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Abstract

We do fuzzification the concept of domination in crisp graph by using membership
values of nodes, a-strong and arcs. In this paper, we introduce a new variation on the
domination theme which we call vertex domination. We determine the vertex
domination number 7, for several classes of fuzzy graphs, specially complete fuzzy graph
and complete bipartite fuzzy graphs. The bounds is obtained for the vertex domination
number of fuzzy graphs. Also the relationship between M-strong arcs and a-strong is
obtained. In fuzzy graphs, monotone decreasing property and monotone increasing
property is introduced. We prove the vizing’s conjecture is monotone decreasing fuzzy
graph property for vertex domination. we prove also the Grarier-Khelladi’s conjecture is
monotone decreasing fuzzy graph property for it. We obtain Nordhaus-Gaddum (NG)
type results for these parameters. The relationship between several classes of operations
on fuzzy graphs with the vertex domination number of them is studied.
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1 Introduction .

L.A. Zadeh introduced the concept of a fuzzy subset of a set as a way for representing 2
uncertainty. Zadeh’s ideas stirred the interest of researchers worldwide. His ideas have 3
been applied to a wide range of scientific areas. Theoretical mathematics has also been
touched by the notion of a fuzzy subset. In 1965, Zadeh published his seminal paper 5
“fuzzy sets” [77] which described fuzzy set theory and consequently fuzzy logic. The 6
purpose of Zadeh’s paper was to develop a theory which could deal with ambiguity and -
imprecision of certain classes or sets in Human thinking, particularly in the domains of s
pattern recognition, communication of information, and observation. This theory 0
proposed making the grade of membership of an element in a subset of a universal set a 10
value in the closed interval [0, 1] of real numbers. Zadeh’s idea have found applications u
in computer science, artificial intelligence, decision analysis, information science, system 1

science, control engineering, expert systems, pattern recognition, management science, 13
operations research, and robotics. Theoretical mathematics has also been touched by 14
fuzzy set theory. In the classical set theory introduced by Cantor, values of elements in 15
a set are either 0 or 1. That is for any element, there are only two possibilities: the 16
element is the set or it is not. Therefore, Cantor set theory cannot handle data with 17
ambiguity and uncertainty. The ideas of fuzzy set theory have been introduced into 18
topology, abstract algebra, geometry, graph theory, and analysis. Analytical 19
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representation of physical phenomena can be fruitful as models of reality, but are 20
sometimes difficult to understand because they do not explain much by themselves, and 2
may remain unclear to the non-specialist. In other words, Zadeh proposed fuzzy theory 2

and introduced fuzzy set theory which can be considered as the phenomenon of 2
ambiguity across all systems displaying this property and its consequences. 2
Graph theory is one of the branches of modern mathematics having experienced a 2

most impressive development in recent years. The origin of graph theory can be traced 2
back to Euler’s work on the Konigsberg bridge problem (1735) which subsequently led =
to the concept of an Eulerian graph. The first text book on graph theory was written by 2
D’enesKonig and published in 1936. A later text book by Frank Harary published in 2

1968, was enormously popular and enabled mathematicians, chemists, electrical 30
engineers and social scientists to have common platform to dialogue with each other. 31
Graphs are represented graphically by taking a set of points on the plane and it is »
desired to find some structure among the points in the form of edges containing a subset 3
of the pair of points. Graph theory plays a vital role as far as application side is 34
concerned. Graph theory is intimately related to many branches of mathematics 35
including group theory, matrix theory, numerical analysis, probability, topology and 36
combinatorics because of its diagrammatic representation and its intuitive and aesthetic
appeal. 38

One of the most interesting problems in graph theory is that of Domination Theory. s
The earliest ideas of dominating sets are found in the classical problems of covering chess 40

board with minimum number of chess pieces. Nowadays domination theory ranks top a
among the most prominent areas of research in graph theory and combinatorics. The 2
concept of domination in graphs, with its many variations, is now well studied in graph
theory. The book by Chartrand and Lesniak [10] includes a chapter on domination. For 4
a more thorough study of domination in graphs, see Haynes et al. [24]. The current list
of papers on domination in [24] has over 1200 entries.The theory of domination is 4

formalized by Clauge Berge in his book “Theory of graphs and its application” (1962).
Berge mentions the strategies of keeping a number of locations under surveillance, by a
set of radar station. Oystein Ore was a first person to use the term domination number 4

in his book on Graph Theory. The theory of domination has been the nucleus of 50
research activity in graph theory in recent times. The fastest growing area within graph =
theory is a study of domination and related subset problems such independence, 5
covering, matching, decomposition and labelling. Domination boasts a host of 53
applications to social network theory, land surveying, game theory, interconnection 54
network, parallel computing and image processing and so on. Today, this theory gained  ss
popularity and remains as a major area of research due to the contributions of 56
0.0re [50], C.Berge [(], E.J.Cockayne [19], S.T.Hedetniemi [24], T.W.Haynes [24], 57
R.C.Laskar [25], P.J.Slater [66], V.R.Kulli [32], E.Sampathkumar [62], S.Arumugam [4]. s

Fuzzy graph theory has numerous applications in various fields like clustering 59
analysis, database theory, network analysis, information theory, etc. [44]. Fuzzy models e
can be used in problems handling uncertainty to get more accurate and precise 61
solutions [74-76]. As in graphs, connectivity concepts play a key role in applications 62
related with fuzzy graphs [44,70]. The fuzzy definition of fuzzy graphs was proposed by &
Kaufmann [28], from the fuzzy relations introduced by Zadeh. Although Rosenfeld 64

introduced another elaborated definition, including fuzzy vertex and fuzzy edges. Fuzzy s
graphs were introduced by Rosenfeld [56] and Yeh and Bang [73] independently in 1975.
Rosenfeld in his paper “Fuzzy Graphs” presented the basic structural and connectivity e

concepts while Yeh and Bang introduced different connectivity parameters of a fuzzy 68
graph and discussed their applications in the paper titled “Fuzzy relations, Fuzzy 69
graphs and their applications to clustering analysis” [73]. Rosenfeld considered fuzzy 70

relations on fuzzy sets and developed the structure of fuzzy graphs, obtaining analogues 7
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of several graph theoretical concepts. He introduced and examined such concepts as 7
paths, connectedness and clusters, bridges, cut vertices, forests and trees. Fuzzy graphs =
introduced by Rosenfeld are finding an increasing number of applications in modelling 7

real time systems where the level of information inherent in the system varies with 7
different levels of precision. Fuzzy models are becoming useful because of their aim in 7
reducing the difference between the traditional numerical models used in engineering 7
and sciences and the symbolic models used in expert systems and AI. After the 78
pioneering work of Rosenfeld and Yeh and Bang in 1975, when some basic fuzzy graph
theoretic concepts and applications have been indicated, several authors have been 80
finding deeper results, and fuzzy analogues of many other graph theoretic concepts. 81
This include fuzzy trees [21,67], fuzzy line graphs [412], operations on fuzzy graphs [13], &
automorphism of fuzzy graphs [9, 11], fuzzy interval graphs [20], cycles and cocycles of s
fuzzy graphs [15], and metric aspects in fuzzy graphs [65]. Bhutani and Rosenfeld have &
introduced the concept of strong arcs [12]. Different parameters like sum distance in 8
fuzzy graphs and chromatic number of fuzzy graphs were discussed in [29,069]. The work s
on fuzzy graphs was also done by Akram, Samanta, Nayeem, Pramanik, Rashmanlou 87
and Pal [1-3,48,51-55,57-61]. P.Bhattacharya [10] discussed some properties of fuzzy s
graphs and introduced the notion of eccentricity and centre in fuzzy graphs. 80
K.R.Bhutani [13] introduced the concept of complete fuzzy graphs and concluded that a o
complete fuzzy graph has no cut nodes. Xu [72] applied connectivity parameters of o1
fuzzy graphs to problems in chemical structures. o

The concept of domination in fuzzy graphs was investigated by A.Somasundaram 0
and S.Somasundaram. A.Somasundaram presented the concepts of independent o
domination, total domination, connected domination and domination in cartesian o
products and composition of fuzzy graphs [63]. Somasundaram and Somasundaram %
discussed domination in fuzzy graphs. They defined domination using effective edges in o
fuzzy graph [63,64]. Nagoorgani and Chandrasekharan defined domination in fuzzy o
graphs using strong arcs [17]. Manjusha and Sunitha discussed some concepts in %
domination and total domination in fuzzy graphs using strong arcs [36,37]. A. Selvam 100
Avadayappan, G. Mahadevan, A. Mydeenbibi, T.A. Subramanian, A. Nagarajan, A. 101
Rajeswari have studied the problem of obtaining an upper bound for the sum of a 102
domination parameter and a graph theoretic parameter and characterized the 103
corresponding extremal graphs. 104

Motivated by the notion of dominating sets and their applicability, we focused on 105

introducing some dominating parameters in fuzzy graph theory. For fuzzification of the 106
following problems, types of nodes (based on advantages) and types of connection with 1o
nodes can be assigned by different values. So the question is based on based on values 10
on nodes and ratio of total of values of adjacent a-strong connections to total of values 109
of adjacent connections? 110

Chess enthusiasts in Europe considered the problem of determining the minimum m
number of queens that can be placed on a chess board so that all the squares are either 1
attacked by a queen or occupied by a queen. Harary et al. [5] explained an interesting — us
application in voting situations using the concept of domination. A number of strategic 1.
locations are to be kept under observations. One of the important areas of applications s
of domination is communication network, where a dominating set represents a set of 116
cities which, acting as transmitting stations, can transmit messages to every city in the 1w
network. Another area of application of domination is voting situations. Suppose the 118

commander of the Army Postal services plans to set up a few post offices in an 119
important region with minimum number of post offices to control the whole region. 120
Now-a-day almost all schools operate school buses for transporting children to and from 11
schools. Among many points, three important points to be noted are 1. The running 122
time of a bus between school and its terminus. 2. Maximum number of students in a 123
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bus at any one time and 3. The maximum distance a student has to walk to board a 124
school bus. Consider a computer network modeled by a 4-cube. The vertices of the 125
4-cube represents computers and edges represent direct communication link between two 12
computers. So, in this model we have 16 computers or processers to which it is directly 17
connected. The problem is to collect information from all processors and we like to do it 12
relatively often and relatively fast. So we identify a small set of processors called 129
collecting processors and ask each processor to send its information to one of a small set 130
of collecting processors. We assume that at most a one-unit delay between the time a =
processor sends its information and time it arrives at a nearest collector is allowed. So, 1
we have to find an dominating set among the set of a processors. Consider the problem 13
of locating a single fire station, police station or a similar such service facility to serve 1
the communities. Also, we would like to locate such a service facility in one of these 135
communities and not at an arbitrary point along the road, due to some reasons. Let P, 13
be a set of points in general position on the plane. The unit distance graph UDG(P,) 1
associated to P, is a graph whose vertex set consists of the elements of P,, two of which 13

are connected if they are at distance at most one. Unit distance graphs are used to 139
model various types of wireless networks, including cellular networks, sensor networks, 10
ad-hoc networks and others in which the nodes represent broadcast stations with a 141
uniform broadcast range we shall refer to networks that can be modeled using unit 142
distance graphs as unit distance wireless networks, abbreviated as UDW networks. 143

We first briefly illustrate our opinion. The rest of this paper is organized as follows. 14
In Section 2, we lay down the preliminary results which recall some basic concepts of 145
fuzzy graph, path, cycle, connectedness, complete fuzzy graph, order, size, complement, 1
types of arcs consists of a-strong, 8-strong,d-strong and M-strong, bipartite fuzzy 147
graph, complete bipartite fuzzy graph, star fuzzy graph, be isolated, domatic partition, s
Vizing’s conjecture, Gravier and Khelladi’s conjecture, some operations on fuzzy graphs 1

consists of cartesian product, join and union, Nordhaus-Gaddum (NG) results and 150
finally we conclude this section with Remark (2.1) and In Section 3, The a-strong 151
domination number of a fuzzy graph is defined in a classic way, Definition (3.1), (3.3), 1=
(3.4). We determine vertex domination number for several classes of fuzzy graphs 153

consists of complete fuzzy graph, Proposition (3.10), empty fuzzy graph, Proposition 154
(3.11), star fuzzy graph, Proposition (3.13), complete bipartite fuzzy graph, Proposition 1
(3.14). We give an upper bound for the vertex domination number of fuzzy graphs, 156
Proposition (3.15). For any fuzzy graph the Nordhaus-Gaddum(NG)’result holds, 157
Theorem (3.16). Finding domatic partition of size two in fuzzy graph G of order n > 2 15
is studied, Theorem (3.19). We improve upper bound for the vertex domination number  1so
of fuzzy graphs without isolated nodes, Theorem (3.20). We also improve 160
Nordhaus-Gaddum(NG)’result for fuzzy graphs without isolated nodes, Corollary (3.21). 1
We give the relationship between M-strong arcs and a-strong arcs, Corollary (3.24). We  1s
give a necessary and sufficient condition for vertex domination which is half of order, In 13
fact fuzzy graphs with vertex domination which is half of order is characterized in the 1
special case, Theorem (3.26). The vertex domination of union of two fuzzy graphs is 165
studied, Proposition (3.27). Also the vertex domination of union of fuzzy graphs Family e
is discussed, Corollary (3.28). The concepts of both monotone increasing fuzzy graph 167
property, Definition (3.29), and monotone decreasing fuzzy graph property, Definition 16
(3.31), are introduced. The result in relation with vizing’s conjecture by using a-strong e
arc and monotone decreasing fuzzy graph property is determined, Theorem (3.34). 170
Some results in relation with vizing’s conjecture by using a-strong arc and spanning m
fuzzy subgraph is studied, Corollary (3.35). The vertex domination of join of two fuzzy
graphs is studied, Proposition (3.36). Also the vertex domination of join of fuzzy graphs s
Family is discussed, Corollary (3.37). The result in relation with Gravier and Khelladi’s 17
conjecture by using a-strong arc and monotone decreasing fuzzy graph property is 175
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determined, Theorem (3.38). We conclude this section with Some result in relation with s
Gravier and Khelladi’s conjecture by using a-strong arc and spanning fuzzy subgraph is 1
studied, Corollary (3.39). In Section 4, We give 9 practical applications in relation with s

these concepts. 179
2 Preliminary 120
We provide some basic background for the paper in this section. 181

Some of the books discussing these various themes are Bezdek and Pal [7], 182
Lootsma [35], Morderson and Malik [410], Comelius . T. Leondes [34] and Klir and Bo  1s3
Yuan [31]. We shall now list below some basic definitions and results from [41], [56]. 184
Also Background on fuzzy graphs and the following definitions can be found in them. 185

we lay down the preliminary results which recall some basic concepts of fuzzy graph, s
path, cycle, connectedness, complete fuzzy graph, order, size, complement, types of arcs 1
consists of a-strong, §-strong,d-strong and M-strong, bipartite fuzzy graph, complete 188

bipartite fuzzy graph, star fuzzy graph, be isolated, domatic partition, Vizing’s 189
conjecture, Gravier and Khelladi’s conjecture, some operations on fuzzy graphs consists 1%
of cartesian product, join and union, Nordhaus-Gaddum (NG) results and finally we 101
conclude this section with Remark (2.1) 192

We recall that a fuzzy subset of a set S is a function of S into the closed interval [0, 10
1], [77]. A fuzzy graph is denoted by G = (V, o, 1) such that u({z,y}) < o(z) Ao(y) for 1

all z,y € V where V is a vertex set, o is a fuzzy subset of V' and p is a fuzzy relation on 105
V. We call o the fuzzy node set (or fuzzy vertex set) of G and u the fuzzy arc set (or 106
fuzzy edge set) of G, respectively. We consider fuzzy graph G with no loops and assume 1o

that V is finite and nonempty, p is reflexive (i.e., p({z,z}) = o(z), for all z) and 108
symmetric (i.e., p({z,y}) = p({y,x}), for all z,y € V). In all the examples o and pis 190
chosen suitably. In any fuzzy graph, the underlying crisp graph is denoted by 200
G* = (V, E) where V and E are domain of o and pu, respectively. This definition of 201
fuzzy graph is essentially the same as the one appearing in [56]. The fuzzy graph 200

H = (7,v) is called a partial fuzzy subgraph of G = (o, ) if v C p and 7 C 0. Similarly, 20
the fuzzy graph H = (7,v) is called a fuzzy subgraph of G = (V, 0, ) induced by P if 2
PCV,r(x) =o(x) for all z € P and v({z,y}) = u({z,y}) for all z,y € P. For the sake 205
of simplicity, we sometimes call H a fuzzy subgraph of G. We say that the partial fuzzy 206

subgraph (7,v) spans the fuzzy graph (o, p) if o = 7. In this case, we call (7,v) a 207
spanning fuzzy subgraph of (o, ). 208
For the sake of simplicity, we sometimes write xy instead of {z,y} 200
A path P of length n is a sequence of distinct nodes ug, u1,- - - , uy, such that 210
w(ui—1,u;) >0,i=1,2,--- n and the degree of membership of a weakest arc is defined ou
as its strength. If ug = u, and n > 3 then P is called a cycle and P is called a fuzzy 212

cycle, if it contains more than one weakest arc. The strength of a cycle is the strength 213
of the weakest arc in it. The strength of connectedness between two nodes x and vy is 214
defined as the maximum of the strengths of all paths between x and y and is denoted by 215
CONNg(l',y) 216
A fuzzy graph G = (V, 0, u) is connected if for every z,y in V, CONNg(z,y) > 0. 217
An arc wv of a fuzzy graph is called an M-strong arc if p(uv) = o(u) Ao(v). In order 2

to avoid confusion with the notion of strong arcs introduced by Bhutani and 219
Rosenfeld [15], we shall call strong in the sense of Mordeson as M-strong [4(]. 220
A fuzzy graph G is said complete if p(uv) = o(z) A o(y). for all u,v € V. 21
The order p and size g of a fuzzy graph G = (V, 0, u) are defined p = ¥ cyo(x) and 22
0= Ssyevu(zy) ) )
The complement of a fuzzy graph G, denoted by G is defined to G = (V, 0, i) where 22
i(zy) = o(x) No(y) — p(zy) for all z,y € V. 225
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An arc of a fuzzy graph is called a-strong if its weights is greater than strength of 2
connectedness of its end nodes when it is deleted. Depending on CONNg(z,y) of an 2
arc zy in a fuzzy graph G, Mathew and Sunitha [68] defined three types of arcs. Note 2
that CONNg_gy(z,y) is the strength of connectedness between x and y in the fuzzy 2o

graph obtained from G by deleting the arc zy. An arc zy in G is a-strong if 230
p(zy) > CONNG_zy(z,y). An arc zy in G is -strong if p(zy) = CONNg_zy(x,y). 21
An arc zy in G is d-arc if p(zy) < CONNg_zy(x,y). 232

A fuzzy graph G is said bipartite if the vertex set V' can be partitioned into two 233

nonempty sets Vi and V5 such that p(vive) = 0 if vy, v9 € V4 or vy, ve € Vo. Moreover, 2
if p(uv) = o(u) Ao(v) for all w € V7 and v € V; then G is called a complete bipartite 2
graph and is denoted by Ko1,09 , where o and o9 are respectively the restrictions of o 23
to V; and V5. In this case, If |Vi| = 1 or |Va| = 1 then the complete bipartite graph is 2

said a star fuzzy graph which is denoted by K; .. 238
A node wu is said isolated if p(uv) = 0 for all v # u. 230
A domatic partition is a partition of the vertices of a graph into disjoint dominating 240
sets. The maximum number of disjoint dominating sets in a domatic partition of a 241
graph is called its domatic number. 22

In graph theory, Vizing’s conjecture [17] concerns a relation between the domination
number and the cartesian product of graphs. This conjecture was first stated by Vadim
G. Vizing (1968), and states that, if 7(G) denotes the minimum number of vertices in a
dominating set for G, then

V(GO H) > ~(G)y(H).

Vizing’s conjecture from 1968 asserts that the domination number of the. Cartesian 243
product of two graphs is at least as large as the product of their domination numbers. 2

Gravier and Khelladi (1995) conjectured a similar bound for the domination number s
of the tensor product of graphs; however, a counterexample was found by KlavZar 26
Zmazek (1996) [30]. Since Vizing proposed his conjecture, many mathematicians have 27
worked on it, with partial results described below. For a more detailed overview of these 24

results, see Bresar et al. (2012) [3] 249

The cartesian product G = G X Ga [39] of two fuzzy graphs 250
G; = (Vi,o04, i), = 1,2 is defined as a fuzzy graph G = (V x V,01 X 09, u1 X t2) 251
where E = {{uug, uvs}Hu € Vi,ugvs € Es} U {{ujw,vyw}|uiv; € Ey,w € Va}. Fuzzy 252
sets o1 X 09 and p; X po are defined as (o1 X 02)(u1, uz) = o1(u1) A o2(ug) and 253
Yu € V1, Yugva € Fa, (1 X po2)({uug, uve}) = o1(u) A pe(ugvs) and 254
Yuivr € B, Yw € Vo, (1 X p2) ({urw, vy }) = pr (ugvr) A og(w). 255

The union G = G; U G [39] of two fuzzy graphs G; = (V;, 04, 11i),1 = 1,2 is defined 2
as a fuzzy graph G = (V41 U Va,01 U o9, 1 U o) where E = Ey U Ey. Fuzzy sets 01 Uog 257
and p1 U pe are defined as (01 Uoz)(u) = o1(u) if u € Vi — Vo, (01 Uo2)(u) = o2(u) if 25

u€ Vo —Vq, and (01 Uos)(u) = o1(u) Voo(u) if u € V3 NVa. Also 250
(1 U po) (wv) = py(ww) if wo € By — By and (g U po)(uv) = pe(uwv) if wv € Ey — Ey, 260
and (g1 U p2)(uv) = pp(uv) V po(uv) if uwo € Ey N Es. 261

Let G = G1 + G4 denote the join [39] of two fuzzy graphs G; = (Vi, 04, 1t5),0 = 1,218 2
defined as a fuzzy graph G = (V1 U Vs, 01 + 09, 1 + o) where E = E; UE;UE and 2
E' is the set of all edges joining vertices of V; with the vertices of V5, and we assume 264

that V4 N Vy = (0. Fuzzy sets o1 + 02 and p1 + o are defined as 265
(014 02)(u) = (01 Uog)(u) and Yu € V3 U Va; (11 + Mg)(U’U/) = (p1 U po)(uv) if 266
wv € By U By and (1 + p2)(uv) = o1(u) Aoz(v) if uv € E'. 267

The classical paper [19] of Nordhaus and Gaddum established the inequalities for the 2
chromatic numbers of a graph G = (V, E) and its complement G. We are concerned 269

with analogous inequalities involving domination parameters in graphs. We begin with a 2
brief overview of Nordhaus-Gaddum (NG) inequalities for several domination-related — an

parameters. For each generic invariant p of a graph G, let p = u(G) and g = pu(G). 272
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Inequalities on p + i and p.f exist in the literature for only a few of the many 273
domination-related parameters and most of these results are of the additive form. In 274
1972 Jaeger and Payan [26] published the first NG results involving domination. 275
Cockayne and Hedetniemi [18] sharpened the upper bound for the sum. Laskar and 276
Peters [33] improved this bound for the case when both G and G are connected. A 277

much improved bound was established for the case when neither G nor G has isolated s
nodes by Bollobds and Cockayne [14] and by Joseph and Arumugam [27] independently. 27

Remark 2.1. For the sake of simplicity, we do sometimes 280
e writing xy instead of {z,y}. 281

e calling x both vertex and node. 282

e calling xy both edge and arc. 283

e writing Cartesian product both J and x. 284

e saying o(x) and p(zy) with different literature, e.g. value, weight, membership 285
value and etc. 286

3 Main Results -
In this section, we provide the main results. We first briefly illustrate our opinion. 288
The terms “dominating set”, and “domination number” of a graph G = (V, E) were 29
first defined by O. Ore in 1962. A subset A C V is a dominating set for G if each 200
element of V is either in A, or is adjacent to an element of A. The domination number oa
~(G), which is the most commonly used domination number, is the minimum 292
cardinality among all dominating sets of G. 203
More than 1200 papers already published on domination in graphs. Without a 204

doubt, the literature on this subject is growing rapidly, and a considerable amount of 295
work has been dedicated to find different bounds for the domination numbers of graphs. 20

In Analogous to them in fuzzy graphs are existed many variations of concepts of 207
dominations as mentioned some results on introduction. a few researchers defined, 208
sometimes redefined, and studied other domination variations: such as connected 209
domination, strong domination, total domination, (1,2)-vertex domination, 300
2-domination, domination and etc. However, from practical point of view, it was 301
necessary to define other types of dominations. Most of these new variations required  se
the dominating set to have additional properties such as: being as independent set, 303

inducing a connected subgraph, or inducing a clique. These properties were reflected in 30
their names as an adjective: independent domination, connected domination, and clique 305

domination, respectively. 306

The a-strong domination number of a fuzzy graph is defined in a classic way, 307
Definition (3.1), (3.3), (3.4). 308
Definition 3.1. Let G = (o, 1) be a fuzzy graph on V. Let x,y € V. We say that x 300
dominates y in G as a-strong if the arc {x,y} is a-strong,. 310

Example 3.2. By attention to fuzzy graph In Figure (1), the arcs vavs, vavg, v3v4 and

vivs are a-strong and the arcs vyvy, v1v2 and v4vs are not a-strong. 312
Definition 3.3. A subset S of V is called a a-strong dominating set in G if for 313
every v € S, there exists u € S such that v dominates v. 314
Definition 3.4. Let S be the set of all a-strong dominating sets in G, the vertex 315

domination number of G is defined as minpes[Euep(o(u) + ds("))

(u

)] and it is denoted s
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Figure 1. Vertex domination

by 7 (G). If d(u) = 0, then we consider dj((;)) equal with 0. The a-strong dominating

set that is correspond to v, (G) is called by vertex dominating set. We also say
ds(u)

Yuep(o(u) + 7] ), vertex weight of D, for every D € S and it is denoted by wy (D).

Example 3.5. By attention to fuzzy graph In Figure (1), the set {vq, vs} is the
a-strong dominating set. This set is also vertex dominating set in fuzzy graph G. Hence
Y (G) =1.75+ 0.9+ 0.7 = 3.35. So v,(G) = 3.35.

Theorem 3.6. [78] If G is a complete fuzzy graph, then all arcs are strong.
Theorem 3.7. [38] If G is a complete bipartite fuzzy graph, then all arcs are strong.

Remark 3.8. If G is a complete fuzzy graph, then all arcs area-strong.
Remark 3.9. If G is a complete bipartite fuzzy graph, then all arcs are a-strong.

It is well known and generally accepted that the problem of determining the
domination number of an arbitrary graph is a difficult one. Because of this, researchers
have turned their attention to the study of classes of graphs for which the domination
problem can be solved in polynomial time.

We determine vertex domination number for several classes of fuzzy graphs consists
of complete fuzzy graph, Proposition (3.10), empty fuzzy graph, Proposition (3.11), star
fuzzy graph, Proposition (3.13), complete bipartite fuzzy graph, Proposition (3.14).

Proposition 3.10 (Complete fuzzy graph). If G = (V, o0, u) is a complete fuzzy graph,
then v,(G) = minyey (o(u)) + 1.

Proof. Since G is a complete fuzzy graph, all arcs are a-strong by Remark (3.8) and
each node is incident to all other nodes. Hence D = {u} is a a-strong dominating set
and ds(u) = d(u) for each v € V Hence the result follows. O

Proposition 3.11 (Empty fuzzy graph). Let G = (V,0,u) be a fuzzy graph. Then
Y (G) = p, if G be edgeless, i.e.G = K,,.

Proof. Since G is edgeless, Hence V is only a-strong dominating set in G and all arcs
are not a-strong. so we have v,(G) = minpes[Yuepo(u)] = Xue,0(u) = p by
Definition (3.4). so we can write 7, (K,) = p by our notations. O

It is interesting
to note the converse of Proposition

v1(0.5) 5005  v2(0.7) (3.11) that does not hold.
0.009 Example 3.12. We show
0.009 0.006 vs(0.5) the converse of Proposition (3.11)

does not hold. For this purpose, Let
0.003 V = {v1,v9,v3,v4,v5}. We define
v3(0.9) 0008  v4(0.75) oonV by o:V —|0,1] such that

o(v1) =0.5,0(v2) =0.7,0(vs) = 0.9,0(vs) = 0.75,0(v5) = 0.5
Now, The function p: V x V — [0,1] is defined by
u(vivg) = 0.005, p(vivg) = 0.003, p(v1vs) = 0.009, p(vavy) = 0.006, u(vevs) = 0.009,

(vsvg) = 0.008, p(vavs) = 0.003 such that Vu,v € V, u(u,v) < o(u) A o(v). Finally, Let
V, o, and p be the vertices, value of vertices and value of edges respectively. In other
words, By attention to fuzzy graph In Figure (1), the arcs vavs, vavy, v3v4 and vyvs are
a-strong and the arcs vvy, v1v2 and v4v5 are not a-strong. So the set {vq, vz} is the
a-strong dominating set. This set is also vertex dominating set in fuzzy graph G. Hence
Yo (G) = 1.754+ 0.9+ 0.7 = 3.35 = Lyep0(u) = p. So G # Ks but v,(G) = p.
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Proposition 3.13 (Star fuzzy graph). Let G be a star fuzzy graph. Then G = K 353
and vy(K1,,) = o(u) + 1 where u is center of G. 354

Proof. Let G be the star fuzzy graph with V' = {u,v1,v9,- -+ ,v,} such that u and v; 355
are center and leaves of G, for 1 <i < n respectively. So G* = K7 ,, is underlying crisp 3
graph of G. {u} is vertex dominating set in G and all arcs are a-strong by Remark (3.9) s
and due to G is bipartite fuzzy graph. Hence the result follows. O s

Proposition 3.14 (Bipartite fuzzy graph). Let G be the bipartite fuzzy graph which is 350
not star fuzzy graph. Then G = Ky 5y and 7,(Ko,y 0,) = minyev, vevy (0(u) +0(v)) +2. 360

Proof. Let G # K, , be bipartite fuzzy graph. Then both of V; and V3 include more 361
than one vertex. In K, ,, , all arcs are a-strong by Remark (3.9). Also each node in Vi 3

is dominated as a-strong with all nodes in V5 and conversely. Hence in K, ,,, the 363
a-strong dominating sets are V7 and V5 and any set containing 2 nodes, one in V; and e
other in V5. Hence v, (Ko, »,) = minyev, vev, (0(u) + o(v)) + 2. So the theorem is 365
proved. O 366

We give an upper bound for the vertex domination number of fuzzy graphs, 367
Proposition (3.15). 368
Proposition 3.15. For any fuzzy graph G = (V, o, 1), We have 7, < p. 369
Proof. 7,(K,) = p by Theorem (3.11). So the result follows. O s

For the vertex domination number -y, the following theorem gives a a7
Nordhaus-Gaddum type result. 372

For any fuzzy graph the Nordhaus-Gaddum(NG)’result holds, Theorem (3.16). 373

Theorem 3.16. For any fuzzy graph G = (V, 0, 1), The Nordhaus-Gaddum result holds. s
In other words, we have v, + ¥, < 2p. a7s

Proof. G is fuzzy graph. So G is also fuzzy graph. We implement Theorem (3.15) on G 36
and G. Then v, < p and 7, < p. Hence v, + 7, < 2p. So the theorem is proved. O s

The following theorems on dominating sets in graphs are the first results about 378
domination and were presented by Ore in his book Theory of Graphs [69]. 379
Definition 3.17 ( [47]). A a-strong dominating set D is called a minimal a-strong 380
dominating set if no proper subset of D is a a-strong dominating set. 381
Theorem 3.18 ( [47]). Let G be a fuzzy graph without isolated nodes. If D is a 382
minimal a-strong dominating set then V- — D 1is a a-strong dominating set. 383

Finding a domatic partition of size 1 is trivial and finding a domatic partition of size  3s

2 (or establishing that none exists) is easy but finding a maximum-size domatic 385
partition (i.e., the domatic number), is computationally hard. Finding domatic 386
partition of size two in fuzzy graph G of order n > 2 is easy by the following. 387
Theorem 3.19 ( [47]). Every connected graph G of order n > 2 has a a-strong 388
dominating set D whose complement V' — D s also a a-strong dominating set. 389

We improve upper bound for the vertex domination number of fuzzy graphs without s00
isolated nodes, Theorem (3.20). 301

Theorem 3.20. For any fuzzy graph G = (V, 0, u) without isolated nodes, We have 302

T < % 303
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Figure 2. M-strong arcs and
a-strong arcs

Proof. Let D be a minimal dominating set of G. Then by Theorem (3.19), V-D is a

a-strong dominating set of G. Then v, (G) < w,(D) and v,(G) < w,(V — D).
Therefore 27, (G) < wy (D) 4+ w,(V — D) < p which implies v, < £. Hence the proof

is completed. O

We also improve Nordhaus-Gaddum(NG)’result for fuzzy graphs without isolated
nodes, Corollary (3.21).

Corollary 3.21. Let G be a fuzzy graph such that both G and G have no isolated

nodes. Then v, + v, < p,where 7, is the vertex domination number of G. Moreover,

equality holds if and only if v, =7, = §.

Proof. By the Implement of Theorem (3.20) on G and G, we have 7,(G) =, < £, and

1 (G) = ,(G) = 7, < B.S0 v +9 <5+ L =p. Hence v, + 7 < p.
Suppose v, = vV, = &, then obviously v, + v, = p. Conversely, suppose 7, + 7, < p.
Then we have v, < & and v, < §. If either v, < & or 7, < &, then v, 4+ 7, < p, which

2
is a contradiction. Hence the only possibility case is v, = 7, = &. O

Remark 3.22. Note that when we use the definition of domination number in [13,14,15],
Theorem (3.20) and Corollary (3.21) are hold.

Proposition 3.23. Let G = (V,0,u) be a fuzzy graph. If all arcs have equal value, the
G has no a-strong edge.

Proof. Obviously the result is hold by using Definition (3.1). O

We give the relationship between M-strong arcs and a-strong arcs, Corollary (3.24).

Corollary 3.24. Let G = (V,o0,u) be a fuzzy graph. If all arcs are M-strong, the G
has no a-strong edge.

Proof. Obviously the result is hold by using Proposition (3.23). O

The following
example illustrates this concept.

41 (01) 0.001 %) (01) Example 3.25.

In Figure (2) , all arcs are M-strong
but there is no a-strong arcs in this
fuzzy graph. Obviously this result
0.001 0.001 is hold by using Definition (3.3).

We give a necessary
and sufficient condition for vertex
domination which is half of order,
‘U3(01) 0.001 Vg (01) In fact fuzzy graphs with vertex

domination which is half of order is characterized in the special case, Theorem (3.26).

Theorem 3.26. In any fuzzy graph G = (V, 0, 1) such that values of nodes are equal
and all arcs have same value, i.e. for Vu;,u; € V and Ve;,e; € E, we have

o(u;) = o(uj) and p(e;) = ple;). v = 5 if and only if For any vertex dominating set
D in G, we have |D| = 3.

Proof. Suppose D has the conditions. ds(D) = 0 by Proposition (3.23). So

Y (G) = Eyepo(u) by using Definition (3.4). Since values of nodes are equal and

D] = 2, we have 7(G) = Suepo(u) = 2o(u) = L(no(u) = L(Suevo(w)) = L(p) = 2.
Hence the result is hold in this case.
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Conversely, Suppose 7, = £. Let D = {u1,us,--- ,u,} be a vertex dominating set. s
ds(D) = 0 by Proposition (3.23). So v,(G) = Z,ecpo(u) by using Definition (3.4). a3

Since 7, (G) = W, (D), we have v, = § = 1 (Suevo(u)) = Suepo(u). Suppose n # 2.

so X0 (v;)) = 0 which is a contradiction with Yu; € V,o(u;) > 0. Hence n' = 5,le w0

D] =n" = 5. So the result is hold in this case. O s

The vertex domination of union of two fuzzy graphs is studied, Proposition (3.27). 4
Proposition 3.27. Let G and Gy be fuzzy graphs. The vertex dominating set of a3
G1 UGy is D = D1 U Dy such that D1 and Dy are the vertex dominating set of G1 and s
G4 respectively. Moreover, v,(G1 U G2) = 7,(G1) + 7, (G2). a5

Proof. Obviously the result is hold by using Definition of union of two fuzzy graphs. [ 4

Also the vertex domination of union of fuzzy graphs Family is discussed, Corollary 44

(3.28). e
Corollary 3.28. Let G1,Ga,- - ,G, be fuzzy graphs. The vertex dominating set of 449
UG, is D = UP_1 D; such that D; is the vertex dominating set of G;. Moreover, 450
Yo (Uin1Gi) = Ei 71 (G)- 451
Proof. Obviously the result is hold by using proposition (3.27). O s

The concepts of both monotone increasing fuzzy graph property, Definition (3.29), 43
and monotone decreasing fuzzy graph property, Definition (3.31), are introduced. 454
Definition 3.29. We call a fuzzy graph property P monotone increasing if G € P 455
implies G + e € P, i.e., adding an edge e to a fuzzy graph G does not destroy the 456
property. 457

Example 3.30. Connectivity and Hamiltonicity are monotone increasing properties. A s
monotone increasing property is nontrivial if the empty graph K,, ¢ P and the complete s

graph K, € P. 460
Definition 3.31. A fuzzy graph property is monotone decreasing if G € P implies 461
G —e € P ,ie., removing an edge from a graph does not destroy the property. 162

Example 3.32. Properties of a fuzzy graph not being connected or being planar are 163
examples of monotone decreasing fuzzy graph properties. 464

Remark 3.33. Obviously, a fuzzy graph property P is monotone increasing if and only if s

its complement is monotone decreasing. Clearly not all fuzzy graph properties are 466
monotone. For example having at least half of the vertices having a given fixed degree d s
is not monotone. 468

Let v(G) denote the domination number of a simple graph G. Then Vizing 469

(1963) [17]conjectured that v(G)y(H) < v(G x H), where G x H is the graph product. o
While the full conjecture remains open, Clark and Suen (2000) [23] have proved the an

looser result v(G)y(H) < 2v(G x H). a2
Vizing stated the still open conjecture: a73
Conjecture (Vizing [17]). For all graphs G and H, v(G)y(H) < v(G x H). The a4
result in relation with vizing’s conjecture by using a-strong arc and monotone a7
decreasing fuzzy graph property is determined, Theorem (3.34). 476

Theorem 3.34. The vizing’s conjecture is monotone decreasing property in fuzzy graph
G, if the edge e be a-strong and v,(G — €) = 7,(G). 478
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Proof. The fuzzy graph (G — e) x H is the spanning fuzzy subgraph of G x H, for all = 4
fuzzy graph H. So 7,((G —e) x H) > 7,(G x H) > 7,(G)vo(H) = v, (G — e)v,(H). 480
Hence vizing’s conjecture is also hold for G — e. Then the result follows. O e

Some results in relation with vizing’s conjecture by using a-strong arc and spanning s
fuzzy subgraph is studied, Corollary (3.35). 483

Corollary 3.35. Suppose the vizing’s conjecture is hold for G. Let K be the spanning 4
fuzzy subgraph of G such that v,(K) = 7,(G). Then the vizing’s conjecture is hold for s
K. 486

Proof. The fuzzy graph K x H is the spanning fuzzy subgraph of G x H, for all fuzzy s
graph H. So 7, (K X H) > 7,(G x H) > v,(G)v,(H) = v, (K)7,(H). Hence the vizing’s s

conjecture is also hold for K. So the result follows. O a0

The vertex domination of join of two fuzzy graphs is studied, Proposition (3.36). 490
Proposition 3.36. Let G1 and G3 be fuzzy graphs. The vertex dominating set of 401
G1 ® Gy is D = D1 U Dy such that Dy and Do are the vertex dominating set of G1 and 40
G2 respectively. Moreover, v,(G1 ® G2) = v, (G1) + 7, (G2). 493

Proof. Obviously the result is hold by using Definition of join of two fuzzy graphs and 4
Corollary (3.24) which state in this case, M-strong arcs between two fuzzy graphs is not s

a-strong which is weak arc changing strength of connectedness of G. I P

Also the vertex domination of join of fuzzy graphs Family is discussed, Corollary 407
(3.37). 408
Corollary 3.37. Let G1,Ga,- - ,G, be fuzzy graphs. The vertex dominating set of 499
R Gy is D = ®% 1 D; such that D; is the vertex dominating set of G;. Moreover, 500
Yo(@i21Gi) = By (Gi). 0
Proof. Obviously the result is hold by using proposition (3.36). O se

Gravier and Khelladi [22] conjecture a Vizing-like inequality for the domination 503
number of the cross product of graphs. 504

Gravier and Khelladi stated the still open conjecture: 505

Conjecture (Gravier and Khelladi [22]). For all graphs G and H,
YG)y(H) < 27(G® H).

The result in relation with Gravier and Khelladi’s conjecture by using a-strong arc and  sos

monotone decreasing fuzzy graph property is determined, Theorem (3.38). 507
Theorem 3.38. The Gravier and Khelladi’s conjecture is monotone decreasing 508
property in fuzzy graph G, if the edge e be a-strong and v,(G — €) = v,(G). 509
Proof. The fuzzy graph (G — e) x H is the spanning fuzzy subgraph of G x H, for all s
fuzzy graph H. So 7,((G — €) X H) 2 7,(G x H) 2 7,(G)vo(H) = 7(G — €)7.(H). s
Hence Gravier and Khelladi’s conjecture is also hold for G — e. Then the result 512
follows. O s

We conclude this section with Some result in relation with Gravier and Khelladi’s 514
conjecture by using a-strong arc and spanning fuzzy subgraph is studied, Corollary 515
(3.39). 516
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Figure 3. Queens dominating
the chessboard

Corollary 3.39. Suppose the Gravier and Khelladi’s conjecture is hold for G. Let K be
the spanning fuzzy subgraph of G such that v,(K) = v,(G). Then the Gravier and
Khelladi’s conjecture is hold for K.

Proof. The fuzzy graph K x H is the spanning fuzzy subgraph of G x H, for all fuzzy
graph H. So v,(K ® H) > v,(G® H) > v,(G)vu(H) = v, (K)v,(H). Hence the Gravier
and Khelladi’s conjecture is also hold for K. So the result follows. O

4 Practical applications

In this Section, We give 9 practical applications in relation with these concepts.
Domination is a rapidly developing area of research in graph theory. The concept of

O Ny

has existed for a long time and early

discussions on the topic can be
found in works of Ore and Berge .
The summary of the literature
shows the following
wide-known problems, which
are considered among the earliest
applications for dominating sets.
Queens Problem
This problem was mentioned by
Ore. According to the rules of chess
a queen can, in one move, advance
any number of squares horizontally,
diagonally, or vertically (assuming
that no other chess figure is on
L its way). How to place a minimum
/% number of queens on a chessboard
. // so that each square is controlled by
at least one queen? See one of the solutions in (Fig. 3). For fuzzification of this
problem, types of square (based on sensitive place in game of chess, chess pieces) and
types of connection can be assigned by different values. So the question is changed to
this. How to place a number of queens on a chessboard so that each square is controlled
by at least one queen based on values on queens and ratio of total of values of adjacent
a-strong connections to total of values of adjacent connections?
Locating Radar Stations Problem
The problem was discussed by Berge. A number of strategic locations are to be kept
under surveillance. The goal is to locate a radar for the surveillance at as few of these
locations as possible. How a set of locations in which the radar stations are to be placed
can be determined? For fuzzification of this problem, types of radar stations (based on
power of them) and types of connection with locations can be assigned by different
values. So the question is changed to this. How a set of locations in which the radar
stations are to be placed can be determined based on values on radar stations and ratio
of total of values of adjacent a-strong connections to total of values of adjacent
connections?
Problem of Communications in a Network
Suppose that there is a network of cities with communication links. How to set up
transmitting stations at some of the cities so that every city can receive a message from
at least one of the transmitting stations? This problem was discussed in detail by Liu.
For fuzzification of this problem, types of cities (based on population, structure) and
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types of connection with cities can be assigned by different values. So the question is 566
changed to this. How to set up transmitting stations at some of the cities so that every se
city can receive a message from at least one of the transmitting stations based on values s
on cities and ratio of total of values of adjacent a-strong connections to total of values s

of adjacent connections? 570

Nuclear Power Plants Problem 571

A similar known problem is a nuclear power plants problem. There are various 572
locations and an arc can be drawn from location x to location y if it is possible for a 573
watchman stationed at x to observe a warning light located at y. How many guards are su
needed to observe all of the warning lights, and where should they be located? For 575
fuzzification of this problem, types of guards (based on abilities) and types of 576
connection with guards can be assigned by different values. So the question is changed s~
to this. How many guards are needed to observe all of the warning lights, and where 578
should they be located based on values on guards and ratio of total of values of adjacent s
a-strong connections to total of values of adjacent connections? 580

At present, domination is considered to be one of the fundamental concepts in graph s
theory and its various applications to ad hoc networks, biological networks, distributed ss
computing, social networks and web graphs partly explain the increased interest. Such  sss
applications usually aim to select a subset of nodes that will provide some definite 584
service such that every node in the network is ?close? to some node in the subset. The sss
following examples show when the concept of domination can be applied in modelling  sss
real-life problems. 587

Modelling Biological Networks 588

Using graph theory as a modelling tool in biological networks allows the utilization  sso
of the most graphical invariants in such a way that it is possible to identify secondary  se
RNA (Ribonucleic acid) motifs numerically. Those graphical invariants are variations of sa

the domination number of a graph. The results of the research carried out show that 502
the variations of the domination number can be used for correctly distinguishing among s
the trees that represent native structures and those that are not likely candidates to 504
represent RNA. For fuzzification of this problem, types of location (based on 505

advantages) and types of connection with locations can be assigned by different values. sos
So the question is based on based on values on locations and ratio of total of values of  sor

adjacent a-strong connections to total of values of adjacent connections? 508
Modelling Social Networks 599
Dominating sets can be used in modelling social networks and studying the 600

dynamics of relations among numerous individuals in different domains. A social 601

network is a social structure made of individuals (or groups of individuals), which are
connected by one or more specific types of interdependency. The choice of initial sets of 03
target individuals is an important problem in the theory of social networks. In the work o
of Kelleher and Cozzens, social networks are modelled in terms of graph theory and it  c0s
was shown that some of these sets can be found by using the properties of dominating s
sets in graphs. For fuzzification of this problem, types of people (based on abilities) and o
types of connection with people can be assigned by different values. So the question is s

based on based on values on people and ratio of total of values of adjacent a-strong 609
connections to total of values of adjacent connections? 610
Facility Location Problems 611

The dominating sets in graphs are natural models for facility location problems in 2
operational research. Facility location problems are concerned with the location of one o3
or more facilities in a way that optimizes a certain objective such as minimizing 614
transportation cost, providing equitable service to customers and capturing the largest e
market share. For fuzzification of this problem, types of location (based on advantages) e
and types of connection with locations can be assigned by different values. So the 617
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question is based on based on values on locations and ratio of total of values of adjacent e

a-strong connections to total of values of adjacent connections? 619
Coding Theory 620
The concept of domination is also applied in coding theory as discussed by 621

Kalbfleisch, Stanton and Horton and Cockayne and Hedetniemi. If one defines a graph, e

the vertices of which are the n-dimensional vectors with coordinates chosen from 623

{1,---,p},p > 1, and two vertices are adjacent if they differ in one coordinate, then the e

sets of vectors which are (n,p)-covering sets, single error correcting codes, or perfect 625

covering sets are all dominating sets of the graph with determined additional properties. o2

For fuzzification of this problem, types of codes (based on types of words, different 627

words, same words) and types of connection with codes can be assigned by different 628

values. So the question is based on based on values on codes and ratio of total of values e

of adjacent a-strong connections to total of values of adjacent connections? 630
Multiple Domination Problems 631
An important role is played by multiple domination. Multiple domination can be 632

used to construct hierarchical overlay networks in peer-to-peer applications for more 633

efficient index searching. The hierarchical overlay networks usually serve as distributed 634

databases for index searching, e.g. in modern file sharing and instant messaging 635

computer network applications. Dominating sets of several kinds are used for balancing 3

efficiency and fault tolerance as well as in the distributed construction of minimum 637

spanning trees. Another good example of direct, important and quickly developing 638

applications of multiple domination in modern computer networks is a wireless sensor 3
network. A wireless sensor net- work (WSN) usually consists of up to several hundred s
small autonomous devices to measure some physical parameters. Each device contains a  sa
processing unit and a limited memory as well as a radio transmitter and a receiver to be 2
able to communicate with its neighbors. Also, it contains a limited power battery and is e

constrained in energy consumption. There is a base station, which is a special sensor 644
node used as a sink to collect information gathered by other sensor nodes and to 645
provide a connection between the WSN and a usual network. A routing algorithm 646
allows the sensor nodes to self-organize into a WSN. As stated, an important goal in 647

WSN design is to maximize the functional lifetime of a sensor network by using energy e
efficient distributed algorithms, networking and routing techniques. To maximize the 649
functional lifetime, it is important to select some sensor nodes to behave as a backbone s

set to support routing communications. The backbone set can be considered as a 651
dominating set in the corresponding graph. Dominating sets of several different kinds s
have proved to be useful and effective for modelling backbone sets. In the recent 653
literature, particular attention has been paid to construction of k-connected k- 654
dominating sets in WSNs, and several probabilistic and deterministic approaches have s
been proposed and analyzed. The backbone set of sensor nodes should be selected as 656
small as possible and, on the other hand, it should guarantee high efficiency and 657

reliability of networking and communications. This trade-off requires construction of 658
multiple dominating sets providing energy efficient and reliable data dissemination and s
communication protocols. For fuzzification of this problem, types of sensor nodes (based  sso
on advantages) and types of connection with sensor nodes can be assigned by different
values. So the question is based on based on values on sensor nodes and ratio of total of es2
values of adjacent a-strong connections to total of values of adjacent connections? 663

A homogeneous WSN consists of wireless sensor devices of the same kind. All the 664
devices have the same set of limited resources and, originally, no hierarchy is imposed 65

on the network structure and communications. In a network of this kind, the only 666
special sensor node is a base station. For all the other nodes, it is necessary to construct eer
and switch the backbone sets and communications efficiently so that all the network 668

nodes stay in operation as long as possible. Therefore, in this case, it is important to be 6o
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able to construct and switch dominating sets and route communications uniformly and e
efficiently with respect to the energy consumption of each particular sensor node. This
has to be done to optimize the functional lifetime of the whole network. 672

Usually, a WSN is mathematically modelled as a unit or quasi-unit disk graph. These o7
are the most natural and general graph models for a WSN. In a unit disk graph model, e
nodes correspond to sensor locations in the Euclidean plane and are assumed to have 675
identical (unit) transmission ranges. An edge between two nodes means that they can e
communicate directly, i.e. the distance between them is at most one. A survey of known e
results on unit disk graphs, including algorithms for constructing dominating sets, can e
be found. A quasi-unit disk graph model takes into consideration possible transmission e
obstacles and is much closer to reality: we are sure to have an edge between two nodes s

if the distance between them is at most a parameter d,0 < d < 1. If the distance 681
between two nodes is in the range from d to 1, the existence of an edge is not specified. s
A description of several more restricted geometric graph models for WSN design, e.g. 683
the related neighborhood graph, Gabriel graph, Yao graph etc., can be found. 684

Domination is an area in graph theory with an extensive research activity. A book s
by Haynes, Hedetniemi and Slater on domination published in 1998 lists 1222 articles in s
this area. 687

5 Conclusion 5

Graph theory is one of the branches of modern mathematics having experienced a most s
impressive development in recent years. One of the most interesting problems in graph s

theory is that of Domination Theory. Nowadays domination theory ranks top among 601
the most prominent areas of research in graph theory and combinatorics. The theory of s
domination has been the nucleus of research activity in graph theory in recent times. 693
The fastest growing area within graph theory is a study of domination and related 694
subset problems such independence, covering, matching, decomposition and labelling. 695
Domination boasts a host of applications to social network theory, land surveying, game s
theory, interconnection network, parallel computing and image processing and so on. 697
Today, this theory gained popularity and remains as a major area of research. At 698
present, domination is considered to be one of the fundamental concepts in graph theory s
and its various applications to ad hoc networks, biological networks, distributed 700

computing, social networks and web graphs partly explain the increased interest. More 7
than 1200 papers already published on domination in graphs. Without a doubt, the 702

literature on this subject is growing rapidly, and a considerable amount of work has 703
been dedicated to find different bounds for the domination numbers of graphs. However, 70
from practical point of view, it was necessary to define other types of dominations. 705

Most of these new variations required the dominating set to have additional properties. 76
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