We introduce a new variation on the domination theme which we call vertex domination as reducing waste of time in transportation planning and optimization of transport routes. We determine the vertex domination number $\gamma_v$ for several classes of fuzzy graphs. The bounds is obtained for it. In fuzzy graphs, monotone decreasing property and monotone increasing property are introduced. We prove both of the vizing's conjecture and the Grarier-Khelladi's conjecture are monotone decreasing fuzzy graph property for vertex domination. We obtain Nordhaus-Gaddum (NG) type results for these parameters. The relationship between several classes of operations on fuzzy graphs with the vertex domination number of them is studied. Finally, we discuss about vertex dominating set of a fuzzy tree by using the bridges and $\alpha$-strong edges equivalence.
Keywords:
Subject: Computer Science and Mathematics - Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.