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Abstract

We do fuzzification the concept of domination in crisp graph by using membership
values of nodes, α-strong and arcs. In this paper, we introduce a new variation on the
domination theme which we call vertex domination. We determine the vertex
domination number γv for several classes of fuzzy graphs, specially complete fuzzy graph
and complete bipartite fuzzy graphs. The bounds is obtained for the vertex domination
number of fuzzy graphs. Also the relationship between M -strong arcs and α-strong is
obtained. In fuzzy graphs, monotone decreasing property and monotone increasing
property is introduced. We prove the vizing’s conjecture is monotone decreasing fuzzy
graph property for vertex domination. we prove also the Grarier-Khelladi’s conjecture is
monotone decreasing fuzzy graph property for it. We obtain Nordhaus-Gaddum (NG)
type results for these parameters. The relationship between several classes of operations
on fuzzy graphs with the vertex domination number of them is studied.
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1 Introduction 1

L.A. Zadeh introduced the concept of a fuzzy subset of a set as a way for representing 2

uncertainty. Zadeh’s ideas stirred the interest of researchers worldwide. His ideas have 3

been applied to a wide range of scientific areas. Theoretical mathematics has also been 4

touched by the notion of a fuzzy subset. In 1965, Zadeh published his seminal paper 5

“fuzzy sets” [77] which described fuzzy set theory and consequently fuzzy logic. The 6

purpose of Zadeh’s paper was to develop a theory which could deal with ambiguity and 7

imprecision of certain classes or sets in Human thinking, particularly in the domains of 8

pattern recognition, communication of information, and observation. This theory 9

proposed making the grade of membership of an element in a subset of a universal set a 10

value in the closed interval [0, 1] of real numbers. Zadeh’s idea have found applications 11

in computer science, artificial intelligence, decision analysis, information science, system 12

science, control engineering, expert systems, pattern recognition, management science, 13

operations research, and robotics. Theoretical mathematics has also been touched by 14

fuzzy set theory. In the classical set theory introduced by Cantor, values of elements in 15

a set are either 0 or 1. That is for any element, there are only two possibilities: the 16

element is the set or it is not. Therefore, Cantor set theory cannot handle data with 17

ambiguity and uncertainty. The ideas of fuzzy set theory have been introduced into 18

topology, abstract algebra, geometry, graph theory, and analysis. Analytical 19
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representation of physical phenomena can be fruitful as models of reality, but are 20

sometimes difficult to understand because they do not explain much by themselves, and 21

may remain unclear to the non-specialist. In other words, Zadeh proposed fuzzy theory 22

and introduced fuzzy set theory which can be considered as the phenomenon of 23

ambiguity across all systems displaying this property and its consequences. 24

Graph theory is one of the branches of modern mathematics having experienced a 25

most impressive development in recent years. The origin of graph theory can be traced 26

back to Euler’s work on the Konigsberg bridge problem (1735) which subsequently led 27

to the concept of an Eulerian graph. The first text book on graph theory was written by 28

D’enesKonig and published in 1936. A later text book by Frank Harary published in 29

1968, was enormously popular and enabled mathematicians, chemists, electrical 30

engineers and social scientists to have common platform to dialogue with each other. 31

Graphs are represented graphically by taking a set of points on the plane and it is 32

desired to find some structure among the points in the form of edges containing a subset 33

of the pair of points. Graph theory plays a vital role as far as application side is 34

concerned. Graph theory is intimately related to many branches of mathematics 35

including group theory, matrix theory, numerical analysis, probability, topology and 36

combinatorics because of its diagrammatic representation and its intuitive and aesthetic 37

appeal. 38

One of the most interesting problems in graph theory is that of Domination Theory. 39

The earliest ideas of dominating sets are found in the classical problems of covering chess 40

board with minimum number of chess pieces. Nowadays domination theory ranks top 41

among the most prominent areas of research in graph theory and combinatorics. The 42

concept of domination in graphs, with its many variations, is now well studied in graph 43

theory. The book by Chartrand and Lesniak [16] includes a chapter on domination. For 44

a more thorough study of domination in graphs, see Haynes et al. [24]. The current list 45

of papers on domination in [24] has over 1200 entries.The theory of domination is 46

formalized by Clauge Berge in his book “Theory of graphs and its application” (1962). 47

Berge mentions the strategies of keeping a number of locations under surveillance, by a 48

set of radar station. Oystein Ore was a first person to use the term domination number 49

in his book on Graph Theory. The theory of domination has been the nucleus of 50

research activity in graph theory in recent times. The fastest growing area within graph 51

theory is a study of domination and related subset problems such independence, 52

covering, matching, decomposition and labelling. Domination boasts a host of 53

applications to social network theory, land surveying, game theory, interconnection 54

network, parallel computing and image processing and so on. Today, this theory gained 55

popularity and remains as a major area of research due to the contributions of 56

O.Ore [50], C.Berge [6], E.J.Cockayne [19], S.T.Hedetniemi [24], T.W.Haynes [24], 57

R.C.Laskar [25], P.J.Slater [66], V.R.Kulli [32], E.Sampathkumar [62], S.Arumugam [4]. 58

Fuzzy graph theory has numerous applications in various fields like clustering 59

analysis, database theory, network analysis, information theory, etc. [44]. Fuzzy models 60

can be used in problems handling uncertainty to get more accurate and precise 61

solutions [74–76]. As in graphs, connectivity concepts play a key role in applications 62

related with fuzzy graphs [44, 70]. The fuzzy definition of fuzzy graphs was proposed by 63

Kaufmann [28], from the fuzzy relations introduced by Zadeh. Although Rosenfeld 64

introduced another elaborated definition, including fuzzy vertex and fuzzy edges. Fuzzy 65

graphs were introduced by Rosenfeld [56] and Yeh and Bang [73] independently in 1975. 66

Rosenfeld in his paper “Fuzzy Graphs” presented the basic structural and connectivity 67

concepts while Yeh and Bang introduced different connectivity parameters of a fuzzy 68

graph and discussed their applications in the paper titled “Fuzzy relations, Fuzzy 69

graphs and their applications to clustering analysis” [73]. Rosenfeld considered fuzzy 70

relations on fuzzy sets and developed the structure of fuzzy graphs, obtaining analogues 71
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of several graph theoretical concepts. He introduced and examined such concepts as 72

paths, connectedness and clusters, bridges, cut vertices, forests and trees. Fuzzy graphs 73

introduced by Rosenfeld are finding an increasing number of applications in modelling 74

real time systems where the level of information inherent in the system varies with 75

different levels of precision. Fuzzy models are becoming useful because of their aim in 76

reducing the difference between the traditional numerical models used in engineering 77

and sciences and the symbolic models used in expert systems and AI. After the 78

pioneering work of Rosenfeld and Yeh and Bang in 1975, when some basic fuzzy graph 79

theoretic concepts and applications have been indicated, several authors have been 80

finding deeper results, and fuzzy analogues of many other graph theoretic concepts. 81

This include fuzzy trees [21,67], fuzzy line graphs [42], operations on fuzzy graphs [43], 82

automorphism of fuzzy graphs [9, 11], fuzzy interval graphs [20], cycles and cocycles of 83

fuzzy graphs [45], and metric aspects in fuzzy graphs [65]. Bhutani and Rosenfeld have 84

introduced the concept of strong arcs [12]. Different parameters like sum distance in 85

fuzzy graphs and chromatic number of fuzzy graphs were discussed in [29,69]. The work 86

on fuzzy graphs was also done by Akram, Samanta, Nayeem, Pramanik, Rashmanlou 87

and Pal [1–3,48,51–55,57–61]. P.Bhattacharya [10] discussed some properties of fuzzy 88

graphs and introduced the notion of eccentricity and centre in fuzzy graphs. 89

K.R.Bhutani [13] introduced the concept of complete fuzzy graphs and concluded that a 90

complete fuzzy graph has no cut nodes. Xu [72] applied connectivity parameters of 91

fuzzy graphs to problems in chemical structures. 92

The concept of domination in fuzzy graphs was investigated by A.Somasundaram 93

and S.Somasundaram. A.Somasundaram presented the concepts of independent 94

domination, total domination, connected domination and domination in cartesian 95

products and composition of fuzzy graphs [63]. Somasundaram and Somasundaram 96

discussed domination in fuzzy graphs. They defined domination using effective edges in 97

fuzzy graph [63,64]. Nagoorgani and Chandrasekharan defined domination in fuzzy 98

graphs using strong arcs [47]. Manjusha and Sunitha discussed some concepts in 99

domination and total domination in fuzzy graphs using strong arcs [36,37]. A. Selvam 100

Avadayappan, G. Mahadevan, A. Mydeenbibi, T.A. Subramanian, A. Nagarajan, A. 101

Rajeswari have studied the problem of obtaining an upper bound for the sum of a 102

domination parameter and a graph theoretic parameter and characterized the 103

corresponding extremal graphs. 104

Motivated by the notion of dominating sets and their applicability, we focused on 105

introducing some dominating parameters in fuzzy graph theory. For fuzzification of the 106

following problems, types of nodes (based on advantages) and types of connection with 107

nodes can be assigned by different values. So the question is based on based on values 108

on nodes and ratio of total of values of adjacent α-strong connections to total of values 109

of adjacent connections? 110

Chess enthusiasts in Europe considered the problem of determining the minimum 111

number of queens that can be placed on a chess board so that all the squares are either 112

attacked by a queen or occupied by a queen. Harary et al. [5] explained an interesting 113

application in voting situations using the concept of domination. A number of strategic 114

locations are to be kept under observations. One of the important areas of applications 115

of domination is communication network, where a dominating set represents a set of 116

cities which, acting as transmitting stations, can transmit messages to every city in the 117

network. Another area of application of domination is voting situations. Suppose the 118

commander of the Army Postal services plans to set up a few post offices in an 119

important region with minimum number of post offices to control the whole region. 120

Now-a-day almost all schools operate school buses for transporting children to and from 121

schools. Among many points, three important points to be noted are 1. The running 122

time of a bus between school and its terminus. 2. Maximum number of students in a 123

3/20

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 April 2018                   doi:10.20944/preprints201804.0085.v1

http://dx.doi.org/10.20944/preprints201804.0085.v1


bus at any one time and 3. The maximum distance a student has to walk to board a 124

school bus. Consider a computer network modeled by a 4-cube. The vertices of the 125

4-cube represents computers and edges represent direct communication link between two 126

computers. So, in this model we have 16 computers or processers to which it is directly 127

connected. The problem is to collect information from all processors and we like to do it 128

relatively often and relatively fast. So we identify a small set of processors called 129

collecting processors and ask each processor to send its information to one of a small set 130

of collecting processors. We assume that at most a one-unit delay between the time a 131

processor sends its information and time it arrives at a nearest collector is allowed. So, 132

we have to find an dominating set among the set of a processors. Consider the problem 133

of locating a single fire station, police station or a similar such service facility to serve 134

the communities. Also, we would like to locate such a service facility in one of these 135

communities and not at an arbitrary point along the road, due to some reasons. Let Pn 136

be a set of points in general position on the plane. The unit distance graph UDG(Pn) 137

associated to Pn is a graph whose vertex set consists of the elements of Pn, two of which 138

are connected if they are at distance at most one. Unit distance graphs are used to 139

model various types of wireless networks, including cellular networks, sensor networks, 140

ad-hoc networks and others in which the nodes represent broadcast stations with a 141

uniform broadcast range we shall refer to networks that can be modeled using unit 142

distance graphs as unit distance wireless networks, abbreviated as UDW networks. 143

We first briefly illustrate our opinion. The rest of this paper is organized as follows. 144

In Section 2, we lay down the preliminary results which recall some basic concepts of 145

fuzzy graph, path, cycle, connectedness, complete fuzzy graph, order, size, complement, 146

types of arcs consists of α-strong, β-strong,δ-strong and M -strong, bipartite fuzzy 147

graph, complete bipartite fuzzy graph, star fuzzy graph, be isolated, domatic partition, 148

Vizing’s conjecture, Gravier and Khelladi’s conjecture, some operations on fuzzy graphs 149

consists of cartesian product, join and union, Nordhaus-Gaddum (NG) results and 150

finally we conclude this section with Remark (2.1) and In Section 3, The α-strong 151

domination number of a fuzzy graph is defined in a classic way, Definition (3.1), (3.3), 152

(3.4). We determine vertex domination number for several classes of fuzzy graphs 153

consists of complete fuzzy graph, Proposition (3.10), empty fuzzy graph, Proposition 154

(3.11), star fuzzy graph, Proposition (3.13), complete bipartite fuzzy graph, Proposition 155

(3.14). We give an upper bound for the vertex domination number of fuzzy graphs, 156

Proposition (3.15). For any fuzzy graph the Nordhaus-Gaddum(NG)’result holds, 157

Theorem (3.16). Finding domatic partition of size two in fuzzy graph G of order n ≥ 2 158

is studied, Theorem (3.19). We improve upper bound for the vertex domination number 159

of fuzzy graphs without isolated nodes, Theorem (3.20). We also improve 160

Nordhaus-Gaddum(NG)’result for fuzzy graphs without isolated nodes, Corollary (3.21). 161

We give the relationship between M -strong arcs and α-strong arcs, Corollary (3.24). We 162

give a necessary and sufficient condition for vertex domination which is half of order, In 163

fact fuzzy graphs with vertex domination which is half of order is characterized in the 164

special case, Theorem (3.26). The vertex domination of union of two fuzzy graphs is 165

studied, Proposition (3.27). Also the vertex domination of union of fuzzy graphs Family 166

is discussed, Corollary (3.28). The concepts of both monotone increasing fuzzy graph 167

property, Definition (3.29), and monotone decreasing fuzzy graph property, Definition 168

(3.31), are introduced. The result in relation with vizing’s conjecture by using α-strong 169

arc and monotone decreasing fuzzy graph property is determined, Theorem (3.34). 170

Some results in relation with vizing’s conjecture by using α-strong arc and spanning 171

fuzzy subgraph is studied, Corollary (3.35). The vertex domination of join of two fuzzy 172

graphs is studied, Proposition (3.36). Also the vertex domination of join of fuzzy graphs 173

Family is discussed, Corollary (3.37). The result in relation with Gravier and Khelladi’s 174

conjecture by using α-strong arc and monotone decreasing fuzzy graph property is 175
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determined, Theorem (3.38). We conclude this section with Some result in relation with 176

Gravier and Khelladi’s conjecture by using α-strong arc and spanning fuzzy subgraph is 177

studied, Corollary (3.39). In Section 4, We give 9 practical applications in relation with 178

these concepts. 179

2 Preliminary 180

We provide some basic background for the paper in this section. 181

Some of the books discussing these various themes are Bezdek and Pal [7], 182

Lootsma [35], Morderson and Malik [40], Comelius . T. Leondes [34] and Klir and Bo 183

Yuan [31]. We shall now list below some basic definitions and results from [41], [56]. 184

Also Background on fuzzy graphs and the following definitions can be found in them. 185

we lay down the preliminary results which recall some basic concepts of fuzzy graph, 186

path, cycle, connectedness, complete fuzzy graph, order, size, complement, types of arcs 187

consists of α-strong, β-strong,δ-strong and M -strong, bipartite fuzzy graph, complete 188

bipartite fuzzy graph, star fuzzy graph, be isolated, domatic partition, Vizing’s 189

conjecture, Gravier and Khelladi’s conjecture, some operations on fuzzy graphs consists 190

of cartesian product, join and union, Nordhaus-Gaddum (NG) results and finally we 191

conclude this section with Remark (2.1) 192

We recall that a fuzzy subset of a set S is a function of S into the closed interval [0, 193

1], [77]. A fuzzy graph is denoted by G = (V, σ, µ) such that µ({x, y}) ≤ σ(x) ∧ σ(y) for 194

all x, y ∈ V where V is a vertex set, σ is a fuzzy subset of V and µ is a fuzzy relation on 195

V . We call σ the fuzzy node set (or fuzzy vertex set) of G and µ the fuzzy arc set (or 196

fuzzy edge set) of G, respectively. We consider fuzzy graph G with no loops and assume 197

that V is finite and nonempty, µ is reflexive (i.e., µ({x, x}) = σ(x), for all x) and 198

symmetric (i.e., µ({x, y}) = µ({y, x}), for all x, y ∈ V ). In all the examples σ and µ is 199

chosen suitably. In any fuzzy graph, the underlying crisp graph is denoted by 200

G∗ = (V,E) where V and E are domain of σ and µ, respectively. This definition of 201

fuzzy graph is essentially the same as the one appearing in [56]. The fuzzy graph 202

H = (τ, ν) is called a partial fuzzy subgraph of G = (σ, µ) if ν ⊆ µ and τ ⊆ σ. Similarly, 203

the fuzzy graph H = (τ, ν) is called a fuzzy subgraph of G = (V, σ, µ) induced by P if 204

P ⊆ V, τ(x) = σ(x) for all x ∈ P and ν({x, y}) = µ({x, y}) for all x, y ∈ P. For the sake 205

of simplicity, we sometimes call H a fuzzy subgraph of G. We say that the partial fuzzy 206

subgraph (τ, ν) spans the fuzzy graph (σ, µ) if σ = τ. In this case, we call (τ, ν) a 207

spanning fuzzy subgraph of (σ, µ). 208

For the sake of simplicity, we sometimes write xy instead of {x, y} 209

A path P of length n is a sequence of distinct nodes u0, u1, · · · , un such that 210

µ(ui−1, ui) > 0, i = 1, 2, · · · , n and the degree of membership of a weakest arc is defined 211

as its strength. If u0 = un and n ≥ 3 then P is called a cycle and P is called a fuzzy 212

cycle, if it contains more than one weakest arc. The strength of a cycle is the strength 213

of the weakest arc in it. The strength of connectedness between two nodes x and y is 214

defined as the maximum of the strengths of all paths between x and y and is denoted by 215

CONNG(x, y). 216

A fuzzy graph G = (V, σ, µ) is connected if for every x, y in V, CONNG(x, y) > 0. 217

An arc uv of a fuzzy graph is called an M -strong arc if µ(uv) = σ(u)∧ σ(v). In order 218

to avoid confusion with the notion of strong arcs introduced by Bhutani and 219

Rosenfeld [15], we shall call strong in the sense of Mordeson as M-strong [46]. 220

A fuzzy graph G is said complete if µ(uv) = σ(x) ∧ σ(y). for all u, v ∈ V. 221

The order p and size q of a fuzzy graph G = (V, σ, µ) are defined p = Σx∈V σ(x) and 222

q = Σx,y∈V µ(xy). 223

The complement of a fuzzy graph G, denoted by Ḡ is defined to Ḡ = (V, σ, µ̄) where 224

µ̄(xy) = σ(x) ∧ σ(y)− µ(xy) for all x, y ∈ V. 225
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An arc of a fuzzy graph is called α-strong if its weights is greater than strength of 226

connectedness of its end nodes when it is deleted. Depending on CONNG(x, y) of an 227

arc xy in a fuzzy graph G, Mathew and Sunitha [68] defined three types of arcs. Note 228

that CONNG−xy(x, y) is the strength of connectedness between x and y in the fuzzy 229

graph obtained from G by deleting the arc xy. An arc xy in G is α-strong if 230

µ(xy) > CONNG−xy(x, y). An arc xy in G is β-strong if µ(xy) = CONNG−xy(x, y). 231

An arc xy in G is δ-arc if µ(xy) < CONNG−xy(x, y). 232

A fuzzy graph G is said bipartite if the vertex set V can be partitioned into two 233

nonempty sets V1 and V2 such that µ(v1v2) = 0 if v1, v2 ∈ V1 or v1, v2 ∈ V2. Moreover, 234

if µ(uv) = σ(u) ∧ σ(v) for all u ∈ V1 and v ∈ V2 then G is called a complete bipartite 235

graph and is denoted by Kσ1, σ2 , where σ1 and σ2 are respectively the restrictions of σ 236

to V1 and V2. In this case, If |V1| = 1 or |V2| = 1 then the complete bipartite graph is 237

said a star fuzzy graph which is denoted by K1,σ. 238

A node u is said isolated if µ(uv) = 0 for all v 6= u. 239

A domatic partition is a partition of the vertices of a graph into disjoint dominating 240

sets. The maximum number of disjoint dominating sets in a domatic partition of a 241

graph is called its domatic number. 242

In graph theory, Vizing’s conjecture [17] concerns a relation between the domination
number and the cartesian product of graphs. This conjecture was first stated by Vadim
G. Vizing (1968), and states that, if γ(G) denotes the minimum number of vertices in a
dominating set for G, then

γ(G�H) ≥ γ(G)γ(H).

Vizing’s conjecture from 1968 asserts that the domination number of the. Cartesian 243

product of two graphs is at least as large as the product of their domination numbers. 244

Gravier and Khelladi (1995) conjectured a similar bound for the domination number 245

of the tensor product of graphs; however, a counterexample was found by Klavz̆ar 246

Zmazek (1996) [30]. Since Vizing proposed his conjecture, many mathematicians have 247

worked on it, with partial results described below. For a more detailed overview of these 248

results, see Bres̆ar et al. (2012) [8] 249

The cartesian product G = G1 ×G2 [39] of two fuzzy graphs 250

Gi = (Vi, σi, µi), i = 1, 2 is defined as a fuzzy graph G = (V × V, σ1 × σ2, µ1 × µ2) 251

where E = {{uu2, uv2}|u ∈ V1, u2v2 ∈ E2} ∪ {{u1w, v1w}|u1v1 ∈ E1, w ∈ V2}. Fuzzy 252

sets σ1 × σ2 and µ1 × µ2 are defined as (σ1 × σ2)(u1, u2) = σ1(u1) ∧ σ2(u2) and 253

∀u ∈ V1,∀u2v2 ∈ E2, (µ1 × µ2)({uu2, uv2}) = σ1(u) ∧ µ2(u2v2) and 254

∀u1v1 ∈ E1,∀w ∈ V2, (µ1 × µ2)({u1w, vw}) = µ1(u1v1) ∧ σ2(w). 255

The union G = G1 ∪G2 [39] of two fuzzy graphs Gi = (Vi, σi, µi), i = 1, 2 is defined 256

as a fuzzy graph G = (V1 ∪ V2, σ1 ∪ σ2, µ1 ∪ µ2) where E = E1 ∪ E2. Fuzzy sets σ1 ∪ σ2 257

and µ1 ∪ µ2 are defined as (σ1 ∪ σ2)(u) = σ1(u) if u ∈ V1 − V2, (σ1 ∪ σ2)(u) = σ2(u) if 258

u ∈ V2 − V1, and (σ1 ∪ σ2)(u) = σ1(u) ∨ σ2(u) if u ∈ V1 ∩ V2. Also 259

(µ1 ∪ µ2)(uv) = µ1(uv) if uv ∈ E1 − E2 and (µ1 ∪ µ2)(uv) = µ2(uv) if uv ∈ E2 − E1, 260

and (µ1 ∪ µ2)(uv) = µ1(uv) ∨ µ2(uv) if uv ∈ E1 ∩ E2. 261

Let G = G1 +G2 denote the join [39] of two fuzzy graphs Gi = (Vi, σi, µi), i = 1, 2 is 262

defined as a fuzzy graph G = (V1 ∪ V2, σ1 + σ2, µ1 + µ2) where E = E1 ∪ E2 ∪ E
′

and 263

E
′

is the set of all edges joining vertices of V1 with the vertices of V2, and we assume 264

that V1 ∩ V2 = ∅. Fuzzy sets σ1 + σ2 and µ1 + µ2 are defined as 265

(σ1 + σ2)(u) = (σ1 ∪ σ2)(u) and ∀u ∈ V1 ∪ V2; (µ1 + µ2)(uv) = (µ1 ∪ µ2)(uv) if 266

uv ∈ E1 ∪ E2 and (µ1 + µ2)(uv) = σ1(u) ∧ σ2(v) if uv ∈ E′
. 267

The classical paper [49] of Nordhaus and Gaddum established the inequalities for the 268

chromatic numbers of a graph G = (V,E) and its complement Ḡ. We are concerned 269

with analogous inequalities involving domination parameters in graphs. We begin with a 270

brief overview of Nordhaus-Gaddum (NG) inequalities for several domination-related 271

parameters. For each generic invariant µ of a graph G, let µ = µ(G) and µ̄ = µ(Ḡ). 272
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Inequalities on µ+ µ̄ and µ.µ̄ exist in the literature for only a few of the many 273

domination-related parameters and most of these results are of the additive form. In 274

1972 Jaeger and Payan [26] published the first NG results involving domination. 275

Cockayne and Hedetniemi [18] sharpened the upper bound for the sum. Laskar and 276

Peters [33] improved this bound for the case when both G and Ḡ are connected. A 277

much improved bound was established for the case when neither G nor Ḡ has isolated 278

nodes by Bollobás and Cockayne [14] and by Joseph and Arumugam [27] independently. 279

Remark 2.1. For the sake of simplicity, we do sometimes 280

• writing xy instead of {x, y}. 281

• calling x both vertex and node. 282

• calling xy both edge and arc. 283

• writing Cartesian product both � and ×. 284

• saying σ(x) and µ(xy) with different literature, e.g. value, weight, membership 285

value and etc. 286

3 Main Results 287

In this section, we provide the main results. We first briefly illustrate our opinion. 288

The terms “dominating set”, and “domination number” of a graph G = (V, E) were 289

first defined by O. Ore in 1962. A subset A ⊆ V is a dominating set for G if each 290

element of V is either in A, or is adjacent to an element of A. The domination number 291

γ(G), which is the most commonly used domination number, is the minimum 292

cardinality among all dominating sets of G. 293

More than 1200 papers already published on domination in graphs. Without a 294

doubt, the literature on this subject is growing rapidly, and a considerable amount of 295

work has been dedicated to find different bounds for the domination numbers of graphs. 296

In Analogous to them in fuzzy graphs are existed many variations of concepts of 297

dominations as mentioned some results on introduction. a few researchers defined, 298

sometimes redefined, and studied other domination variations: such as connected 299

domination, strong domination, total domination, (1,2)-vertex domination, 300

2-domination, domination and etc. However, from practical point of view, it was 301

necessary to define other types of dominations. Most of these new variations required 302

the dominating set to have additional properties such as: being as independent set, 303

inducing a connected subgraph, or inducing a clique. These properties were reflected in 304

their names as an adjective: independent domination, connected domination, and clique 305

domination, respectively. 306

The α-strong domination number of a fuzzy graph is defined in a classic way, 307

Definition (3.1), (3.3), (3.4). 308

Definition 3.1. Let G = (σ, µ) be a fuzzy graph on V. Let x, y ∈ V. We say that x 309

dominates y in G as α-strong if the arc {x, y} is α-strong. 310

Example 3.2. By attention to fuzzy graph In Figure (1), the arcs v2v5, v2v4, v3v4 and 311

v1v3 are α-strong and the arcs v1v4, v1v2 and v4v5 are not α-strong. 312

Definition 3.3. A subset S of V is called a α-strong dominating set in G if for 313

every v 6∈ S, there exists u ∈ S such that u dominates v. 314

Definition 3.4. Let S be the set of all α-strong dominating sets in G, the vertex 315

domination number of G is defined as minD∈S [Σu∈D(σ(u) + ds(u)
d(u) )] and it is denoted 316
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by γv(G). If d(u) = 0, then we consider ds(u)
d(u) equal with 0. The α-strong dominating 317

set that is correspond to γv(G) is called by vertex dominating set. We also say 318

Σu∈D(σ(u) + ds(u)
d(u) ), vertex weight of D, for every D ∈ S and it is denoted by wv(D). 319

Example 3.5. By attention to fuzzy graph In Figure (1), the set {v2, v3} is the 320

α-strong dominating set. This set is also vertex dominating set in fuzzy graph G. Hence 321

γv(G) = 1.75 + 0.9 + 0.7 = 3.35. So γv(G) = 3.35. 322

Theorem 3.6. [38] If G is a complete fuzzy graph, then all arcs are strong. 323

Theorem 3.7. [38] If G is a complete bipartite fuzzy graph, then all arcs are strong. 324

Remark 3.8. If G is a complete fuzzy graph, then all arcs areα-strong. 325

Remark 3.9. If G is a complete bipartite fuzzy graph, then all arcs are α-strong. 326

It is well known and generally accepted that the problem of determining the 327

domination number of an arbitrary graph is a difficult one. Because of this, researchers 328

have turned their attention to the study of classes of graphs for which the domination 329

problem can be solved in polynomial time. 330

We determine vertex domination number for several classes of fuzzy graphs consists 331

of complete fuzzy graph, Proposition (3.10), empty fuzzy graph, Proposition (3.11), star 332

fuzzy graph, Proposition (3.13), complete bipartite fuzzy graph, Proposition (3.14). 333

Proposition 3.10 (Complete fuzzy graph). If G = (V, σ, µ) is a complete fuzzy graph, 334

then γv(G) = minu∈V (σ(u)) + 1. 335

Proof. Since G is a complete fuzzy graph, all arcs are α-strong by Remark (3.8) and 336

each node is incident to all other nodes. Hence D = {u} is a α-strong dominating set 337

and ds(u) = d(u) for each u ∈ V Hence the result follows. 338

Proposition 3.11 (Empty fuzzy graph). Let G = (V, σ, µ) be a fuzzy graph. Then 339

γv(G) = p, if G be edgeless, i.e.G = K̄n. 340

Proof. Since G is edgeless, Hence V is only α-strong dominating set in G and all arcs 341

are not α-strong. so we have γv(G) = minD∈S [Σu∈Dσ(u)] = Σu∈vσ(u) = p by 342

Definition (3.4). so we can write γv(K̄n) = p by our notations. 343

Figure 1. Vertex domination

It is interesting 344

to note the converse of Proposition 345

(3.11) that does not hold. 346

Example 3.12. We show
the converse of Proposition (3.11)
does not hold. For this purpose, Let
V = {v1, v2, v3, v4, v5}. We define
σ on V by σ : V → [0, 1] such that

σ(v1) = 0.5, σ(v2) = 0.7, σ(v3) = 0.9, σ(v4) = 0.75, σ(v5) = 0.5

Now, The function µ : V × V → [0, 1] is defined by

µ(v1v2) = 0.005, µ(v1v4) = 0.003, µ(v1v3) = 0.009, µ(v2v4) = 0.006, µ(v2v5) = 0.009,

µ(v3v4) = 0.008, µ(v4v5) = 0.003 such that ∀u, v ∈ V, µ(u, v) ≤ σ(u) ∧ σ(v). Finally, Let 347

V, σ, and µ be the vertices, value of vertices and value of edges respectively. In other 348

words, By attention to fuzzy graph In Figure (1), the arcs v2v5, v2v4, v3v4 and v1v3 are 349

α-strong and the arcs v1v4, v1v2 and v4v5 are not α-strong. So the set {v2, v3} is the 350

α-strong dominating set. This set is also vertex dominating set in fuzzy graph G. Hence 351

γv(G) = 1.75 + 0.9 + 0.7 = 3.35 = Σu∈vσ(u) = p. So G 6= K̄5 but γv(G) = p. 352
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Proposition 3.13 (Star fuzzy graph). Let G be a star fuzzy graph. Then G = K1,σ 353

and γv(K1,σ) = σ(u) + 1 where u is center of G. 354

Proof. Let G be the star fuzzy graph with V = {u, v1, v2, · · · , vn} such that u and vi 355

are center and leaves of G, for 1 ≤ i ≤ n respectively. So G∗ = K∗1,n is underlying crisp 356

graph of G. {u} is vertex dominating set in G and all arcs are α-strong by Remark (3.9) 357

and due to G is bipartite fuzzy graph. Hence the result follows. 358

Proposition 3.14 (Bipartite fuzzy graph). Let G be the bipartite fuzzy graph which is 359

not star fuzzy graph. Then G = Kσ1,σ2
and γv(Kσ1,σ2

) = minu∈V1,v∈V2
(σ(u) +σ(v)) + 2. 360

Proof. Let G 6= K1,σ be bipartite fuzzy graph. Then both of V1 and V2 include more 361

than one vertex. In Kσ1,σ2
, all arcs are α-strong by Remark (3.9). Also each node in V1 362

is dominated as α-strong with all nodes in V2 and conversely. Hence in Kσ1,σ2
, the 363

α-strong dominating sets are V1 and V2 and any set containing 2 nodes, one in V1 and 364

other in V2. Hence γv(Kσ1,σ2
) = minu∈V1,v∈V2

(σ(u) + σ(v)) + 2. So the theorem is 365

proved. 366

We give an upper bound for the vertex domination number of fuzzy graphs, 367

Proposition (3.15). 368

Proposition 3.15. For any fuzzy graph G = (V, σ, µ), We have γv ≤ p. 369

Proof. γv(K̄n) = p by Theorem (3.11). So the result follows. 370

For the vertex domination number γv the following theorem gives a 371

Nordhaus-Gaddum type result. 372

For any fuzzy graph the Nordhaus-Gaddum(NG)’result holds, Theorem (3.16). 373

Theorem 3.16. For any fuzzy graph G = (V, σ, µ), The Nordhaus-Gaddum result holds. 374

In other words, we have γv + γ̄v ≤ 2p. 375

Proof. G is fuzzy graph. So Ḡ is also fuzzy graph. We implement Theorem (3.15) on G 376

and Ḡ. Then γv ≤ p and γ̄v ≤ p. Hence γv + γ̄v ≤ 2p. So the theorem is proved. 377

The following theorems on dominating sets in graphs are the first results about 378

domination and were presented by Ore in his book Theory of Graphs [69]. 379

Definition 3.17 ( [47]). A α-strong dominating set D is called a minimal α-strong 380

dominating set if no proper subset of D is a α-strong dominating set. 381

Theorem 3.18 ( [47]). Let G be a fuzzy graph without isolated nodes. If D is a 382

minimal α-strong dominating set then V −D is a α-strong dominating set. 383

Finding a domatic partition of size 1 is trivial and finding a domatic partition of size 384

2 (or establishing that none exists) is easy but finding a maximum-size domatic 385

partition (i.e., the domatic number), is computationally hard. Finding domatic 386

partition of size two in fuzzy graph G of order n ≥ 2 is easy by the following. 387

Theorem 3.19 ( [47]). Every connected graph G of order n ≥ 2 has a α-strong 388

dominating set D whose complement V −D is also a α-strong dominating set. 389

We improve upper bound for the vertex domination number of fuzzy graphs without 390

isolated nodes, Theorem (3.20). 391

Theorem 3.20. For any fuzzy graph G = (V, σ, µ) without isolated nodes, We have 392

γv ≤ p
2 . 393
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Proof. Let D be a minimal dominating set of G. Then by Theorem (3.19), V-D is a 394

α-strong dominating set of G. Then γv(G) ≤ wv(D) and γv(G) ≤ wv(V −D). 395

Therefore 2γv(G) ≤ wv(D) + wv(V −D) ≤ p which implies γv ≤ p
2 . Hence the proof 396

is completed. 397

We also improve Nordhaus-Gaddum(NG)’result for fuzzy graphs without isolated 398

nodes, Corollary (3.21). 399

Corollary 3.21. Let G be a fuzzy graph such that both G and Ḡ have no isolated 400

nodes. Then γv + γ̄v ≤ p,where γ̄v is the vertex domination number of Ḡ. Moreover, 401

equality holds if and only if γv = γ̄v = p
2 . 402

Proof. By the Implement of Theorem (3.20) on G and Ḡ, we have γv(G) = γv ≤ p
2 , and 403

γv(Ḡ) = γ̄v(G) = γ̄v ≤ p
2 . So γv + γ̄v ≤ p

2 + p
2 = p. Hence γv + γ̄v ≤ p. 404

Suppose γv = γ̄v = p
2 , then obviously γv + γ̄v = p. Conversely, suppose γv + γ̄v ≤ p. 405

Then we have γv ≤ p
2 and γ̄v ≤ p

2 . If either γv <
p
2 or γ̄v <

p
2 , then γv + γ̄v < p, which 406

is a contradiction. Hence the only possibility case is γv = γ̄v = p
2 . 407

Remark 3.22. Note that when we use the definition of domination number in [13,14,15], 408

Theorem (3.20) and Corollary (3.21) are hold. 409

Proposition 3.23. Let G = (V, σ, µ) be a fuzzy graph. If all arcs have equal value, the 410

G has no α-strong edge. 411

Proof. Obviously the result is hold by using Definition (3.1). 412

We give the relationship between M -strong arcs and α-strong arcs, Corollary (3.24). 413

Corollary 3.24. Let G = (V, σ, µ) be a fuzzy graph. If all arcs are M -strong, the G 414

has no α-strong edge. 415

Proof. Obviously the result is hold by using Proposition (3.23). 416

Figure 2. M-strong arcs and
α-strong arcs

The following 417

example illustrates this concept. 418

Example 3.25. 419

In Figure (2) , all arcs are M -strong 420

but there is no α-strong arcs in this 421

fuzzy graph. Obviously this result 422

is hold by using Definition (3.3). 423

We give a necessary 424

and sufficient condition for vertex 425

domination which is half of order, 426

In fact fuzzy graphs with vertex 427

domination which is half of order is characterized in the special case, Theorem (3.26). 428

Theorem 3.26. In any fuzzy graph G = (V, σ, µ) such that values of nodes are equal 429

and all arcs have same value, i.e. for ∀ui, uj ∈ V and ∀ei, ej ∈ E, we have 430

σ(ui) = σ(uj) and µ(ei) = µ(ej). γv = p
2 if and only if For any vertex dominating set 431

D in G, we have |D| = n
2 . 432

Proof. Suppose D has the conditions. ds(D) = 0 by Proposition (3.23). So 433

γv(G) = Σu∈Dσ(u) by using Definition (3.4). Since values of nodes are equal and 434

|D| = n
2 , we have γv(G) = Σu∈Dσ(u) = n

2σ(u) = 1
2 (nσ(u)) = 1

2 (Σu∈V σ(u)) = 1
2 (p) = p

2 . 435

Hence the result is hold in this case. 436
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Conversely, Suppose γv = p
2 . Let D = {u1, u2, · · · , un} be a vertex dominating set. 437

ds(D) = 0 by Proposition (3.23). So γv(G) = Σu∈Dσ(u) by using Definition (3.4). 438

Since γv(G) = Wv(D), we have γv = p
2 = 1

2 (Σu∈V σ(u)) = Σu∈Dσ(u). Suppose n
′ 6= n

2 . 439

so Σn
′′

i=1σ(vi)) = 0 which is a contradiction with ∀ui ∈ V, σ(ui) > 0. Hence n
′

= n
2 , i.e. 440

|D| = n
′

= n
2 . So the result is hold in this case. 441

The vertex domination of union of two fuzzy graphs is studied, Proposition (3.27). 442

Proposition 3.27. Let G1 and G2 be fuzzy graphs. The vertex dominating set of 443

G1 ∪G2 is D = D1 ∪D2 such that D1 and D2 are the vertex dominating set of G1 and 444

G2 respectively. Moreover, γv(G1 ∪G2) = γv(G1) + γv(G2). 445

Proof. Obviously the result is hold by using Definition of union of two fuzzy graphs. 446

Also the vertex domination of union of fuzzy graphs Family is discussed, Corollary 447

(3.28). 448

Corollary 3.28. Let G1, G2, · · · , Gn be fuzzy graphs. The vertex dominating set of 449

∪ni=1Gi is D = ∪ni=1Di such that Di is the vertex dominating set of Gi. Moreover, 450

γv(∪ni=1Gi) = Σni=1γv(Gi). 451

Proof. Obviously the result is hold by using proposition (3.27). 452

The concepts of both monotone increasing fuzzy graph property, Definition (3.29), 453

and monotone decreasing fuzzy graph property, Definition (3.31), are introduced. 454

Definition 3.29. We call a fuzzy graph property P monotone increasing if G ∈ P 455

implies G+ e ∈ P, i.e., adding an edge e to a fuzzy graph G does not destroy the 456

property. 457

Example 3.30. Connectivity and Hamiltonicity are monotone increasing properties. A 458

monotone increasing property is nontrivial if the empty graph K̄n 6∈ P and the complete 459

graph Kn ∈ P. 460

Definition 3.31. A fuzzy graph property is monotone decreasing if G ∈ P implies 461

G− e ∈ P , i.e., removing an edge from a graph does not destroy the property. 462

Example 3.32. Properties of a fuzzy graph not being connected or being planar are 463

examples of monotone decreasing fuzzy graph properties. 464

Remark 3.33. Obviously, a fuzzy graph property P is monotone increasing if and only if 465

its complement is monotone decreasing. Clearly not all fuzzy graph properties are 466

monotone. For example having at least half of the vertices having a given fixed degree d 467

is not monotone. 468

Let γ(G) denote the domination number of a simple graph G. Then Vizing 469

(1963) [17]conjectured that γ(G)γ(H) ≤ γ(G×H), where G×H is the graph product. 470

While the full conjecture remains open, Clark and Suen (2000) [23] have proved the 471

looser result γ(G)γ(H) ≤ 2γ(G×H). 472

Vizing stated the still open conjecture: 473

Conjecture (Vizing [17]). For all graphs G and H, γ(G)γ(H) ≤ γ(G×H). The 474

result in relation with vizing’s conjecture by using α-strong arc and monotone 475

decreasing fuzzy graph property is determined, Theorem (3.34). 476

Theorem 3.34. The vizing’s conjecture is monotone decreasing property in fuzzy graph 477

G, if the edge e be α-strong and γv(G− e) = γv(G). 478
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Proof. The fuzzy graph (G− e)×H is the spanning fuzzy subgraph of G×H, for all 479

fuzzy graph H. So γv((G− e)×H) ≥ γv(G×H) ≥ γv(G)γv(H) = γv(G− e)γv(H). 480

Hence vizing’s conjecture is also hold for G− e. Then the result follows. 481

Some results in relation with vizing’s conjecture by using α-strong arc and spanning 482

fuzzy subgraph is studied, Corollary (3.35). 483

Corollary 3.35. Suppose the vizing’s conjecture is hold for G. Let K be the spanning 484

fuzzy subgraph of G such that γv(K) = γv(G). Then the vizing’s conjecture is hold for 485

K. 486

Proof. The fuzzy graph K ×H is the spanning fuzzy subgraph of G×H, for all fuzzy 487

graph H. So γv(K ×H) ≥ γv(G×H) ≥ γv(G)γv(H) = γv(K)γv(H). Hence the vizing’s 488

conjecture is also hold for K. So the result follows. 489

The vertex domination of join of two fuzzy graphs is studied, Proposition (3.36). 490

Proposition 3.36. Let G1 and G2 be fuzzy graphs. The vertex dominating set of 491

G1 ⊗G2 is D = D1 ∪D2 such that D1 and D2 are the vertex dominating set of G1 and 492

G2 respectively. Moreover, γv(G1 ⊗G2) = γv(G1) + γv(G2). 493

Proof. Obviously the result is hold by using Definition of join of two fuzzy graphs and 494

Corollary (3.24) which state in this case, M -strong arcs between two fuzzy graphs is not 495

α-strong which is weak arc changing strength of connectedness of G. 496

Also the vertex domination of join of fuzzy graphs Family is discussed, Corollary 497

(3.37). 498

Corollary 3.37. Let G1, G2, · · · , Gn be fuzzy graphs. The vertex dominating set of 499

⊗ni=1Gi is D = ⊗ni=1Di such that Di is the vertex dominating set of Gi. Moreover, 500

γv(⊗ni=1Gi) = Σni=1γv(Gi). 501

Proof. Obviously the result is hold by using proposition (3.36). 502

Gravier and Khelladi [22] conjecture a Vizing-like inequality for the domination 503

number of the cross product of graphs. 504

Gravier and Khelladi stated the still open conjecture: 505

Conjecture (Gravier and Khelladi [22]). For all graphs G and H,

γ(G)γ(H) ≤ 2γ(G⊗H).

The result in relation with Gravier and Khelladi’s conjecture by using α-strong arc and 506

monotone decreasing fuzzy graph property is determined, Theorem (3.38). 507

Theorem 3.38. The Gravier and Khelladi’s conjecture is monotone decreasing 508

property in fuzzy graph G, if the edge e be α-strong and γv(G− e) = γv(G). 509

Proof. The fuzzy graph (G− e)×H is the spanning fuzzy subgraph of G×H, for all 510

fuzzy graph H. So γv((G− e)×H) ≥ γv(G×H) ≥ γv(G)γv(H) = γv(G− e)γv(H). 511

Hence Gravier and Khelladi’s conjecture is also hold for G− e. Then the result 512

follows. 513

We conclude this section with Some result in relation with Gravier and Khelladi’s 514

conjecture by using α-strong arc and spanning fuzzy subgraph is studied, Corollary 515

(3.39). 516
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Corollary 3.39. Suppose the Gravier and Khelladi’s conjecture is hold for G. Let K be 517

the spanning fuzzy subgraph of G such that γv(K) = γv(G). Then the Gravier and 518

Khelladi’s conjecture is hold for K. 519

Proof. The fuzzy graph K ×H is the spanning fuzzy subgraph of G×H, for all fuzzy 520

graph H. So γv(K ⊗H) ≥ γv(G⊗H) ≥ γv(G)γv(H) = γv(K)γv(H). Hence the Gravier 521

and Khelladi’s conjecture is also hold for K. So the result follows. 522

4 Practical applications 523

In this Section, We give 9 practical applications in relation with these concepts. 524

Domination is a rapidly developing area of research in graph theory. The concept of

Figure 3. Queens dominating
the chessboard

525

 

domination 526

has existed for a long time and early 527

discussions on the topic can be 528

found in works of Ore and Berge . 529

The summary of the literature 530

shows the following 531

wide-known problems, which 532

are considered among the earliest 533

applications for dominating sets. 534

Queens Problem 535

This problem was mentioned by 536

Ore. According to the rules of chess 537

a queen can, in one move, advance 538

any number of squares horizontally, 539

diagonally, or vertically (assuming 540

that no other chess figure is on 541

its way). How to place a minimum 542

number of queens on a chessboard 543

so that each square is controlled by 544

at least one queen? See one of the solutions in (Fig. 3). For fuzzification of this 545

problem, types of square (based on sensitive place in game of chess, chess pieces) and 546

types of connection can be assigned by different values. So the question is changed to 547

this. How to place a number of queens on a chessboard so that each square is controlled 548

by at least one queen based on values on queens and ratio of total of values of adjacent 549

α-strong connections to total of values of adjacent connections? 550

Locating Radar Stations Problem 551

The problem was discussed by Berge. A number of strategic locations are to be kept 552

under surveillance. The goal is to locate a radar for the surveillance at as few of these 553

locations as possible. How a set of locations in which the radar stations are to be placed 554

can be determined? For fuzzification of this problem, types of radar stations (based on 555

power of them) and types of connection with locations can be assigned by different 556

values. So the question is changed to this. How a set of locations in which the radar 557

stations are to be placed can be determined based on values on radar stations and ratio 558

of total of values of adjacent α-strong connections to total of values of adjacent 559

connections? 560

Problem of Communications in a Network 561

Suppose that there is a network of cities with communication links. How to set up 562

transmitting stations at some of the cities so that every city can receive a message from 563

at least one of the transmitting stations? This problem was discussed in detail by Liu. 564

For fuzzification of this problem, types of cities (based on population, structure) and 565
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types of connection with cities can be assigned by different values. So the question is 566

changed to this. How to set up transmitting stations at some of the cities so that every 567

city can receive a message from at least one of the transmitting stations based on values 568

on cities and ratio of total of values of adjacent α-strong connections to total of values 569

of adjacent connections? 570

Nuclear Power Plants Problem 571

A similar known problem is a nuclear power plants problem. There are various 572

locations and an arc can be drawn from location x to location y if it is possible for a 573

watchman stationed at x to observe a warning light located at y. How many guards are 574

needed to observe all of the warning lights, and where should they be located? For 575

fuzzification of this problem, types of guards (based on abilities) and types of 576

connection with guards can be assigned by different values. So the question is changed 577

to this. How many guards are needed to observe all of the warning lights, and where 578

should they be located based on values on guards and ratio of total of values of adjacent 579

α-strong connections to total of values of adjacent connections? 580

At present, domination is considered to be one of the fundamental concepts in graph 581

theory and its various applications to ad hoc networks, biological networks, distributed 582

computing, social networks and web graphs partly explain the increased interest. Such 583

applications usually aim to select a subset of nodes that will provide some definite 584

service such that every node in the network is ?close? to some node in the subset. The 585

following examples show when the concept of domination can be applied in modelling 586

real-life problems. 587

Modelling Biological Networks 588

Using graph theory as a modelling tool in biological networks allows the utilization 589

of the most graphical invariants in such a way that it is possible to identify secondary 590

RNA (Ribonucleic acid) motifs numerically. Those graphical invariants are variations of 591

the domination number of a graph. The results of the research carried out show that 592

the variations of the domination number can be used for correctly distinguishing among 593

the trees that represent native structures and those that are not likely candidates to 594

represent RNA. For fuzzification of this problem, types of location (based on 595

advantages) and types of connection with locations can be assigned by different values. 596

So the question is based on based on values on locations and ratio of total of values of 597

adjacent α-strong connections to total of values of adjacent connections? 598

Modelling Social Networks 599

Dominating sets can be used in modelling social networks and studying the 600

dynamics of relations among numerous individuals in different domains. A social 601

network is a social structure made of individuals (or groups of individuals), which are 602

connected by one or more specific types of interdependency. The choice of initial sets of 603

target individuals is an important problem in the theory of social networks. In the work 604

of Kelleher and Cozzens, social networks are modelled in terms of graph theory and it 605

was shown that some of these sets can be found by using the properties of dominating 606

sets in graphs. For fuzzification of this problem, types of people (based on abilities) and 607

types of connection with people can be assigned by different values. So the question is 608

based on based on values on people and ratio of total of values of adjacent α-strong 609

connections to total of values of adjacent connections? 610

Facility Location Problems 611

The dominating sets in graphs are natural models for facility location problems in 612

operational research. Facility location problems are concerned with the location of one 613

or more facilities in a way that optimizes a certain objective such as minimizing 614

transportation cost, providing equitable service to customers and capturing the largest 615

market share. For fuzzification of this problem, types of location (based on advantages) 616

and types of connection with locations can be assigned by different values. So the 617
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question is based on based on values on locations and ratio of total of values of adjacent 618

α-strong connections to total of values of adjacent connections? 619

Coding Theory 620

The concept of domination is also applied in coding theory as discussed by 621

Kalbfleisch, Stanton and Horton and Cockayne and Hedetniemi. If one defines a graph, 622

the vertices of which are the n-dimensional vectors with coordinates chosen from 623

{1, · · · , p}, p > 1, and two vertices are adjacent if they differ in one coordinate, then the 624

sets of vectors which are (n, p)-covering sets, single error correcting codes, or perfect 625

covering sets are all dominating sets of the graph with determined additional properties. 626

For fuzzification of this problem, types of codes (based on types of words, different 627

words, same words) and types of connection with codes can be assigned by different 628

values. So the question is based on based on values on codes and ratio of total of values 629

of adjacent α-strong connections to total of values of adjacent connections? 630

Multiple Domination Problems 631

An important role is played by multiple domination. Multiple domination can be 632

used to construct hierarchical overlay networks in peer-to-peer applications for more 633

efficient index searching. The hierarchical overlay networks usually serve as distributed 634

databases for index searching, e.g. in modern file sharing and instant messaging 635

computer network applications. Dominating sets of several kinds are used for balancing 636

efficiency and fault tolerance as well as in the distributed construction of minimum 637

spanning trees. Another good example of direct, important and quickly developing 638

applications of multiple domination in modern computer networks is a wireless sensor 639

network. A wireless sensor net- work (WSN) usually consists of up to several hundred 640

small autonomous devices to measure some physical parameters. Each device contains a 641

processing unit and a limited memory as well as a radio transmitter and a receiver to be 642

able to communicate with its neighbors. Also, it contains a limited power battery and is 643

constrained in energy consumption. There is a base station, which is a special sensor 644

node used as a sink to collect information gathered by other sensor nodes and to 645

provide a connection between the WSN and a usual network. A routing algorithm 646

allows the sensor nodes to self-organize into a WSN. As stated, an important goal in 647

WSN design is to maximize the functional lifetime of a sensor network by using energy 648

efficient distributed algorithms, networking and routing techniques. To maximize the 649

functional lifetime, it is important to select some sensor nodes to behave as a backbone 650

set to support routing communications. The backbone set can be considered as a 651

dominating set in the corresponding graph. Dominating sets of several different kinds 652

have proved to be useful and effective for modelling backbone sets. In the recent 653

literature, particular attention has been paid to construction of k-connected k- 654

dominating sets in WSNs, and several probabilistic and deterministic approaches have 655

been proposed and analyzed. The backbone set of sensor nodes should be selected as 656

small as possible and, on the other hand, it should guarantee high efficiency and 657

reliability of networking and communications. This trade-off requires construction of 658

multiple dominating sets providing energy efficient and reliable data dissemination and 659

communication protocols. For fuzzification of this problem, types of sensor nodes (based 660

on advantages) and types of connection with sensor nodes can be assigned by different 661

values. So the question is based on based on values on sensor nodes and ratio of total of 662

values of adjacent α-strong connections to total of values of adjacent connections? 663

A homogeneous WSN consists of wireless sensor devices of the same kind. All the 664

devices have the same set of limited resources and, originally, no hierarchy is imposed 665

on the network structure and communications. In a network of this kind, the only 666

special sensor node is a base station. For all the other nodes, it is necessary to construct 667

and switch the backbone sets and communications efficiently so that all the network 668

nodes stay in operation as long as possible. Therefore, in this case, it is important to be 669

15/20

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 April 2018                   doi:10.20944/preprints201804.0085.v1

http://dx.doi.org/10.20944/preprints201804.0085.v1


able to construct and switch dominating sets and route communications uniformly and 670

efficiently with respect to the energy consumption of each particular sensor node. This 671

has to be done to optimize the functional lifetime of the whole network. 672

Usually, a WSN is mathematically modelled as a unit or quasi-unit disk graph. These 673

are the most natural and general graph models for a WSN. In a unit disk graph model, 674

nodes correspond to sensor locations in the Euclidean plane and are assumed to have 675

identical (unit) transmission ranges. An edge between two nodes means that they can 676

communicate directly, i.e. the distance between them is at most one. A survey of known 677

results on unit disk graphs, including algorithms for constructing dominating sets, can 678

be found. A quasi-unit disk graph model takes into consideration possible transmission 679

obstacles and is much closer to reality: we are sure to have an edge between two nodes 680

if the distance between them is at most a parameter d, 0 < d < 1. If the distance 681

between two nodes is in the range from d to 1, the existence of an edge is not specified. 682

A description of several more restricted geometric graph models for WSN design, e.g. 683

the related neighborhood graph, Gabriel graph, Yao graph etc., can be found. 684

Domination is an area in graph theory with an extensive research activity. A book 685

by Haynes, Hedetniemi and Slater on domination published in 1998 lists 1222 articles in 686

this area. 687

5 Conclusion 688

Graph theory is one of the branches of modern mathematics having experienced a most 689

impressive development in recent years. One of the most interesting problems in graph 690

theory is that of Domination Theory. Nowadays domination theory ranks top among 691

the most prominent areas of research in graph theory and combinatorics. The theory of 692

domination has been the nucleus of research activity in graph theory in recent times. 693

The fastest growing area within graph theory is a study of domination and related 694

subset problems such independence, covering, matching, decomposition and labelling. 695

Domination boasts a host of applications to social network theory, land surveying, game 696

theory, interconnection network, parallel computing and image processing and so on. 697

Today, this theory gained popularity and remains as a major area of research. At 698

present, domination is considered to be one of the fundamental concepts in graph theory 699

and its various applications to ad hoc networks, biological networks, distributed 700

computing, social networks and web graphs partly explain the increased interest. More 701

than 1200 papers already published on domination in graphs. Without a doubt, the 702

literature on this subject is growing rapidly, and a considerable amount of work has 703

been dedicated to find different bounds for the domination numbers of graphs. However, 704

from practical point of view, it was necessary to define other types of dominations. 705

Most of these new variations required the dominating set to have additional properties. 706
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