb	PDMS layer with microcup Comparing with ELISA	[42]
Digital multimeter	Chromatography paper	-	Adenosine	-	11.8 µM	Origami paper device Attractive design	[77]
DPV	Paper	Peptide	Renin	-	300 ng mL ⁻¹	DEP (disposable electrochemical printed) Uses SPR to check binding affinity	[82]
EIS	Poly-imide film	-	Bisphenol A (BPA)	Food (canned)	152.93 aM 1 fM to 10 pM	Printed circuit board material Rapid detection (20 s)	[31]
EIS	Glass	-	Avian Influenza Virus	Virus culture	0.0128 hemagglutinin units (HAU)	Interdigitated electrode On site detection SELEX on Chip	[33]
Resistance	Si-Wafer	Amine-functionalized aptamer	Salmonella typhimurium	Fresh beef	10 CFU mL ⁻¹	Carbon nanowire sensors C-MEMS Rapid detection (5 min)	[69]

Detection Method	Substrate	Aptamer	Target	Matrix Sample	LOD or Linear Range	Device Features	Reference
EIS	Glass	-	Tetracycline	Milk	1 pM	Multi-walled carbon nanotubes Interdigital array microelectrode	[83]
Photoelectrochemical	Indium Tin Oxide (ITO)	S6 aptamer	SK-BR-3	-	58 cell mL ⁻¹ 10 ² to 10 ⁶ cells mL ⁻¹	ITO-based SPEs device Disposable ITO device	[84]
EIS	Cyclic olefin copolymer	Short strand aptamer	Ampicillin Kanamycin A	UHT low fatm milk	10 pM A = 100 pM to 1 mM K = 10 nM to 1 mM	PEDOT-OH:TsO All polymer substrate	[85]
EIS	Glass	Sgc8 TD05	CCRF-CEM Ramos cells	T-cell acute lymphoblastic leukemia (ALL)	-	Logic aptamer sensor (LAS) Simple detection with digital multimeter	[86]
<i>Optical</i>							
Fluorescence	Glass	Aptamer-antibody sandwich	Cancer stem-like cells	-	-	Cell-SELEX Automatic device Heater - cooling chip	[12]
Fluorescence	Glass	Aptamer sandwich with magnetic beads	Human immunoglobulin A (IgA)	Random oligonucleotides	-	Microfluidic SELEX Fully integrated platform	[16]
Fluorescence	Glass	-	Malaria parasite	Red blood cells	-	I-SELEX Only requires syringe pump	[18]
Fluorescence	Glass	-	-	Mixed cells	-	Cell-SELEX Dielectrophoresis and electrophoresis	[20]
Fluorescence	PDMS	Hair pin aptamer	Protein tyrosine kinase-7	Cell culture	0.4 nM	Laser-induced fluorescence detector (LIFD) Microfluidic droplet	[27]
Fluorescence	Glass	FAM-aptamer	Carcinoembryonic antigen (CEA)	Human serum	68 ng mL ⁻¹ 130 pg mL ⁻¹ to 8 ng mL ⁻¹	Micro chip electrophoresis (MCE)	[35]

Detection Method	Substrate	Aptamer	Target	Matrix Sample	LOD or Linear Range	Device Features	Reference
Fluorescence	Glass	Cy3-aptamer	Thrombin	Human serum	0.4 fM	Avidin-biotin interaction Use 2 kinds of aptamer	[36]
Fluorescence	Glass	Photoluminescent GOQD-aptamer	Lead ion (Pb^{2+})	Drinking water Tap water Lake water	0.64 nM 1 to 1000 nM	Packed with cation exchange resins Peristaltic PDMS Micropump	[40]
Fluorescence	Glass	G-quadruplex	VEGF-165 protein	DMEM cell media	0.17 pM 0.52 to 52.00 pM	Label-free In the presence of Ir(III) no signal	[43]
Fluorescence	Glass	FAM-aptamer universal	Influenza virus	Random oligonucleotides	3.2 HAU	Automatic process Rapid detection	[44]
Fluorescence	Glass	FAM-aptamer sandwich	Influenza A (InfA/H1N1)		0.032 HAU	Magnet external Rapid detection	[45]
Fluorescence	Glass	Fluorescence-labeled	17β -estradiol	Estradiol solution	0.07 pM	Microfluidic droplet Turn-on signal	[46]
Fluorescence	Glass	G-quadruplex structure	Ochratoxin A	-	-	Fluorescence polarization	[48]
Fluorescence	Glass	Multivalent DNA aptamer nanospheres	Human acute leukemia cells	Human blood	-	Flow cytometry analysis Rapid detection	[51]
Fluorescence	Glass	FAM-aptamer	Thrombin Prostate specific antigen (PSA)	-	-	FRET Longer spacer gives good sensitivity	[52]
Fluorescence	Glass	FAM-aptamer	Thrombin Prostate specific antigen (PSA) Hemagglutinin	-	-	FRET Multiple target Aptamer immobilize on GO flakes	[53]
Fluorescence	Glass	Sandwich aptamer FITC	Glycated hemoglobins (HbA1c) & Total hemoglobin (Hb)	Blood	-	Automated microfluidic system Low reagent consumption	[54]

Detection Method	Substrate	Aptamer	Target	Matrix Sample	LOD or Linear Range	Device Features	Reference
Fluorescence	Glass	Sandwich aptamer	Thrombin	-	27 pM	Gold nanohole array Nanoimprinting technology	[58]
Fluorescence	Glass	Aptamer functionalize QD	Lysozyme, OA, Brevetoxin, β -conglutin lupine	Fresh egg white Mussel tissue Sausage	Lysozyme (343 ppb); OA (0.4ppb); Brevetoxin (0.56 ppb); β -cl(2.5 ppb)	Quantum Dots (QD) GO-quencher Comparing with ELISA	[59]
Fluorescence	Si-nanowire	Cocktail aptamer	Non-small cell lung cancer	Blood	-	PDMS chaotic mixer Aptamer grafted Si-nano wire substrate	[65]
Fluorescence	Glass	FAM-aptamer	ss-DNA	-	-	Isolating ssDNA from dsDNA PC membrane	[66]
Fluorescence	Chromatography paper	Aptamer-functionalized GO	Staphylococcus aureus	Buffer (Bacterial colonies)	11.0 CFU mL ⁻¹	PDMS/paper/glass microfluidic device Fast detection	[87]
Fluorescence	Paper	-	Cancer cells	Cell culture	MCF-7: 6270 cell mL ⁻¹ HL-60 : 65 cell mL ⁻¹	Mesoporous silica nanoparticles (MSNs) Naked-eye detection	[88]
Fluorescence	Paper	FAM-aptamer	Norovirus	Spiked mussel sample	MWCNT: 4.4 ng mL ⁻¹ GO: 3.3 ng mL ⁻¹ 13 ngmL ⁻¹ to 13 μ g mL ⁻¹	Multi-walled carbon nanotubes Graphene oxide	[89]
Fluorescence	Printed circuit board (PCB)	-	Cocaine Adenosine	Human blood serum	Cocaine : 0.1 pM Adenosine: 0.5	MECAS-chip Simultaneous detection	[90]
Fluorescence	Glass	FAM-aptamer	Lysozyme	-	-	Electrophoresis frontal mode FACME method	[91]
Fluorescence	-	Amine-aptamer	Tetrodotoxin (TTX)	Human blood Urine	0.06 ng mL ⁻¹ 0.1 ng mL ⁻¹ to mgmL ⁻¹	Marine toxin Fe ₃ O ₄ /apt/CD composite	[92]
Colorimetry							
Colorimetry	Glass	Sandwich aptamer	Thrombin	-	20 pM	Naked-eye & Flatbed detection Micro pump	[24]

Detection Method	Substrate	Aptamer	Target	Matrix Sample	LOD or Linear Range	Device Features	Reference
Colorimetry	Si-wafer	G-quadruplex structure	Thrombin	Human blood	0.083 pg mL ⁻¹ 0.1 to 50.000 pg mL ⁻¹	Rolling circle amplification Micro channel	[61]
Colorimetry	Paper	Cross-linking aptamer	Cocaine	Urine	7.3 μM	Utilizes ImageJ software Hydrogel-μPAD	[71]
Colorimetry	Paper	Hybridization chain reaction	Adenosine	Human serum	1.5 μM 1.5 μM to 19.3 mM	Naked eyes detection Uses superparamagnetism	[74]
Colorimetry	Paper	Aptamer attached microbeads	Adenosine	Urine	-	Rubik's cube stamp Stamping method	[75]
Colorimetry	Paper Cellulose fiber	Sandwich aptamer	Vaspin	Buffer & serum	Buffer: 0.137 nM Serum: 0.105 nM	Lateral strip assay Naked-eye detection	[79]
Colorimetry	Paper Cellulose fiber	Biotin modified aptamer	E. coli O157 : H7	Culture E.coli	10 CFU mL ⁻¹	Lateral strip assay Naked-eye detection	[80]
Colorimetry	Paper Cellulose fiber	Competitive aptamer	Ochratoxin A	-	1 ppb	Lateral strip assay Naked-eye detection Rapid detection	[81]
Colorimetry	Clear resin	Biotinylated aptamer	PfLDH enzyme (Malaria)	Human blood serum	0.01 %	Telemedicine Ipad - Iphone detection 3D printing resin	[93]
Colorimetry	Paper	Hydrogel-aptamer	Cocaine Adenosine Pt ⁺²	Urine	-	Naked-eye detection Signal off-on by interaction apt-target	[94]
Miscellaneous							
Surface Plasmon Resonance		Hairpin RNA aptamer	Aptamer candidate	Random library	K _D = 8 nM	SPR-SELEX SELEX on chip	[22]
Surface Acoustic Wave	PDMS	Polystyrene aptamer conjugate	Thrombin	Buffer	-	Acoustic wave driven Interdigitated transducer	[96]
Surface Acoustic Wave	LiTaO ₃ substrate with SiO ₂ film	Aptamer beacon	Prostate specific antigen (PSA) ATP	-	PSA = 10 ppb 10 ppb to 1 ppm ATP = 0.1 pM 0.5 pM to 7 nM	Interdigitated transducer Utilized AuNPs	[97]

Detection Method	Substrate	Aptamer	Target	Matrix Sample	LOD or Linear Range	Device Features	Reference
Chemiluminescence	PDMS	Aptamer-antibody sandwich	free prostate specific antigen (fPSA)	Human semen	0.5 ng mL ⁻¹	Performed in parallel Antibody labeled HRP	[26]
Chemiluminescence	PDMS	Thiolated aptamer	Lysozyme	Human serum	44.6 fM	Droplet microfluidic Digital microfluidic Low sample volume	[32]
Chemiluminescence	Glass	Aptamer-antibody sandwich	HbA1c	Blood	0.65 g dL ⁻¹	Three-layer chips Detection time 25 min Utilizes magnetic beads	[34]
Chemiluminescence	Glass	-	Ochratoxin A	Beer	0.82 mg L ⁻¹	Polymer brush ALISA	[56]
Electrochemiluminescence	Paper	Sandwich aptamer	ATP	-	0.1 pM 0.5 pM to 7 nM	Origami design Modified porous paper	[76]

535 **References**

536 1. Ansari, M. I. H.; Hassan, S.; Qurashi, A.; Khanday, F. A. Microfluidic-integrated DNA nanobiosensors.
537 *Biosens. Bioelectron.* **2016**, *85*, 247–260, doi:10.1016/j.bios.2016.05.009.

538 2. Hung, L. Y.; Wu, H. W.; Hsieh, K.; Lee, G. Bin Microfluidic platforms for discovery and detection of
539 molecular biomarkers. *Microfluid. Nanofluidics* **2014**, *16*, 941–963, doi:10.1007/s10404-014-1354-6.

540 3. Ghafar-Zadeh, E. Wireless integrated biosensors for point-of-care diagnostic applications. *Sensors*
541 (*Switzerland*) **2015**, *15*, 3236–3261, doi:10.3390/s150203236.

542 4. Gopinath, S. C. B.; Lakshmipriya, T.; Chen, Y.; Phang, W. M.; Hashim, U. Aptamer-based “point-of-care
543 testing.” *Biotechnol. Adv.* **2016**, *34*, 198–208, doi:10.1016/j.biotechadv.2016.02.003.

544 5. Hu, J.; Ye, M.; Zhou, Z. Aptamers: novel diagnostic and therapeutic tools for diabetes mellitus and
545 metabolic diseases. *J. Mol. Med.* **2016**, *95*, 1–8, doi:10.1007/s00109-016-1485-1.

546 6. Chen, A.; Yang, S. Replacing antibodies with aptamers in lateral flow immunoassay. *Biosens. Bioelectron.*
547 **2015**, *71*, 230–242, doi:10.1016/j.bios.2015.04.041.

548 7. Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to
549 bacteriophage T4 DNA polymerase. *Science* **1990**, *249*, 505–510, doi:10.1126/science.2200121.

550 8. Ellington, A. D.; Szostak, J. In vitro selection of RNA molecules that bind specific ligands. *Nature* **1990**,
551 *243465*, 818–822.

552 9. Dembowski, S. K.; Bowser, M. T. Microfluidic methods for aptamer selection and characterization. *Analyst*
553 **2018**, *143*, 21–32, doi:10.1039/C7AN01046J.

554 10. Marques, M. P.; Szita, N. Bioprocess microfluidics: applying microfluidic devices for bioprocessing. *Curr.*
555 *Opin. Chem. Eng.* **2017**, *18*, 61–68, doi:10.1016/j.coche.2017.09.004.

556 11. Luka, G.; Ahmadi, A.; Najjaran, H.; Alocilja, E.; Derosa, M.; Wolthers, K.; Malki, A.; Aziz, H.; Althani, A.;
557 Hoorfar, M. Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing
558 applications. *Sensors (Switzerland)* **2015**, *15*, 30011–30031, doi:10.3390/s151229783.

559 12. Weng, C. H.; Hsieh, I. S.; Hung, L. Y.; Lin, H. I.; Shiesh, S. C.; Chen, Y. L.; Lee, G. Bin An automatic
560 microfluidic system for rapid screening of cancer stem-like cell-specific aptamers. *Microfluid. Nanofluidics*
561 **2013**, *14*, 753–765, doi:10.1007/s10404-012-1095-3.

562 13. Olsen, T.; Zhu, J.; Kim, J.; Pei, R.; Stojanovic, M. N.; Lin, Q. AN INTEGRATED MICROFLUIDIC SELEX
563 APPROACH USING COMBINED ELECTROKINETIC AND HYDRODYNAMIC MANIPULATION.
564 **2017**, *1*, 1–20, doi:10.1177/2211068216659255.

565 14. Huang, C. J.; Lin, H. I.; Shiesh, S. C.; Lee, G. Bin An integrated microfluidic system for rapid screening of
566 alpha-fetoprotein-specific aptamers. *Biosens. Bioelectron.* **2012**, *35*, 50–55, doi:10.1016/j.bios.2012.02.024.

567 15. Kim, T. K.; Lee, S. W.; Ahn, J. Y.; Laurell, T.; Kim, S. Y.; Jeong, O. C. Fabrication of microfluidic platform
568 with optimized fluidic network toward on-chip parallel systematic evolution of ligands by exponential
569 enrichment process. *Jpn. J. Appl. Phys.* **2011**, *50*, 2–6, doi:10.1143/JJAP.50.06GL05.

570 16. Olsen, T. R.; Tapia-Alveal, C.; Yang, K.-A.; Zhang, X.; Pereira, L. J.; Farmakidis, N.; Pei, R.; Stojanovic, M.
571 N.; Lin, Q. Integrated Microfluidic Selex Using Free Solution Electrokinetics. *J. Electrochem. Soc.* **2017**, *164*,
572 B3122–B3129, doi:10.1149/2.0191705jes.

573 17. Lai, H.-C.; Wang, C.-H.; Liou, T.-M.; Lee, G.-B. Influenza A virus-specific aptamers screened by using an
574 integrated microfluidic system. *Lab Chip* **2014**, *14*, 2002–2013, doi:10.1039/C4LC00187G.

575 18. Birch, C. M.; Hou, H. W.; Han, J.; Niles, J. C. Identification of malaria parasite-infected red blood cell
576 surface aptamers by inertial microfluidic SELEX (I-SELEX). *Sci. Rep.* **2015**, *5*, 1–16, doi:10.1038/srep11347.

577 19. Oh, S. S.; Ahmad, K. M.; Cho, M.; Kim, S.; Xiao, Y.; Soh, H. T. Improving aptamer selection efficiency

578 through volume dilution, magnetic concentration, and continuous washing in microfluidic channels.

579 *Anal. Chem.* **2011**, *83*, 6883–6889, doi:10.1021/ac201269f.

580 20. Stoll, H.; Kiessling, H.; Stelzle, M.; Wendel, H. P.; Schütte, J.; Hagemeyer, B.; Avci-Adali, M. Microfluidic

581 chip system for the selection and enrichment of cell binding aptamers. *Biomicrofluidics* **2015**, *9*, 1–11,

582 doi:10.1063/1.4922544.

583 21. Gu, H.; Duan, N.; Wu, S.; Hao, L.; Xia, Y.; Ma, X.; Wang, Z. Graphene oxide-assisted non-immobilized

584 SELEX of okdaic acid aptamer and the analytical application of aptasensor. *Sci. Rep.* **2016**, *6*, 1–9,

585 doi:10.1038/srep21665.

586 22. Dausse, E.; Barré, A.; Aimé, A.; Groppi, A.; Rico, A.; Ainali, C.; Salgado, G.; Palau, W.; Daguerre, E.;

587 Nikolski, M.; Toulmé, J. J.; Di Primo, C. Aptamer selection by direct microfluidic recovery and surface

588 plasmon resonance evaluation. *Biosens. Bioelectron.* **2016**, *80*, 418–425, doi:10.1016/j.bios.2016.02.003.

589 23. Handy, S. M.; Yakes, B. J.; DeGrasse, J. A.; Campbell, K.; Elliott, C. T.; Kanyuck, K. M.; DeGrasse, S. L.

590 First report of the use of a saxitoxin-protein conjugate to develop a DNA aptamer to a small molecule

591 toxin. *Toxicon* **2013**, *61*, 30–37, doi:10.1016/j.toxicon.2012.10.015.

592 24. Zhao, Y.; Liu, X.; Li, J.; Qiang, W.; Sun, L.; Li, H.; Xu, D. Microfluidic chip-based silver nanoparticles

593 aptasensor for colorimetric detection of thrombin. *Talanta* **2016**, *150*, 81–87,

594 doi:10.1016/j.talanta.2015.09.013.

595 25. Loo, J. F. C.; Lau, P. M.; Kong, S. K.; Ho, H. P. An assay using localized surface plasmon resonance and

596 gold nanorods functionalized with aptamers to sense the cytochrome-c released from apoptotic cancer

597 cells for anti-cancer drug effect determination. *Micromachines* **2017**, *8*, doi:10.3390/mi8110338.

598 26. Jolly, P.; Damborsky, P.; Madaboosi, N.; Soares, R. R. G.; Chu, V.; Conde, J. P.; Katrlik, J.; Estrela, P. DNA

599 aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer

600 biomarkers. *Biosens. Bioelectron.* **2016**, *79*, 313–319, doi:10.1016/j.bios.2015.12.058.

601 27. Li, L.; Wang, Q.; Feng, J.; Tong, L.; Tang, B. Highly sensitive and homogeneous detection of membrane

602 protein on a single living cell by aptamer and nicking enzyme assisted signal amplification based on

603 microfluidic droplets. *Anal. Chem.* **2014**, *86*, 5101–5107, doi:10.1021/ac500881p.

604 28. Uddin, R.; Burger, R.; Donolato, M.; Fock, J.; Creagh, M.; Hansen, M. F.; Boisen, A. Lab-on-a-disc

605 agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and

606 micro-sized magnetic beads. *Biosens. Bioelectron.* **2016**, *85*, 351–357, doi:10.1016/j.bios.2016.05.023.

607 29. Wang, H.; Liu, Y.; Liu, C.; Huang, J.; Yang, P.; Liu, B. Microfluidic chip-based aptasensor for amplified

608 electrochemical detection of human thrombin. *Electrochim. commun.* **2010**, *12*, 258–261,

609 doi:10.1016/j.elecom.2009.12.008.

610 30. Chand, R.; Neethirajan, S. Microfluidic platform integrated with graphene-gold nano-composite

611 aptasensor for one-step detection of norovirus. *Biosens. Bioelectron.* **2017**, *98*, 47–53,

612 doi:10.1016/j.bios.2017.06.026.

613 31. Mirzajani, H.; Cheng, C.; Wu, J.; Chen, J.; Eda, S.; Najafi Aghdam, E.; Badri Ghavifekr, H. A highly

614 sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in

615 canned foods. *Biosens. Bioelectron.* **2017**, *89*, 1059–1067, doi:10.1016/j.bios.2016.09.109.

616 32. Giuffrida, M. C.; Cigliana, G.; Spoto, G. Ultrasensitive detection of lysozyme in droplet-based

617 microfluidic devices. *Biosens. Bioelectron.* **2018**, *104*, 8–14, doi:10.1016/j.bios.2017.12.042.

618 33. Lum, J.; Wang, R.; Hargis, B.; Tung, S.; Bottje, W.; Lu, H.; Li, Y. An Impedance Aptasensor with

619 Microfluidic Chips for Specific Detection of H5N1 Avian Influenza Virus. *Sensors* **2015**, *15*, 18565–18578,

620 doi:10.3390/s150818565.

621 34. Chang, K. W.; Li, J.; Yang, C. H.; Shiesh, S. C.; Lee, G. Bin An integrated microfluidic system for

622 measurement of glycated hemoglobin Levels by using an aptamer-antibody assay on magnetic beads.
623 *Biosens. Bioelectron.* **2015**, *68*, 397–403, doi:10.1016/j.bios.2015.01.027.

624 35. Pan, L.; Zhao, J.; Huang, Y.; Zhao, S.; Liu, Y. M. Aptamer-based microchip electrophoresis assays for
625 amplification detection of carcinoembryonic antigen. *Clin. Chim. Acta* **2015**, *450*, 304–309,
626 doi:10.1016/j.cca.2015.09.002.

627 36. Chen, F. yuan; Wang, Z.; Li, P.; Lian, H. Z.; Chen, H. Y. Aptamer-based thrombin assay on microfluidic
628 platform. *Electrophoresis* **2013**, *34*, 3260–3266, doi:10.1002/elps.201300338.

629 37. Sheng, W.; Chen, T.; Kamath, R.; Xiong, X.; Tan, W.; Fan, Z. H. Aptamer-enabled efficient isolation of
630 cancer cells from whole blood using a microfluidic device. *Anal. Chem.* **2012**, *84*, 4199–4206,
631 doi:10.1021/ac3005633.

632 38. Sanghavi, B. J.; Moore, J. A.; Chávez, J. L.; Hagen, J. A.; Kelley-Loughnane, N.; Chou, C. F.; Swami, N. S.
633 Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of
634 cortisol in a microfluidic device. *Biosens. Bioelectron.* **2016**, *78*, 244–252, doi:10.1016/j.bios.2015.11.044.

635 39. Lin, X.; Chen, Q.; Liu, W.; Yi, L.; Li, H.; Wang, Z.; Lin, J. M. Assay of multiplex proteins from cell
636 metabolism based on tunable aptamer and microchip electrophoresis. *Biosens. Bioelectron.* **2015**, *63*,
637 105–111, doi:10.1016/j.bios.2014.07.013.

638 40. Park, M.; Ha, H. D.; Kim, Y. T.; Jung, J. H.; Kim, S. H.; Kim, D. H.; Seo, T. S. Combination of a Sample
639 Pretreatment Microfluidic Device with a Photoluminescent Graphene Oxide Quantum Dot Sensor for
640 Trace Lead Detection. *Anal. Chem.* **2015**, *87*, 10969–10975, doi:10.1021/acs.analchem.5b02907.

641 41. Kim, J. H.; Jin, J. H.; Lee, J. Y.; Park, E. J.; Min, N. K. Covalent attachment of biomacromolecules to
642 plasma-patterned and functionalized carbon nanotube-based devices for electrochemical biosensing.
643 *Bioconjug. Chem.* **2012**, *23*, 2078–2086, doi:10.1021/bc300275z.

644 42. Matharu, Z.; Patel, D.; Gao, Y.; Haque, A.; Zhou, Q.; Revzin, A. Detecting transforming growth factor- β
645 release from liver cells using an aptasensor integrated with microfluidics. *Anal. Chem.* **2014**, *86*, 8865–8872,
646 doi:10.1021/ac502383e.

647 43. Lin, X.; Leung, K. H.; Lin, L.; Lin, L.; Lin, S.; Leung, C. H.; Ma, D. L.; Lin, J. M. Determination of cell
648 metabolite VEGF165and dynamic analysis of protein-DNA interactions by combination of microfluidic
649 technique and luminescent switch-on probe. *Biosens. Bioelectron.* **2016**, *79*, 41–47,
650 doi:10.1016/j.bios.2015.11.089.

651 44. Wang, C. H.; Chang, C. P.; Lee, G. Bin Integrated microfluidic device using a single universal aptamer to
652 detect multiple types of influenza viruses. *Biosens. Bioelectron.* **2016**, *86*, 247–254,
653 doi:10.1016/j.bios.2016.06.071.

654 45. Tseng, Y. T.; Wang, C. H.; Chang, C. P.; Lee, G. Bin Integrated microfluidic system for rapid detection of
655 influenza H1N1 virus using a sandwich-based aptamer assay. *Biosens. Bioelectron.* **2016**, *82*, 105–111,
656 doi:10.1016/j.bios.2016.03.073.

657 46. Dou, M.; Mireles Garcia Jr., J.; Zhan, S.; Li, X. Interfacial nano-biosensing in microfluidic droplets for
658 high-sensitivity detection of low-solubility molecules. *Chem. Commun.* **2016**, *52*, 3470–3473,
659 doi:10.1039/c5cc09066k.

660 47. Hilton, J. P.; Olsen, T.; Kim, J.; Zhu, J.; Nguyen, T. H.; Barbu, M.; Pei, R.; Stojanovic, M.; Lin, Q. Isolation
661 of thermally sensitive protein-binding oligonucleotides on a microchip. *Microfluid. Nanofluidics* **2015**, *19*,
662 795–804, doi:10.1007/s10404-015-1604-2.

663 48. Galarreta, B. C.; Tabatabaei, M.; Guieu, V.; Peyrin, E.; Lagugné-Labarthet, F. Microfluidic channel with
664 embedded SERS 2D platform for the aptamer detection of ochratoxin A. *Anal. Bioanal. Chem.* **2013**, *405*,
665 1613–1621, doi:10.1007/s00216-012-6557-7.

666 49. Du, Y.; Chen, C.; Zhou, M.; Dong, S.; Wang, E. Microfluidic electrochemical aptameric assay integrated
667 on-chip: A potentially convenient sensing platform for the amplified and multiplex analysis of small
668 molecules. *Anal. Chem.* **2011**, *83*, 1523–1529, doi:10.1021/ac101988n.

669 50. Liu, Y.; Yan, J.; Howland, M. C.; Kwa, T.; Revzin, A. Micropatterned aptasensors for continuous
670 monitoring of cytokine release from human leukocytes. *Anal. Chem.* **2011**, *83*, 8286–8292,
671 doi:10.1021/ac202117g.

672 51. Sheng, W.; Chen, T.; Tan, W.; Fan, Z. H. Multivalent DNA nanospheres for enhanced capture of cancer
673 cells in microfluidic devices. *ACS Nano* **2013**, *7*, 7067–7076, doi:10.1021/nn4023747.

674 52. Ueno, Y.; Furukawa, K.; Tin, A.; Hibino, H. On-chip FRET Graphene Oxide Aptasensor: Quantitative
675 Evaluation of Enhanced Sensitivity by Aptamer with a Double-stranded DNA Spacer. *Anal. Sci.* **2015**, *31*,
676 875–879, doi:10.2116/analsci.31.875.

677 53. Ueno, Y.; Furukawa, K.; Matsuo, K.; Inoue, S.; Hayashi, K.; Hibino, H. On-chip graphene oxide
678 aptasensor for multiple protein detection. *Anal. Chim. Acta* **2015**, *866*, 1–9, doi:10.1016/j.aca.2014.10.047.

679 54. Li, J.; Chang, K. W.; Wang, C. H.; Yang, C. H.; Shiesh, S. C.; Lee, G. Bin On-chip, aptamer-based sandwich
680 assay for detection of glycated hemoglobins via magnetic beads. *Biosens. Bioelectron.* **2016**, *79*, 887–893,
681 doi:10.1016/j.bios.2016.01.029.

682 55. Kawano, R.; Osaki, T.; Sasaki, H.; Takinoue, M.; Yoshizawa, S.; Takeuchi, S. Rapid detection of a
683 cocaine-binding aptamer using biological nanopores on a chip. *J. Am. Chem. Soc.* **2011**, *133*, 8474–8477,
684 doi:10.1021/ja2026085.

685 56. Costantini, F.; Sberna, C.; Petrucci, G.; Reverberi, M.; Domenici, F.; Fanelli, C.; Manetti, C.; De Cesare, G.;
686 Derosa, M.; Nascetti, A.; Caputo, D. Aptamer-based sandwich assay for on chip detection of Ochratoxin
687 A by an array of amorphous silicon photosensors. *Sensors Actuators, B Chem.* **2016**, *230*, 31–39,
688 doi:10.1016/j.snb.2016.02.036.

689 57. Yang, J.; Zhu, J.; Pei, R.; Oliver, J. A.; Landry, D. W.; Stojanovic, M. N.; Lin, Q. Integrated microfluidic
690 aptasensor for mass spectrometric detection of vasopressin in human plasma ultrafiltrate. *Anal. Methods*
691 **2016**, *8*, 5190–5196, doi:10.1039/C5AY02979A.

692 58. Song, H. Y.; Wong, T. I.; Guo, S.; Deng, J.; Tan, C.; Gorelik, S.; Zhou, X. Nanoimprinted thrombin
693 aptasensor with picomolar sensitivity based on plasmon excited quantum dots. *Sensors Actuators, B Chem.*
694 **2015**, *221*, 207–216, doi:10.1016/j.snb.2015.06.141.

695 59. Weng, X.; Neethirajan, S. Paper-based microfluidic aptasensor for food safety. *J. Food Saf.* **2018**, *38*, 1–8,
696 doi:10.1111/jfs.12412.

697 60. Ma, Y.; Mao, Y.; Huang, D.; He, Z.; Yan, J.; Tian, T.; Shi, Y.; Song, Y.; Li, X.; Zhu, Z.; Zhou, L.; Yang, C. J.
698 Portable visual quantitative detection of aflatoxin B₁ using a target-responsive hydrogel and a
699 distance-readout microfluidic chip. *Lab Chip* **2016**, *16*, 3097–3104, doi:10.1039/C6LC00474A.

700 61. Lin, X.; Chen, Q.; Liu, W.; Li, H.; Lin, J. M. A portable microchip for ultrasensitive and high-throughput
701 assay of thrombin by rolling circle amplification and hemin/G-quadruplex system. *Biosens. Bioelectron.*
702 **2014**, *56*, 71–76, doi:10.1016/j.bios.2013.12.061.

703 62. Lim, Y. C.; Kouzani, A. Z.; Duan, W.; Dai, X. J.; Kaynak, A.; Mair, D. A surface-stress-based
704 microcantilever aptasensor. *IEEE Trans. Biomed. Circuits Syst.* **2014**, *8*, 15–24,
705 doi:10.1109/TBCAS.2013.2286255.

706 63. Chand, R.; Han, D.; Neethirajan, S.; Kim, Y. S. Detection of protein kinase using an aptamer on a
707 microchip integrated electrolyte-insulator-semiconductor sensor. *Sensors Actuators, B Chem.* **2017**, *248*,
708 973–979, doi:10.1016/j.snb.2017.02.140.

709 64. Wang, L.; Zheng, Q.; Zhang, Q.; Xu, H.; Tong, J.; Zhu, C.; Wan, Y. Detection of single tumor cell resistance

710 with aptamer biochip. *Oncol. Lett.* **2012**, *4*, 935–940, doi:10.3892/ol.2012.890.

711 65. Zhao, L.; Tang, C.; Xu, L.; Zhang, Z.; Li, X.; Hu, H.; Cheng, S.; Zhou, W.; Huang, M.; Fong, A.; Liu, B.;
712 Tseng, H. R.; Gao, H.; Liu, Y.; Fang, X. Enhanced and Differential Capture of Circulating Tumor Cells
713 from Lung Cancer Patients by Microfluidic Assays Using Aptamer Cocktail. *Small* **2016**, *12*, 1072–1081,
714 doi:10.1002/smll.201503188.

715 66. Sheng, Y.; Bowser, M. T. Isolating single stranded DNA using a microfluidic dialysis device. *Analyst* **2014**,
716 *139*, 215–224, doi:10.1039/C3AN01880F.

717 67. White, S. P.; Sreevatsan, S.; Frisbie, C. D.; Dorfman, K. D. Rapid, Selective, Label-Free Aptameric Capture
718 and Detection of Ricin in Potable Liquids Using a Printed Floating Gate Transistor. *ACS Sensors* **2016**, *1*,
719 1213–1216, doi:10.1021/acssensors.6b00481.

720 68. Pasquardini, L.; Pancheri, L.; Potrich, C.; Ferri, A.; Piemonte, C.; Lunelli, L.; Napione, L.; Comunanza, V.;
721 Alvaro, M.; Vanzetti, L.; Bussolino, F.; Pederzolli, C. SPAD aptasensor for the detection of circulating
722 protein biomarkers. *Biosens. Bioelectron.* **2015**, *68*, 500–507, doi:10.1016/j.bios.2015.01.042.

723 69. Thiha, A.; Ibrahim, F.; Muniandy, S.; Dinshaw, I. J.; Teh, S. J.; Thong, K. L.; Leo, B. F.; Madou, M.
724 All-carbon suspended nanowire sensors as a rapid highly-sensitive label-free chemiresistive biosensing
725 platform. *Biosens. Bioelectron.* **2018**, *107*, 145–152, doi:10.1016/j.bios.2018.02.024.

726 70. Pan, Y.; Wan, Z.; Zhong, L.; Li, X.; Wu, Q.; Wang, J.; Wang, P. Label-free okadaic acid detection using
727 growth of gold nanoparticles in sensor gaps as a conductive tag. *Biomed. Microdevices* **2017**, *19*, 2–8,
728 doi:10.1007/s10544-017-0162-7.

729 71. Tian, T.; Wei, X.; Jia, S.; Zhang, R.; Li, J.; Zhu, Z.; Zhang, H.; Ma, Y.; Lin, Z.; Yang, C. J. Integration of
730 target responsive hydrogel with cascaded enzymatic reactions and microfluidic paper-based analytic
731 devices (μ PADs) for point-of-care testing (POCT). *Biosens. Bioelectron.* **2016**, *77*, 537–542,
732 doi:10.1016/j.bios.2015.09.049.

733 72. Martinez, A. W.; Phillips, S. T.; Butte, M. J.; Whitesides, G. M. Patterned Paper as a Platform for
734 Inexpensive, Low Volume, Portable Bioassays. *2007*, *46*, 1318–1320, doi:10.1002/anie.200603817.

735 73. Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic chip fabrication. *Acc. Chem. Res.* **2013**, *46*, 2396–2406,
736 doi:10.1021/ar300314s.

737 74. Zhang, Y.; Gao, D.; Fan, J.; Nie, J.; Le, S.; Zhu, W.; Yang, J.; Li, J. Naked-eye quantitative aptamer-based
738 assay on paper device. *Biosens. Bioelectron.* **2016**, *78*, 538–546, doi:10.1016/j.bios.2015.12.003.

739 75. Fu, H.; Yang, J.; Guo, L.; Nie, J.; Yin, Q.; Zhang, L.; Zhang, Y. Using the Rubik’s Cube to directly produce
740 paper analytical devices for quantitative point-of-care aptamer-based assays. *Biosens. Bioelectron.* **2017**, *96*,
741 194–200, doi:10.1016/j.bios.2017.05.012.

742 76. Yan, J.; Yan, M.; Ge, L.; Yu, J.; Ge, S.; Huang, J. A microfluidic origami electrochemiluminescence
743 aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative. *Chem.
744 Commun.* **2013**, *49*, 1383–1385, doi:10.1039/C2CC37402A.

745 77. Liu, H.; Xiang, Y.; Lu, Y.; Crooks, R. M. Aptamer-based origami paper analytical device for
746 electrochemical detection of adenosine. *Angew. Chemie - Int. Ed.* **2012**, *51*, 6925–6928,
747 doi:10.1002/anie.201202929.

748 78. Ma, C.; Liu, H.; Zhang, L.; Li, L.; Yan, M.; Yu, J.; Song, X. Microfluidic Paper-Based Analytical Device for
749 Sensitive Detection of Peptides Based on Specific Recognition of Aptamer and Amplification Strategy of
750 Hybridization Chain Reaction. *ChemElectroChem* **2017**, *4*, 1744–1749, doi:10.1002/celc.201600824.

751 79. Ahmad Raston, N. H.; Nguyen, V. T.; Gu, M. B. A new lateral flow strip assay (LFSA) using a pair of
752 aptamers for the detection of Vaspin. *Biosens. Bioelectron.* **2017**, *93*, 21–25, doi:10.1016/j.bios.2016.11.061.

753 80. Wu, W.; Zhao, S.; Mao, Y.; Fang, Z.; Lu, X.; Zeng, L. A sensitive lateral flow biosensor for Escherichia coli

754 O157: H7 detection based on aptamer mediated strand displacement amplification. *Anal. Chim. Acta* **2015**,
755 861, 62–68, doi:10.1016/j.aca.2014.12.041.

756 81. Zhou, W.; Kong, W.; Dou, X.; Zhao, M.; Ouyang, Z.; Yang, M. An aptamer based lateral flow strip for
757 on-site rapid detection of ochratoxin A in *Astragalus membranaceus*. *J. Chromatogr. B Anal. Technol.
758 Biomed. Life Sci.* **2016**, 1022, 102–108, doi:10.1016/j.jchromb.2016.04.016.

759 82. Biyani, M.; Kawai, K.; Kitamura, K.; Chikae, M.; Biyani, M.; Ushijima, H.; Tamiya, E.; Yoneda, T.;
760 Takamura, Y. PEP-on-DEP: A competitive peptide-based disposable electrochemical aptasensor for renin
761 diagnostics. *Biosens. Bioelectron.* **2016**, 84, 120–125, doi:10.1016/j.bios.2015.12.078.

762 83. Hou, W.; Shi, Z.; Guo, Y.; Sun, X.; Wang, X. An interdigital array microelectrode aptasensor based on
763 multi-walled carbon nanotubes for detection of tetracycline. *Bioprocess Biosyst. Eng.* **2017**, 40, 1419–1425,
764 doi:10.1007/s00449-017-1799-6.

765 84. Liu, F.; Zhang, Y.; Yu, J.; Wang, S.; Ge, S.; Song, X. Application of ZnO/graphene and S6 aptamers for
766 sensitive photoelectrochemical detection of SK-BR-3 breast cancer cells based on a disposable indium tin
767 oxide device. *Biosens. Bioelectron.* **2014**, 51, 413–420, doi:10.1016/j.bios.2013.07.066.

768 85. Daprà, J.; Lauridsen, L. H.; Nielsen, A. T.; Rozlosnik, N. Comparative study on aptamers as recognition
769 elements for antibiotics in a label-free all-polymer biosensor. *Biosens. Bioelectron.* **2013**, 43, 315–320,
770 doi:10.1016/j.bios.2012.12.058.

771 86. Lou, B.; Zhou, Z.; Du, Y.; Dong, S. Resistance-based logic aptamer sensor for CCRF-CEM and Ramos cells
772 integrated on microfluidic chip. *Electrochem. commun.* **2015**, 59, 64–67, doi:10.1016/j.elecom.2015.07.006.

773 87. Zuo, P.; Li, X.; Dominguez, D. C.; Ye, B.-C. A PDMS/paper/glass hybrid microfluidic biochip integrated
774 with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen
775 detection. *Lab Chip* **2013**, 13, 3921, doi:10.1039/c3lc50654a.

776 88. Liang, L.; Su, M.; Li, L.; Lan, F.; Yang, G.; Ge, S.; Yu, J.; Song, X. Aptamer-based fluorescent and visual
777 biosensor for multiplexed monitoring of cancer cells in microfluidic paper-based analytical devices.
778 *Sensors Actuators, B Chem.* **2016**, 229, 347–354, doi:10.1016/j.snb.2016.01.137.

779 89. Weng, X.; Neethirajan, S. Aptamer-based fluorometric determination of norovirus using a paper-based
780 microfluidic device. *Microchim. Acta* **2017**, 184, 4545–4552, doi:10.1007/s00604-017-2467-x.

781 90. Zhang, H.; Hu, X.; Fu, X. Aptamer-based microfluidic beads array sensor for simultaneous detection of
782 multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels.
783 *Biosens. Bioelectron.* **2014**, 57, 22–29, doi:10.1016/j.bios.2014.01.054.

784 91. Girardot, M.; D'Orlyé, F.; Descroix, S.; Varenne, A. Aptamer-conjugated nanoparticles: Preservation of
785 targeting functionality demonstrated by microchip electrophoresis in frontal mode. *Anal. Biochem.* **2013**,
786 435, 150–152, doi:10.1016/j.ab.2012.12.022.

787 92. Jin, H.; Gui, R.; Sun, J.; Wang, Y. Facilely self-assembled magnetic nanoparticles/aptamer/carbon dots
788 nanocomposites for highly sensitive up-conversion fluorescence turn-on detection of tetrodotoxin. *Talanta*
789 **2018**, 176, 277–283, doi:10.1016/j.talanta.2017.08.043.

790 93. Fraser, L. A.; Kinghorn, A. B.; Dirkzwager, R. M.; Liang, S.; Cheung, Y. W.; Lim, B.; Shiu, S. C. C.; Tang, M.
791 S. L.; Andrew, D.; Manitta, J.; Richards, J. S.; Tanner, J. A. A portable microfluidic Aptamer-Tethered
792 Enzyme Capture (APTEC) biosensor for malaria diagnosis. *Biosens. Bioelectron.* **2018**, 100, 591–596,
793 doi:10.1016/j.bios.2017.10.001.

794 94. Wei, X.; Tian, T.; Jia, S.; Zhu, Z.; Ma, Y.; Sun, J.; Lin, Z.; Yang, C. J. Target-responsive DNA hydrogel
795 mediated stop-flow microfluidic paper-based analytic device for rapid, portable and visual detection of
796 multiple targets. *Anal. Chem.* **2015**, 87, 4275–4282, doi:10.1021/acs.analchem.5b00532.

797 95. Chuang, T.-L.; Chang, C.-C.; Chu-Su, Y.; Wei, S.-C.; Zhao, X.; Hsueh, P.-R.; Lin, C.-W. Disposable surface

798 plasmon resonance aptasensor with membrane-based sample handling design for quantitative
799 interferon-gamma detection. *Lab Chip* 2014, 14, 2968–2977, doi:10.1039/C4LC00249K.

800 96. Ahmad, R.; Destgeer, G.; Afzal, M.; Park, J.; Ahmed, H.; Jung, J. H.; Park, K.; Yoon, T. S.; Sung, H. J.
801 Acoustic Wave-Driven Functionalized Particles for Aptamer-Based Target Biomolecule Separation. *Anal.
802 Chem.* 2017, 89, 13313–13319, doi:10.1021/acs.analchem.7b03474.

803 97. Zhang, F.; Li, S.; Cao, K.; Wang, P.; Su, Y.; Zhu, X.; Wan, Y. A microfluidic love-wave biosensing device
804 for PSA detection based on an aptamer beacon probe. *Sensors (Switzerland)* 2015, 15, 13839–13850,
805 doi:10.3390/s150613839.

806 98. Wang, Y.; Gan, N.; Zhou, Y.; Li, T.; Hu, F.; Cao, Y.; Chen, Y. Novel label-free and high-throughput
807 microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes
808 and target catalyzed hairpin assembly for signal amplification. *Biosens. Bioelectron.* 2017, 97, 100–106,
809 doi:10.1016/j.bios.2017.05.017.

810 99. Zhou, L.; Gan, N.; Zhou, Y.; Li, T.; Cao, Y.; Chen, Y. A label-free and universal platform for antibiotics
811 detection based on microchip electrophoresis using aptamer probes. *Talanta* 2017, 167, 544–549,
812 doi:10.1016/j.talanta.2017.02.061.

813 100. Tian, R. Y.; Lin, C.; Yu, S. Y.; Gong, S.; Hu, P.; Li, Y. S.; Wu, Z. C.; Gao, Y.; Zhou, Y.; Liu, Z. S.; Ren, H. L.;
814 Lu, S. Y. Preparation of a specific ssDNA aptamer for brevetoxin-2 using SELEX. *J. Anal. Methods Chem.*
815 2016, 2016, doi:10.1155/2016/9241860.

816 101. Gao, S.; Hu, B.; Zheng, X.; Cao, Y.; Liu, D.; Sun, M.; Jiao, B.; Wang, L. Gonyautoxin 1/4 aptamers with
817 high-affinity and high-specificity: From efficient selection to aptasensor application. *Biosens. Bioelectron.*
818 2016, 79, 938–944, doi:10.1016/j.bios.2016.01.032.

819 102. Mazaafrianto, D. N.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M. Label-free electrochemical sensor for
820 ochratoxin A using microfabricated electrode with an immobilized aptamer, submitted.

821