

1 *Review*

2 **Nutrition support in cardiac surgery patients - a narrative review**

3 **Hill A.^{2,5,\$*}, Nesterova E.^{1,\$}, Lomivorotov V.³, Efremov S.³, Goetzenich A.^{4,5}, Benstoem C.^{4,5},**
4 **Zamyatin M.¹, Chourdakis M.⁶, Heyland D.⁷, Stoppe C.^{2,5*}**

5 1 Department of Anesthesiology and Intensive Care Medicine, National Pirogov Medical Center, Moscow,
6 Russia; d10001letopisec@mail.ru, zamyatinmn@pirogov-center.ru

7 2 Department of Intensive Care Medicine, University Hospital RWTH Aachen, Germany; ahill@ukaachen.de,
8 christian.stoppe@gmail.com

9 3 Department of Anesthesiology and Intensive Care Medicine, Novosibirsk, Russia;
10 v.lomivorotov@gmail.com, sergefremov@mail.ru

11 4 Department of Thoracic, Cardiac and Vascular Surgery, University Hospital RWTH Aachen, Germany;
12 andreas@goetzenich.net

13 5 3CARE - Cardiovascular Critical Care & Anesthesia Evaluation and Research, Aachen, Germany;
14 cbenstoem@ukaachen.de

15 6 Department of Medicine, School of Health Sciences, Thessaloniki, Greece, mhoud@gapps.auth.gr

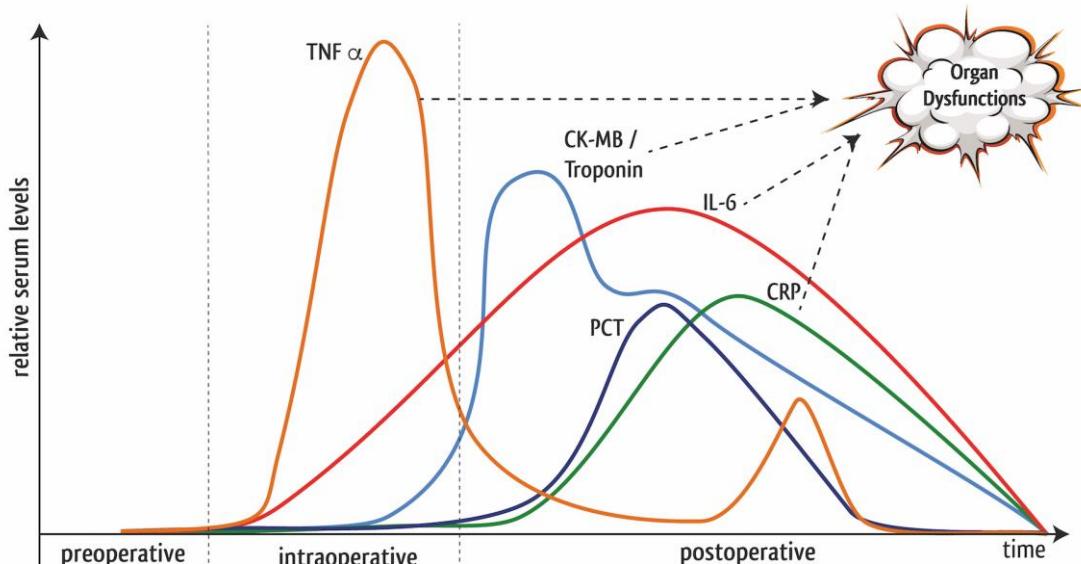
16 7 Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Canada; dkh2@queensu.ca

17 * Correspondence: christian.stoppe@gmail.com; Tel.: +49-241-8036575, ahill@ukaachen.de

18 \$ Contributed equally as first author

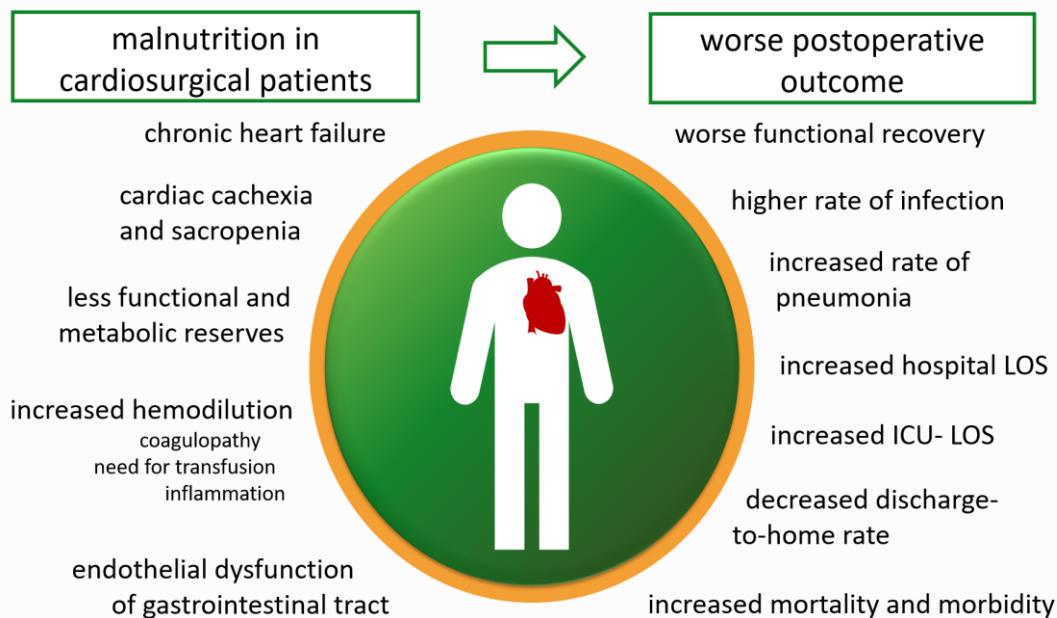
19

20 **Abstract:** Nutrition support is increasingly recognized as a clinically relevant aspect of the intensive
21 care treatment of cardiac surgery patients. However, evidence from adequate large-scale studies
22 evaluating its clinical significance for patients' mid- to long-term outcome remains sparse.
23 Considering nutrition support as a key component in the perioperative treatment of these critically
24 ill patients, led us to review and discuss our understanding of the metabolic response to the
25 inflammatory burst induced by cardiac surgery. In addition, we discuss how to identify patients
26 who may benefit from nutrition therapy, when to start nutritional interventions, present evidence
27 about the use of enteral and parenteral nutrition and the potential role of pharmaconutrition in
28 cardiac surgery patients. Although the clinical setting of cardiac surgery provides advantages due
29 to its scheduled insult and predictable inflammatory response, researchers and clinicians face lack
30 of evidence and several limitations in the clinical routine, which are critically considered and
31 discussed in this paper.


32 **Keywords:** cardiac surgery, cardiopulmonary bypass, systemic inflammatory response, nutrition
33 risk stratification, underfeeding, postoperative nutritional management, supplemental parenteral
34 nutrition, enteral nutrition, pharmaconutrition

35

36 **1. Introduction: Cardiac Surgery, Inflammation and Current Standard of Nutrition**


37 Cardiac surgery with the use of cardiopulmonary bypass (CPB) frequently triggers a systemic
38 inflammatory response, which contributes to the development of postoperative organ dysfunctions.
39 This further leads to a prolonged need of life-sustaining therapies and consequently longer stay on
40 the intensive care unit (ICU) (Figure 1). The surgical trauma, ischemia/reperfusion (I/R)-injury and
41 resulting inflammation may be aggravated by nutritional deficiencies due to reduced defense
42 mechanisms in the patient. In this context, numerous observational studies demonstrated a
43 significant depletion of macro- and micronutrients, as well as the importance of energy and protein
44 metabolism in the early stage after cardiac surgery [1,2].

45

46 **Figure 1.** Time course of inflammation and development of organ dysfunction in cardiac surgery

47 Cardiac surgery patients who are well nourished prior to surgery show better outcomes,
 48 including morbidity and mortality as summarized in Figure 2 [1,2]. However, prior to surgery, a
 49 considerable percentage of these patients is malnourished, which is aggravated by preoperative
 50 fasting and the commonly observed postoperative delay of nutrition support. In the same vein,
 51 Drover et al. demonstrated in a retrospective analysis that patients after surgery are at an increased
 52 risk of malnutrition during the postoperative ICU stay [3].

53

54 **Figure 2.** Influence of malnutrition on the outcome of cardiac surgery patients

55

56 Rahman et al. recently demonstrated that nutritional adequacy was low with respect to both
 57 energy and protein supplementation in cardiac surgery patients [4]. In addition, they confirmed that
 58 patients undergoing cardiovascular surgery were at the highest risk for iatrogenic malnutrition due
 59 to withholding of nutrition support during the early postoperative course. In a study including
 60 787 patients cardiac surgery patients with an ICU stay of greater than 3 days, the authors found that
 61 40 % of patients received no nutrition support at all and the mean time from ICU admission to
 62 initiation of enteral nutrition (EN) was 2.3 ± 1.8 days [5]. With EN alone, as well as with combined

63 parenteral nutrition (PN), patients received less than a third of calories and protein as shown in
64 Table 1. Furthermore, patients with later initiation of nutrition support have even lower total
65 nutritional adequacy than other surgical or medical ICU patients, indicating the need to improve
66 nutrition practice in that population [3].

67 **Table 1.** Current nutrition standard in cardiac surgery as reported by Rahman et al. [5]

Form of nutrition	Percentage of patients	Caloric adequacy	Protein adequacy
EN	78 %	25.5 %	24.9 %
EN + PN	17 %	32.4 %	28.8 %

68 |
69 Up to 8 % loss of body weight and a consistently positive nutrition risk screening (NRS 2002)
70 were reported in patients scheduled for cardiovascular rehabilitation for 1 – 6 months after treatment
71 for ischemic, valvular, or combined causes of heart diseases [6].

72 Given these findings, we can conclude that nutritional adequacy in cardiac surgery patients is
73 low with respect to both energy and protein intake. However, improved nutritional adequacy was
74 not associated with reduced overall mortality in all cardiac surgery patients per se. Given these
75 findings, further work needs to be done to identify those cardiac surgery patients, who most likely to
76 benefit from an intense nutrition support.

77 **2. Nutrition Screening in Cardiac Surgery Patients**

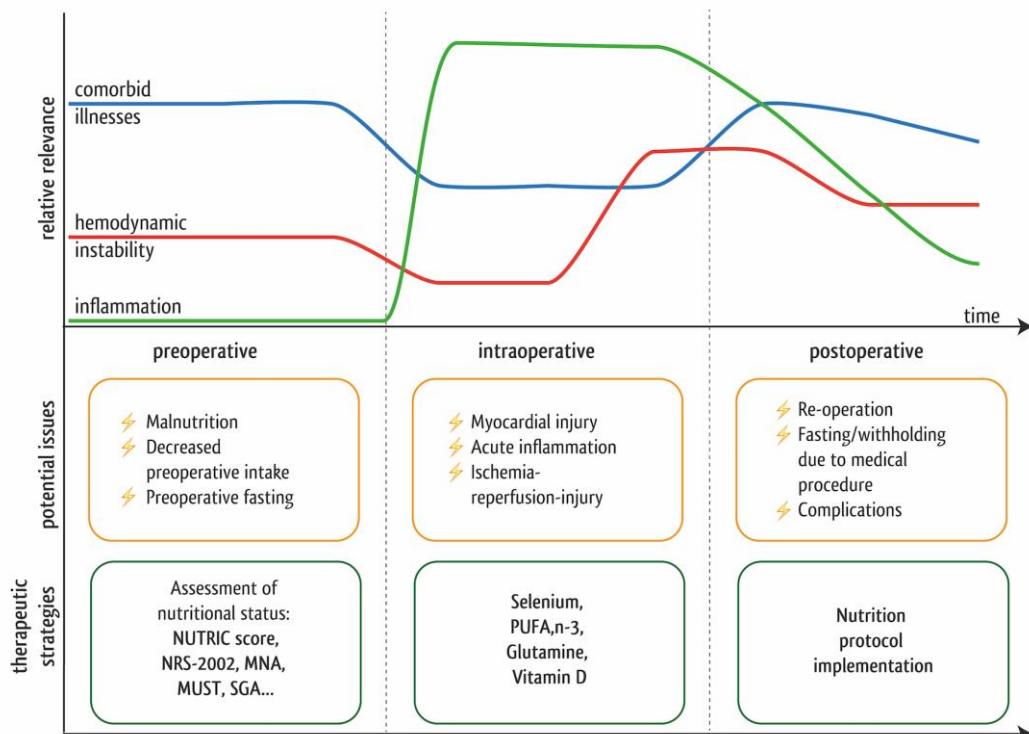
78 Nutritional status assessment scales are rarely used in cardiac surgery. Yet, they are critical
79 component of intensive care and recommended by current international nutrition guidelines.

80 Studies evaluating the relevance of body mass index (BMI), albumin and prealbumin levels
81 demonstrated that these are independent predictors of morbidity and mortality after coronary artery
82 bypass graft (CABG) and valve surgeries [7,8]. In patients undergoing implantation of left ventricular
83 assist devices, low pre-operative albumin levels –a non-specific biochemical marker of nutritional
84 assessment– were associated with prolonged hospitalization and the development of acute kidney
85 injury [9]. Furthermore, low prealbumin levels provide incremental information compared with BMI
86 and albumin and were associated with prolonged duration of ventilation and increased incidence of
87 postoperative infections [9,10]. However, the validity of serum albumin, prealbumin and BMI
88 calculation using “dry” weight needs further validation as a way of identifying malnourished
89 patients before surgery, as for example albumin has a turnover time of 20 days and its serum level is
90 influenced by numerous factors. Yet, it is still recommended to be used as a component of the
91 preoperative nutrition screening until a better marker is available.

92 In a recent study, Lomivorotov et al. demonstrated that the majority of well-established
93 malnutrition screening tools (the Malnutrition Universal Screening Tool (MUST), the Nutrition Risk
94 Screening 2002 (NRS-2002), the Short Nutrition Assessment Questionnaire (SNAQ), the Subjective
95 Global Assessment (SGA) and the Nutrition Risk in the Critically Ill (NUTRIC) score) are
96 insufficiently sensitive to the risk of developing postoperative complications [1]. The reasons for these
97 findings are multifactorial and probably result from the different pathophysiology of postoperative
98 cardiac surgery patients compared to other critically ill ICU patients.

99 As current findings indicate high malnourishment rates in cardiac patients [11,12], it is crucial
100 to consider the patients’ nutritional profiles preoperatively and to simultaneously devote further
101 attention to the conception of individual diets for preoperative optimization in these patients [2].
102 Thus, the assessment of preoperative nutritional status may guide health care professionals to
103 consider early nutrition interventions prior to surgery in patients at high risk of developing
104 postoperative complications [13].

105 **3. Perioperative Nutrition in Cardiac Surgery Patients**106 *3.1 Preoperative Nutritional Optimization in Cardiac Surgery Patients*


107 Although the inflammatory response to cardiac surgery shares mechanisms with that observed
108 in septic patients, the postsurgical inflammatory response is more predictable, mainly featuring the
109 release of pro-inflammatory markers and reactive oxygen species. Therefore, the pre-operative
110 period may represent an attractive time window in which to optimize nutritional status, correct
111 deficiencies, and enhance immune defense mechanisms before surgery. This period is an especially
112 effective time to act upon modifiable risk factors and potentially lower the risk of intra- and
113 postoperative complications. The bulk of the literature on perioperative optimization in heart failure
114 patients comes from anesthesiology and hence focuses on intra- and immediate postoperative
115 management, when it may be too late to intervene and alter the outcome of a patient entering the
116 operating room in a decompensated state [14]. Interestingly, guidelines on the cardiovascular
117 evaluation and management of patients prior to non-cardiac surgery are available, but no comparable
118 recommendations have been published concerning cardiac surgery [14,15], which is probably
119 because the patients' outcome was thought to be mainly influenced by the surgical procedure itself.

120 In cardiac surgery patients with progressive heart failure, preoperative fasting further (i)
121 aggravates commonly observed symptoms such as dyspnea, with a resulting increase in work of
122 breathing, and (ii) it may worsen gut edema as well as (iii) hepatic congestion, which may further
123 result in early satiety and nausea [16]. The chronic inflammatory state and the metabolic disturbances
124 induced by chronic inflammation are shared by all disease-induced cachectic processes, including
125 cancer, chronic obstructive pulmonary disease and advanced heart failure [17]. Clinically, this state
126 is characterized by protein-calorie malnutrition, with systemic manifestations of lassitude, weakness,
127 and poor wound healing, leading to frailty and significant comorbidities.

128 As it is generally accepted that preoperative medical and nutritional optimization is necessary
129 and may provide beneficial effects if performed in patients scheduled for major surgery, multimodal
130 approaches, such as enhanced recovery after surgery (ERAS) programs, may be useful in cardiac
131 surgery patients to reduce surgical stress, maintain physiological functional capacity, and facilitate
132 postoperative recovery by providing the best available evidence. However, while there several
133 approaches available for other types of major surgery [18-20], evidence is lacking on how the
134 principles of ERAS could be applied to cardiac surgery [21]. Further confirmation of the importance
135 of a preoperative nutrition intervention is necessary. Besides, it must be acknowledged that a pre-
136 operative nutrition risk assessment and timely intervention is hindered by logistical difficulties, as
137 more than half of patients who undergo cardiac surgery are admitted as outpatients within
138 12 – 24 hours before surgery. Clinicians will need to overcome this problem and consider an
139 interdisciplinary outpatient-approach to optimize the nutritional status prior to patient's admission
140 in collaboration with surgeons, cardiologists and general practitioners. The potential areas of interest
141 linked to therapeutic strategies to optimize nutrition practice are outlined in Figure 3.

142

143

144

145
146

Figure 3. Possible areas of interest to optimize the nutritional status depending on the stages of hospitalization

147 3.2. Postoperative Nutrition Support in Cardiac Surgery Patients

148 While various large-scale randomized controlled studies evaluated different post-operative
 149 nutrition strategies in rather mixed cohorts of critically ill patients, only few small clinical studies
 150 specifically investigated its effects in cardiac surgery patients. In these studies, malnutrition has been
 151 reported to increase morbidity and mortality after cardiac surgery [22,23], as well as it may reduce
 152 the muscle mass of the left ventricle. Some cardiac surgery patients experience a complicated
 153 postoperative course, requiring pharmacological and/or mechanical cardiac support, as well as
 154 prolonged mechanical ventilation. These patients are frequently hypercatabolic, unable to feed
 155 themselves for more than 5–6 days and are in special need of intense nutrition support [24,25].
 156 Besides, it was demonstrated that weight-loss in patients discharged after cardiac surgery was
 157 accompanied by a persistent inflammatory response resulting in decreased physical functioning [26].
 158 However, most cardiac surgery patients stay briefly in the ICU and can resume oral feeding within
 159 1–2 days after surgery, hence, they do not require an intense nutrition support.

160 Visser et al. studied the effect of perioperative nutrition in cardiac surgery on the myocardial
 161 inflammatory response, supplementing either no nutrition, EN or PN from 2 days before to 2 days
 162 after CABG. While both forms of nutrition contained comparable macro- and micronutrients,
 163 myocardial atrial tissue samples before and after revascularization demonstrated no significant
 164 differences in the myocardial inflammatory response [27].

165 The recent CoCoS trial evaluated the influence of nutrition therapy on possible alterations in
 166 caloric deficit, morbidity and mortality. No significant differences in patients, laboratory or mortality
 167 profile between the intervention group, which received intense nutrition support, and a retrospective
 168 control group were found. However, there were significantly less arrhythmias (7 % versus 31 %;
 169 $p = 0.0056$), and significantly less pneumonias (7 % versus 22 %; $p = 0.0183$) in male intervention-
 170 group-patients receiving combined CABG and aortic valve surgery. In addition, survival was
 171 significantly higher in female patients receiving intense nutrition support than in the control group
 172 for both CABG (100 % versus 83 %; $p = 0.0015$) and aortic valve surgery (97 % versus 78 %; $p = 0.0337$)
 173 [28].

174 The data derived from this trial support the hypothesis, that patients with either high nutrition
 175 risk or at elevated risk for prolonged ICU stay are the patient groups which will most likely benefit
 176 the most from a nutrition intervention and to determine the effect of prolonged EN on patients'
 177 clinical outcome. Despite well-established scoring systems for perioperative risk stratification, it is
 178 still challenging to identify patients at high nutrition risk early during their postoperative course,
 179 which may enable to start early an adequate nutrition support for these patients.

180 3.2.1. Enteral Nutrition

181 The role of postoperative nutrition support is to maintain nutritional status and energy
 182 requirements in the catabolic period after surgery. An interruption of nutritional intake is frequently
 183 observed after surgery, although it is evident that early oral and/or enteral food intake is possible,
 184 diminishes the risk of infectious complications and favors shorter hospital stays [29-31]. Therefore,
 185 early nutrition is encouraged by international nutrition societies to enhance recovery after surgery
 186 [18-20]. While the function of the gastrointestinal (GI) tract is the main determinant for initiation of
 187 EN after abdominal surgery, the key factor for initiation of nutrition in cardiac surgery patients may
 188 be hemodynamic stability, as the recently revised American Society for Parenteral and Enteral
 189 Nutrition (ASPEN) guidelines recommend that EN should be withheld until the patient is
 190 hemodynamically stable [24].

191 Despite the lack of evidence, EN is commonly considered to be contraindicated as it may
 192 negatively affect gut integrity during a state of severe circulatory compromise in patients requiring
 193 high levels of vasopressor support, resulting in i) alteration of splanchnic perfusion and ii) an
 194 increased risk of GI complications, such as bowel ischemia. In addition, there are relevant practical
 195 hurdles such as the numerous interruptions of enteral feeding, pyloric dysfunction and intestinal
 196 atony, which are frequently seen in patients after major surgical procedures. In this context, there are
 197 several studies examining the GI response to enteral nutrition in the presence of compromised
 198 hemodynamics and evaluating intestinal intolerance in cardiac surgery patients (Table 2).

199 **Table 2.** Prospective observational cohort studies examining the gastrointestinal response to enteral
 200 nutrition in the presence of compromised hemodynamics by evaluating intestinal intolerance

Author, year	No of patients	Time to start of EN	Mean energy delivery	Vasopressor or inotropic drugs	Intestinal tolerance
Berger 2005, [32]	70	<72 h	1360 ± 620 kcal/day	Median 5 days	<ul style="list-style-type: none"> • No serious GI complications • Prokinetics used in 12.9 %
Revelly 2001, [33]	9	12 – 16 h	1.1 ± 0.25 kcal/kg/h	dobutamine (mean 420 µg/min) and norepinephrine (6 – 30 µg/min)	<p>Hemodynamic response</p> <ul style="list-style-type: none"> • No change in catecholamine requirement • Significant increase of cardiac index • Transient decrease of mean arterial pressure <p>Enteral and metabolic response</p> <ul style="list-style-type: none"> • No gut distension or digestive ischemia • Increase in plasma glucose, decrease in fatty acids, increase in plasma lactate
Kesek 2002, [34]	62	<72 h	Depended individually as calculated by resting energy expenditure	n.a. ¹	<ul style="list-style-type: none"> • Vomiting: 20 % • Diarrhea: none 58 %; mild 18 %; moderate 21 %; severe 3 % • GRV¹: none 47%, small 19 %; moderate: 11 %; large 23% • Aspiration pneumonia: 11 % • Prokinetics used in GRV > 400 ml
Flordelís Lasierra 2015, [35]	37	n.a.	1228.4 kcal/d	3 drugs: 38 % 4 drugs: 24 % 4 drugs + mechanical assistance in 16 %	<ul style="list-style-type: none"> • EN-related complications: 62 % • no serious GI complications • constipation 46 %, • 1 case ischemic colitis attributed to prior vascular disease

202 In the prospective study of Berger et al., a mean energy delivery of $70 \pm 35\%$ of the target could
203 be achieved via EN, even though most patients were on vasoactive drugs for many days [32].
204 Dopamine and norepinephrine were significantly negatively correlated with enteral feeding, while
205 there was a negative trend with dobutamine. No patient experienced any serious GI complications
206 and EN was possible. Revelly [33] et al. studied nine patients requiring hemodynamic support in
207 their hemodynamic and metabolic reaction to the initiation of EN. Physiological hemodynamic and
208 metabolic reactions as well as no serious GI complications were observed.

209 In a comparable manner, Kesek et al. [34] started EN within 3 days in accordance to the patient's
210 needs, which were calculated by the Harris–Benedict equation. The authors did not provide a
211 detailed description or the duration and doses of vasoactive drugs. Diarrhea and gastric residual
212 volumes were frequent, however the clinical relevance remains unclear [36]. Clinically significant GI
213 complications were notably infrequent, and the authors concluded that early EN could be safely
214 initiated in the cardiac surgery intensive care population.

215 A study by Flordelís Lasierra et al. including cardiac surgery patients with hemodynamic
216 failure (dependence on 2 or more vasoactive drugs and/or mechanical circulatory support), EN was
217 supplemented with a mean energy delivery 1228.4 kcal/d over a mean of 12.3 days. The mean energy
218 target was achieved in 15 patients (40.4%). The most common EN-related complication was
219 constipation, whereas no case of mesenteric ischemia was detected, further supporting the feasibility
220 and safety of EN in these patients [35].

221 Despite the small number of patients included in these studies and the differences among their
222 inclusion and application strategies, it is important to note that enteral nutrition has repeatedly been
223 demonstrated to be feasible and that the circulatory and metabolic response to EN is adequate during
224 the early postoperative course after operation in patients with acute severe circulatory failure.
225 Furthermore, these studies indicated a potential beneficial effect of enteral nutrition due to its ability
226 to maintain the splanchnic perfusion, which is of particular importance for cardiac surgery patients
227 with an increased risk for postoperative mesenteric ischemia. However, all the mentioned studies
228 also concluded that it was not possible to meet the nutritional requirements with EN alone and
229 suggested the addition of supplemental parenteral nutrition (sPN), which need to be systematically
230 investigated in future studies.

231 3.2.2. Parenteral Nutrition

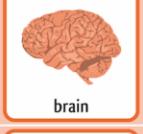
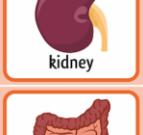
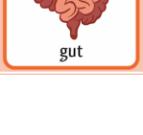
232 As intestinal ischemia is a frequently fatal complication after cardiac surgery [37,38], the use of
233 PN is often favored in cardiac surgery patients, especially within the first days after operation.
234 However, there is no sufficient evidence available to evaluate the role of postoperative PN and its
235 influence on clinically relevant outcome data, including survival, disease progression and morbidity
236 in cardiac surgery patients. This lack of data may be due to the usually short duration of stays in the
237 intensive care unit. Moreover, insufficient nutritional assessment prior to operation may prevent
238 practitioners from starting parenteral nutrition in malnourished patients soon after surgery in
239 accordance with actual guidelines.

240 PN may be used as sole nutrition or as sPN, as demonstrated almost 3 decades ago by
241 Paccagnella et al in 1991 [39], who examined the hemodynamic, metabolic, and nutritional response
242 to nutrition support of patients with severe cardiac cachexia before and after major cardiac surgery.
243 Patients were allowed to eat ad libitum, and sPN was then provided in order to achieve a
244 maintenance level of nutrition support. The results suggested that this approach is both safe and
245 effective.

246 Existing guidelines recommend the initiation of PN in all critically ill patients within 3 – 7 days
247 after admission if EN is contraindicated or cannot be tolerated in patients with low nutrition risk
248 [37,38] and within 24 hours in patients with high nutrition risk. PN secures reaching energy and
249 protein targets and avoids the potential complications of EN. Concerns regarding PN are the potential
250 risk of overfeeding with hyperglycemia, elevated liver enzymes and increased rate of blood stream
251 infections. Current evidence remains inconclusive, but there seems to be no difference regarding
252 clinical outcome between EN and PN [40-42]. However, in the EPaNIC Trial of Casaer et al, a lower

253 rate of infection was observed with a later achievement of caloric targets [43]. In any case, it is
254 recommended to evaluate both provision as well as tolerance frequently and switch to the least
255 invasive and most physiological route of administration of nutrition which is feasible for each
256 individual patient.

257 Intravenous fish oil (FO)-based lipid emulsions (LEs) are of increasing interest as part of the
258 parenteral nutrition support. FO is rich in ω -3 polyunsaturated fatty acids (ω -3-PUFAs), such as
259 eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA), which exhibit anti-inflammatory and
260 immunomodulatory effects. Preliminary evidence received small phase II trials on FO-containing
261 emulsions in cardiac surgery have demonstrated that preoperative FO infusion is a promising
262 strategy to modulate the biological and clinical response to cardiac surgery with the use of CPB [44-
263 47]. Various studies indicate that ω -3-PUFAs exert beneficial effects on the cardiovascular system that
264 may ultimately reduce the risk of cardiac death and lower the incidence of perioperative atrial
265 fibrillation (AF) in cardiac surgery, whereas current data on this topic are inconclusive, perhaps
266 because of the different supplementation strategies and the dependence of the results on the type of
267 surgical procedure [48]. Recently, Berger and colleagues demonstrated that three repetitive infusions
268 of 0.2 g/kg FO emulsion, significantly increased PUFA concentrations in platelets and atrial tissue
269 membranes within 12 hours of the first FO administration and reduced the inflammatory response
270 [45].




271 Regarding the role of ω -3 PUFA supplementation in cardiac surgery patients, Christou et al.
272 reviewed current trials in view of prevention of AF after cardiac surgery, but observed conflicting
273 results [49], which probably occurred for 2 main reasons: (i) most studies applied n-3 PUFA treatment
274 only postoperatively [48]. (ii) In the case of treatment before cardiac surgery, its duration was
275 insufficient to result in adequate incorporation of n-3 PUFA in sarcolemmal myocardial membranes
276 [47,48,50-53]. Moreover, DHA treatment appears to be more efficient than EPA treatment in reducing
277 the incidence of postoperative AF [52,54,55]. However, a meta-analysis including all 6 placebo-
278 controlled randomized controlled trials (RCT) [44,50,51,56,57] found a regression rate of 0.92 (95 %
279 CI, 0.78 – 1.10) and could not detect a significant clinical relevant effect, as all included trials were
280 limited by low statistical power, whereas other relevant postoperative complications have not been
281 adequately evaluated. Furthermore, no data exists about its potential role in high-risk cardiac surgery
282 patients, with complex surgical procedures, which are at increased risk for the development of
283 postoperative complications. Given its outlined biological rationale and previously demonstrated
284 beneficial effects in small clinical trials [44-47], following adequately designed studies focusing on
285 functional outcomes are still needed to clarify the role of fish oil in these patients at high risk for the
286 development of organ dysfunction.

287 4. Micronutrients in Cardiac Surgery Patients

288 4.1. Inflammation in Cardiac Surgery

289 Patients undergoing cardiac surgery experience a complex systemic inflammatory response
290 syndrome, which manifests as pyrexia, tachycardia, leukocytosis, hypotension, edema, and organ
291 failure. Several stimuli lead to systemic inflammation reactions during and after cardiac surgery. The
292 surgical trauma induces the activation of neutrophils, endothelial cells and platelets and the release
293 of mediators of the inflammatory response, such as tumor necrosis factor α (TNF α) and diverse
294 interleukins (IL). The foreign surface contact during CPB leads to the activation of cellular
295 components such as leukocytes and platelets and activates further humoral mediators, such as
296 complement system, as well as kallikrein cascades, inducing a release of inflammatory mediators
297 such as TNF α , IL-1, IL-6 and IL-8. After an ischemic period during the cross-clamping of the aorta,
298 the reoxygenation of the tissues further triggers the inflammatory response. This I/R-injury can also
299 be divided into leukocyte-dependent-mechanisms – through the interaction of neutrophils and
300 endothelial cells – and non-leukocyte-dependent pathways, such as the release of reactive oxygen
301 species, arachidonic-acid metabolites and cytokines, as well as increased nuclear factor kappa-light-
302 chain enhancer of activated B cells (NF κ B) activity. Hemodilution through large extracorporeal

303 circuits and blood loss during surgery often create a need for blood transfusions, which may further
 304 trigger inflammatory reactions. Notably, the so called enteral hypoperfusion during cardiac surgery
 305 increases the permeability of the gut mucosae and the transferal of intestinal bacteria into the
 306 bloodstream. Bacterial lipopolysaccharides from gram-negative bacteria may further induce TNF α
 307 and IL-6 production, complement activation, and the release of cytokines and nitric oxide, which
 308 further increase the extent of organ dysfunctions (Figure 4, for comprehensive review please see:
 309 [58]). In particular, high-risk cardiac patients with extended surgical procedures and duration of CPB
 310 are exposed to a significantly higher inflammatory response with deleterious effects. For this reason,
 311 various clinical trials have attempted to reduce the perioperative inflammatory response by
 312 administration of different immune-modulatory agents, which are outlined in the following sections.
 313

mediators of injury	ensuing organ damage
<ul style="list-style-type: none"> ⚡ Vasodilation through histamine and bradykinin ⚡ Vasomotor paresis through cortisol deficiency ⚡ Capillary fluid leak 	<ul style="list-style-type: none"> 🚫 Systemic hypotension 🚫 General edema
<ul style="list-style-type: none"> ⚡ Increased permeability of blood-brain barrier ⚡ Cerebral edema 	<ul style="list-style-type: none"> 🚫 Disturbed thermoregulation 🚫 Dysregulation of the autonomic nervous system 🚫 Disrupted hypothalamic-pituitary-adrenal axis 🚫 Cognitive dysfunction and delirium
<ul style="list-style-type: none"> ⚡ Inhibition of cardiomyocyte contraction ⚡ Decreased ventricular compliance ⚡ Impaired systolic function 	<ul style="list-style-type: none"> 🚫 low cardiac output
<ul style="list-style-type: none"> ⚡ Pulmonary edema ⚡ Impaired surfactant production ⚡ Decreased lung compliance ⚡ Pulmonary vascular dysfunction 	<ul style="list-style-type: none"> 🚫 ARDS 🚫 Ventilation-perfusion mismatch 🚫 Hypoxemia
<ul style="list-style-type: none"> ⚡ Tubular injury and edema ⚡ Reduced glomerular filtration rate and creatinine clearance 	<ul style="list-style-type: none"> 🚫 Acute kidney injury
<ul style="list-style-type: none"> ⚡ Increased intestinal permeability 	<ul style="list-style-type: none"> 🚫 Bacterial translocation and endotoxemia

314
 315 **Figure 4.** Effects of inflammation on different organs

316 **4.2. Glutamine**

317 One immune-active substance, the non-essential amino acid glutamine, is the most abundant
 318 amino acid in the human body and showed cardioprotective effects in several clinical trials. The
 319 perioperative administration of both parenteral (N(2)-L-alanyl-L-glutamine) [59] and enteral [60]
 320 forms of glutamine leads to reduced myocardial injury as assessed by reduced postoperative
 321 troponin I concentration among cardiac surgery patients.

322 However, in view of the insufficient evidence, recent guidelines state that routine
 323 supplementation with glutamine cannot be recommended due to the unproved clinical benefits in
 324 cardiac surgery patients and even a risk of harm, which has been demonstrated in critically ill patients
 325 [61].

326 **4.3. Selenium**

327 Selenium is a trace element that is important for many of the body's regulatory and metabolic
328 functions, especially during times of stress [62,63]. In an observational study, the majority of patients
329 undergoing cardiac surgery exhibited a significant selenium deficiency prior to CPB, which was
330 further aggravated with increasing CPB time, leading to an insufficient capacity to withstand the
331 stress of surgery [63]. In a subsequent non-randomized interventional trial, a high-dose selenium
332 supplementation was effective in preventing this decrease of intraoperative circulating selenium
333 levels and clinical outcomes were superior in this supplemented group compared with a historical
334 control group [64]. Recently, a randomized controlled study demonstrated the safety and feasibility
335 of high-dose selenium supplementation (4000 μ g) in cardiac surgery patients, whereas no significant
336 clinical effects could be detected [65]. In view of these data, a large-scale multicenter trial is currently
337 being performed to evaluate the clinical significance of high-dose (2000 μ g) perioperative sodium
338 selenite supplementation in patients at high risk after cardiac surgery [66].

339 **4.4. Vitamins**

340 Few data are available regarding vitamin supplementation in cardiac surgery patients. Among
341 the vitamins, thiamine and vitamins D and C are the most promising candidates and have been
342 studied in several trials. Thiamine, the essential co-factor for pyruvate dehydrogenase function, is
343 responsible for adequate aerobic metabolism. Preliminary studies demonstrated that thiamine levels
344 are decreased after cardiac surgery and that low serum levels are inversely associated with blood
345 lactate level [67,68], which, in turn, predicts postoperative mortality and morbidity [69,70]. However,
346 recently published RCTs did not support the hypothesis that thiamine administration during cardiac
347 surgery decreases postoperative blood lactate levels and improves clinical outcomes [71,72].

348 Vitamin D is known to affect the bones, the muscles, the blood vessels, cell proliferation and
349 differentiation, autoimmune processes and the immune system in parallel with the regulation of
350 calcium homeostasis [73]. Therefore, vitamin D deficiency leads to skeletal and non-skeletal diseases
351 and is associated with various respiratory, immune, infectious, neurological and cardiovascular
352 diseases. It is involved in numerous physiological mechanisms desirable for cardiac surgery patients,
353 such as regulation of arterial stiffness and endothelial function [73]. However, in one retrospective
354 study, low vitamin D concentrations before surgery were not associated with increased mortality and
355 morbidity, while the significance of intraoperative changes and potential differences between the
356 biological active (1,25OH) and inactive form (25OH) remained unknown [74].

357 Vitamin C shows pleiotropic functions in the human biology and reduced oxidative damage and
358 resulting organ injury in critically ill patients with sepsis or septic shock [75]. In cardiac surgery
359 patients, preliminary studies indicate a beneficial effect of Vitamin C supplementation on the
360 occurrence of postoperative outcome [76]. Besides, a recent meta-analysis of small preliminary
361 studies demonstrated that administration of vitamin C is effective as prophylaxis for prevention of
362 postoperative AF [77]. Adequately designed studies are now encouraged to comprehensively
363 investigate the effect of an appropriate Vitamin C supplementing strategy on the patients'
364 inflammatory response and to evaluate its clinical effects on patients' mid- to long-term outcomes.

365 **5. Conclusion**

366 Despite substantial procedural advances, open-heart surgery continues to be associated with
367 disconcerting complication rates, often necessitating a prolonged ICU stay until the organ functions
368 recover, especially in high-risk cardiac surgery patients with significant comorbidities and complex
369 cardiac surgical procedures. While the majority of patients generally stay briefly in the ICU and are
370 able to recover within the first few days after surgery, intense nutrition support and early initiation
371 of enteral nutrition seems of paramount importance, especially in high-risk cardiac surgery with
372 prolonged ICU stays to allow for recovery, in order to reduce surgical stress, maintain physiological
373 functional capacity, and facilitate postoperative functional recovery. Yet, adequate strategies are still
374 needed for an early identification of these cardiac surgery patients with prolonged ICU stay. In

375 addition, more research is warranted, to evaluate the effect of an intense nutrition support on
376 functional outcomes in this cohort of critically ill patients. Considering the patients' perioperative
377 inflammatory response, adequately designed studies are supported by smaller pilot studies and
378 currently under way to evaluate the clinical significance of different anti-inflammatory strategies.

379 List of Abbreviations

AF	Atrial Fibrillation
ASPEN	American Society for Parenteral and Enteral Nutrition
BMI	Body Mass Index
CABG	Coronary Artery Bypass Graft
CPB	Cardiopulmonary Bypass
DHA	Docosahexaenoic Acid
EN	Enteral Nutrition
EPA	Eicosapentanoic Acid
ERAS	Enhanced Recovery After Surgery
FO	Fish Oil
GI	Gastrointestinal
GRV	Gastric Residual Volume
ICU	Intensive Care Unit
IL	Interleukin
I/R	Ischemia/ Reperfusion
LE	Lipid Emulsions
LOS	Length of Stay
MUST	Malnutrition Universal Screening Tool
n.a.	not available
NF κ B	nuclear factor kappa-light-chain enhancer of activated B cells
NRS 2002	Nutrition Risk Screening 2002
NUTRIC	Nutrition Risk in the Critically Ill
PN	Parenteral Nutrition
PUFA	Polyunsaturated Fatty Acids
RCT	Randomized Controlled Trial
SGA	Subjective Global Assessment
SNAQ	Short Nutrition Assessment Questionnaire
sPN	Supplemental Parenteral Nutrition
TNF α	Tumor Necrosis Factor α

380

381 Acknowledgments: None

382 **Author Contributions:** *Statement of Authorship:* Nesterova E., Hill A., and Stoppe C. equally contributed to the
383 conception and design of the research; Hill A., Goetzenich A., Lomivorotov V as well contributed to the design
384 of the review article; Efremov S., Zamyantin M, Heyland D, Benstoem C and Chourdakis M contributed to the
385 acquisition, analysis and interpretation of the reviewed data together with: Nesterova E. and Goetzenich A.
386 Nesterova E., Hill A., and Stoppe C. drafted the manuscript. All authors critically revised the manuscript, agree
387 to be fully accountable for ensuring the integrity and accuracy of the work, and read and approved the final
388 manuscript.

389 **Conflicts of Interest:** The authors declare no conflict of interest that may be perceived as inappropriately
390 influencing the representation or interpretation of reported research results.

391 **References**

- 392 1. Lomivorotov, V. V.; Efremov, S. M.; Boboshko, V. A.; Nikolaev, D. A.; Vedernikov, P. E.; Lomivorotov, V.
393 N.; Karaskov, A. M. Evaluation of nutritional screening tools for patients scheduled for cardiac surgery.
394 *Nutrition* **2013**, *29*, 436–442. DOI: 10.1016/j.nut.2012.08.006
- 395 2. Stoppe, C.; Goetzenich, A.; Whitman, G.; Ohkuma, R.; Brown, T.; Hatzakorjian, R.; Kristof, A.; Meybohm,
396 P.; Mechanick, J.; Evans, A.; Yeh, D.; McDonald, B.; Chourdakis, M.; Jones, P.; Barton, R.; Tripathi, R.; Elke,
397 G.; Liakopoulos, O.; Agarwala, R.; Lomivorotov, V.; Nesterova, E.; Marx, G.; Benstoem, C.; Lemieux, M.;
398 Heyland, D. K. Role of nutrition support in adult cardiac surgery: a consensus statement from an
399 International Multidisciplinary Expert Group on Nutrition in Cardiac Surgery. *Crit Care* **2017**, *21*, 131. DOI:
400 10.1186/s13054-017-1690-5
- 401 3. Drover, J. W.; Cahill, N. E.; Kutsogiannis, J.; Pagliarello, G.; Wischmeyer, P.; Wang, M.; Day, A. G.; Heyland,
402 D. K. Nutrition therapy for the critically ill surgical patient: we need to do better! *Journal of Parenteral and*
403 *Enteral Nutrition* **2010**, *34*, 644–652. DOI: 10.1177/0148607110372391
- 404 4. Rahman, A.; Hasan, R. M.; Agarwala, R.; Martin, C.; Day, A. G.; Heyland, D. K. Identifying critically-ill
405 patients who will benefit most from nutritional therapy: Further validation of the “modified NUTRIC”
406 nutritional risk assessment tool. *Clin Nutr* **2016**, *35*, 158–162. DOI: 10.1016/j.clnu.2015.01.015
- 407 5. Rahman, A.; Martin, C.; Heyland, D. K. Nutrition therapy for the critically ill surgical patient with aortic
408 aneurysmal rupture: defining and improving current practice. *Journal of Parenteral and Enteral Nutrition*
409 **2015**, *39*, 104–113. DOI: 10.1177/0148607113501695
- 410 6. Boban, M.; Laviano, A.; Persic, V.; Rotim, A.; Jovanovic, Z.; Vcev, A. Characteristics of NRS-2002
411 Nutritional Risk Screening in patients hospitalized for secondary cardiovascular prevention and
412 rehabilitation. *J Am Coll Nutr* **2014**, *33*, 466–473. DOI: 10.1080/07315724.2013.876902
- 413 7. Bhamidipati, C. M.; LaPar, D. J.; Mehta, G. S.; Kern, J. A.; Upchurch, G. R.; Kron, I. L.; Ailawadi, G. Albumin
414 is a better predictor of outcomes than body mass index following coronary artery bypass grafting. *Surgery*
415 **2011**, *150*, 626–634. DOI: 10.1016/j.surg.2011.07.056
- 416 8. Thourani, V. H.; Keeling, W. B.; Kilgo, P. D.; Puskas, J. D.; Lattouf, O. M.; Chen, E. P.; Guyton, R. A. The
417 impact of body mass index on morbidity and short- and long-term mortality in cardiac valvular surgery. *J.*
418 *Thorac. Cardiovasc. Surg.* **2011**, *142*, 1052–1061. DOI: 10.1016/j.jtcvs.2011.02.009
- 419 9. Go, P. H.; Hodari, A.; Nemeh, H. W.; Borgi, J.; Lanfear, D. E.; Williams, C. T.; Paone, G.; Morgan, J. A. Effect
420 of Preoperative Albumin Levels on Outcomes in Patients Undergoing Left Ventricular Device Implantation.
421 *ASAIO J.* **2015**, *61*, 734–737. DOI: 10.1097/MAT.0000000000000272
- 422 10. Yu, P.-J.; Cassiere, H. A.; Dellis, S. L.; Manetta, F.; Kohn, N.; Hartman, A. R. Impact of Preoperative
423 Prealbumin on Outcomes After Cardiac Surgery. *Journal of Parenteral and Enteral Nutrition* **2015**, *39*, 870–
424 874. DOI: 10.1177/0148607114536735
- 425 11. van Venrooij, L. M. W.; van Leeuwen, P. A. M.; Hopmans, W.; Borgmeijer-Hoelen, M. M. M. J.; de Vos, R.;
426 de Mol, B. A. J. M. Accuracy of quick and easy undernutrition screening tools—Short Nutritional
427 Assessment Questionnaire, Malnutrition Universal Screening Tool, and modified Malnutrition Universal
428 Screening Tool—in patients undergoing cardiac surgery. *J Am Diet Assoc* **2011**, *111*, 1924–1930. DOI:
429 10.1016/j.jada.2011.09.009
- 430 12. van Venrooij, L. M. W.; de Vos, R.; Borgmeijer-Hoelen, M. M. M. J.; Haaring, C.; de Mol, B. A. J. M.
431 Preoperative unintended weight loss and low body mass index in relation to complications and length of
432 stay after cardiac surgery. *Am. J. Clin. Nutr.* **2008**, *87*, 1656–1661. DOI: 10.1093/ajcn/87.6.1656
- 433 13. Jakob, S. M.; Stanga, Z. Perioperative metabolic changes in patients undergoing cardiac surgery. *Nutrition*
434 **2010**, *26*, 349–353. DOI: 10.1016/j.nut.2009.07.014
- 435 14. Pichette, M.; Liszkowski, M.; Ducharme, A. Preoperative Optimization of the Heart Failure Patient
436 Undergoing Cardiac Surgery. *Can J Cardiol* **2017**, *33*, 72–79. DOI: 10.1016/j.cjca.2016.08.004
- 437 15. Chatterjee, A.; Hage, F. G. Guidelines in review: 2014 ACC/AHA guideline on perioperative cardiovascular
438 evaluation and management of patients undergoing noncardiac surgery: a report of the American College
439 of Cardiology/American Heart Association Task Force on practice guidelines. *J Nucl Cardiol* **2015**, *22*, 158–
440 161. DOI: 10.1007/s12350-014-9992-3
- 441 16. Pittman, J.G.; Cohen, P. The Pathogenesis of Cardiac Cachexia. *N. Engl. J. Med.* **1964**, *271*, 453–60 CONCL.
442 DOI: 10.1056/NEJM196408272710908
- 443 17. Haehling, von, S.; Lainscak, M.; Springer, J.; Anker, S. D. Cardiac cachexia: a systematic overview.
444 *Pharmacol. Ther.* **2009**, *121*, 227–252. DOI: 10.1016/j.pharmthera.2008.09.009

445 18. Varadhan, K. K.; Neal, K. R.; Dejong, C. H. C.; Fearon, K. C. H.; Ljungqvist, O.; Lobo, D. N. The enhanced
446 recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: a
447 meta-analysis of randomized controlled trials. *Clin Nutr* **2010**, *29*, 434–440. DOI: 10.1016/j.clnu.2010.01.004

448 19. Lassen, K.; Coolsen, M. M. E.; Slim, K.; Carli, F.; de Aguilar-Nascimento, J. E.; Schäfer, M.; Parks, R. W.;
449 Fearon, K. C. H.; Lobo, D. N.; Demartines, N.; Braga, M.; Ljungqvist, O.; Dejong, C. H. C.; ERAS® Society;
450 European Society for Clinical Nutrition and Metabolism; International Association for Surgical Metabolism
451 and Nutrition Guidelines for perioperative care for pancreaticoduodenectomy: Enhanced Recovery After
452 Surgery (ERAS®) Society recommendations. *Clin Nutr* **2012**, *31*, 817–830. DOI: 10.1016/j.clnu.2012.08.011

453 20. Nygren, J.; Thacker, J.; Carli, F.; Fearon, K. C. H.; Norderval, S.; Lobo, D. N.; Ljungqvist, O.; Soop, M.;
454 Ramirez, J.; Enhanced Recovery After Surgery Society Guidelines for perioperative care in elective
455 rectal/pelvic surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. *Clin Nutr* **2012**,
456 *31*, 801–816. DOI: 10.1016/j.clnu.2012.08.012

457 21. Sola, M.; Ramm, C. J.; Kolarszyk, L. M.; Teeter, E. G.; Yeung, M.; Caranasos, T. G.; Vavalle, J. P. Application
458 of a Multidisciplinary Enhanced Recovery After Surgery Pathway to Improve Patient Outcomes After
459 Transcatheter Aortic Valve Implantation. *Am. J. Cardiol.* **2016**, *118*, 418–423. DOI:
460 10.1016/j.amjcard.2016.05.015

461 22. Rich, M. W.; Keller, A. J.; Schechtman, K. B.; Marshall, W. G.; Kouchoukos, N. T. Increased complications
462 and prolonged hospital stay in elderly cardiac surgical patients with low serum albumin. *Am. J. Cardiol.*
463 **1989**, *63*, 714–718.

464 23. Engelman, D. T.; Adams, D. H.; Byrne, J. G.; Aranki, S. F.; Collins, J. J.; Couper, G. S.; Allred, E. N.; Cohn,
465 L. H.; Rizzo, R. J. Impact of body mass index and albumin on morbidity and mortality after cardiac surgery.
466 *J. Thorac. Cardiovasc. Surg.* **1999**, *118*, 866–873.

467 24. ASPEN Board of Directors and the Clinical Guidelines Task Force Guidelines for the use of parenteral and
468 enteral nutrition in adult and pediatric patients. *Journal of Parenteral and Enteral Nutrition* **2002**, *26*, 1SA–
469 138SA.

470 25. Boban, M.; Laviano, A.; Persic, V.; Biocina, B.; Petricevic, M.; Zekanovic, D.; Rotim, C.; Aleric, I.; Vcev, A.
471 Influence of Transiently Increased Nutritional Risk on a Left Ventricle Myocardial Mass Assessed by
472 Echocardiography. *Ann. Nutr. Metab.* **2016**, *68*, 197–202. DOI: 10.1159/000445301

473 26. DiMaria-Ghalili, R. A.; Sullivan-Marx, E. M.; Compher, C. Inflammation, functional status, and weight loss
474 during recovery from cardiac surgery in older adults: a pilot study. *Biol Res Nurs* **2014**, *16*, 344–352. DOI:
475 10.1177/1099800413503489

476 27. Visser, M.; Niessen, H. W. M.; Kok, W. E. M.; Cocchieri, R.; Wisselink, W.; van Leeuwen, P. A. M.; de Mol,
477 B. A. J. M. Nutrition before and during Surgery and the Inflammatory Response of the Heart: A
478 Randomized Controlled Trial. *J Nutr Metab* **2015**, *2015*, 123158–8. DOI: 10.1155/2015/123158

479 28. De Waele, E.; Nguyen, D.; De Bondt, K.; La Meir, M.; Diltoer, M.; Honoré, P. M.; Spapen, H.; Pen, J. J. The
480 CoCoS trial: Caloric Control in Cardiac Surgery patients promotes survival, an interventional trial with
481 retrospective control. *Clin Nutr* **2017**. DOI: 10.1016/j.clnu.2017.03.007

482 29. Osland, E.; Yunus, R. M.; Khan, S.; Memon, M. A. Early versus traditional postoperative feeding in patients
483 undergoing resectional gastrointestinal surgery: a meta-analysis. *Journal of Parenteral and Enteral Nutrition*
484 **2011**, *35*, 473–487. DOI: 10.1177/0148607110385698

485 30. Andersen, H. K.; Lewis, S. J.; Thomas, S. Early enteral nutrition within 24h of colorectal surgery versus later
486 commencement of feeding for postoperative complications. *Cochrane Database Syst Rev* **2006**, *160*, CD004080.
487 DOI: 10.1002/14651858.CD004080.pub2

488 31. Martindale, R. G.; McClave, S. A.; Taylor, B.; Lawson, C. M. Perioperative nutrition: what is the current
489 landscape? *Journal of Parenteral and Enteral Nutrition* **2013**, *37*, 5S–20S. DOI: 10.1177/0148607113496821

490 32. Berger, M. M.; Revelly, J.-P.; Cayeux, M.-C.; Chioléro, R. L. Enteral nutrition in critically ill patients with
491 severe hemodynamic failure after cardiopulmonary bypass. *Clin Nutr* **2005**, *24*, 124–132. DOI:
492 10.1016/j.clnu.2004.08.005

493 33. Revelly, J. P.; Tappy, L.; Berger, M. M.; Gersbach, P.; Cayeux, C.; Chioléro, R. Early metabolic and
494 splanchnic responses to enteral nutrition in postoperative cardiac surgery patients with circulatory
495 compromise. *Intensive Care Med* **2001**, *27*, 540–547.

496 34. Kesek, D. R.; Akerlind, L.; Karlsson, T. Early enteral nutrition in the cardiothoracic intensive care unit. *Clin*
497 *Nutr* **2002**, *21*, 303–307.

498 35. Flordelís Lasierra, J. L.; Pérez-Vela, J. L.; Umezawa Makikado, L. D.; Torres Sánchez, E.; Colino Gómez, L.;
499 Maroto Rodríguez, B.; Arribas López, P.; Gómez de la Cámara, A.; Montejo González, J. C. Early enteral
500 nutrition in patients with hemodynamic failure following cardiac surgery. *Journal of Parenteral and Enteral
501 Nutrition* **2015**, *39*, 154–162. DOI: 10.1177/0148607113504219

502 36. Elke, G.; Felbinger, T. W.; Heyland, D. K. Gastric residual volume in critically ill patients: a dead marker or
503 still alive? *Nutr Clin Pract* **2015**, *30*, 59–71. DOI: 10.1177/0884533614562841

504 37. Abboud, B.; Daher, R.; Boujaoude, J. Acute mesenteric ischemia after cardio-pulmonary bypass surgery.
505 *World J. Gastroenterol.* **2008**, *14*, 5361–5370.

506 38. Faisy, C.; Lerolle, N.; Dachraoui, F.; Savard, J.-F.; Abboud, I.; Tadie, J.-M.; Fagon, J.-Y. Impact of energy
507 deficit calculated by a predictive method on outcome in medical patients requiring prolonged acute
508 mechanical ventilation. *British Journal of Nutrition* **2009**, *101*, 1079–1087. DOI: 10.1017/S0007114508055669

509 39. Paccagnella, A.; Calò, M. A.; Caenaro, G.; Salandin, V.; Jus, P.; Simini, G.; Heymsfield, S. B. Cardiac cachexia:
510 preoperative and postoperative nutrition management. *Journal of Parenteral and Enteral Nutrition* **1994**, *18*,
511 409–416. DOI: 10.1177/0148607194018005409

512 40. Harvey, S. E.; Parrott, F.; Harrison, D. A.; Bear, D. E.; Segaran, E.; Beale, R.; Bellingan, G.; Leonard, R.;
513 Mythen, M. G.; Rowan, K. M.; CALORIES Trial Investigators Trial of the route of early nutritional support
514 in critically ill adults. *N. Engl. J. Med.* **2014**, *371*, 1673–1684. DOI: 10.1056/NEJMoa1409860

515 41. Wischmeyer, P. E.; Hasselmann, M.; Kummerlen, C.; Kozar, R.; Kutsogiannis, D. J.; Karvellas, C. J.; Besecker,
516 B.; Evans, D. K.; Preiser, J.-C.; Gramlich, L.; Jeejeebhoy, K.; Dhaliwal, R.; Jiang, X.; Day, A. G.; Heyland, D.
517 K. A randomized trial of supplemental parenteral nutrition in underweight and overweight critically ill
518 patients: the TOP-UP pilot trial. *Crit Care* **2017**, *21*, 142. DOI: 10.1186/s13054-017-1736-8

519 42. Simpson, F.; Doig, G. S. Parenteral vs. enteral nutrition in the critically ill patient: a meta-analysis of trials
520 using the intention to treat principle. *Intensive Care Med* **2005**, *31*, 12–23. DOI: 10.1007/s00134-004-2511-2

521 43. Casaer, M. P.; Mesotten, D.; Hermans, G.; Wouters, P. J.; Schetz, M.; Meyfroidt, G.; Van Cromphaut, S.;
522 Ingels, C.; Meersseman, P.; Muller, J.; Vlasselaers, D.; Debaveye, Y.; Desmet, L.; Dubois, J.; Van Assche, A.;
523 Vanderheyden, S.; Wilmer, A.; Van den Berghe, G. Early versus late parenteral nutrition in critically ill
524 adults. *N. Engl. J. Med.* **2011**, *365*, 506–517. DOI: 10.1056/NEJMoa1102662

525 44. Heidt, M. C.; Vician, M.; Stracke, S. K. H.; Stadlbauer, T.; Grebe, M. T.; Boening, A.; Vogt, P. R.; Erdogan,
526 A. Beneficial effects of intravenously administered N-3 fatty acids for the prevention of atrial fibrillation
527 after coronary artery bypass surgery: a prospective randomized study. *Thorac Cardiovasc Surg* **2009**, *57*, 276–
528 280. DOI: 10.1055/s-0029-1185301

529 45. Berger, M. M.; Delodder, F.; Liaudet, L.; Tozzi, P.; Schlaepfer, J.; Chioléro, R. L.; Tappy, L. Three short
530 perioperative infusions of n-3 PUFAAs reduce systemic inflammation induced by cardiopulmonary bypass
531 surgery: a randomized controlled trial. *Am. J. Clin. Nutr.* **2013**, *97*, 246–254. DOI: 10.3945/ajcn.112.046573

532 46. Metcalf, R. G.; James, M. J.; Gibson, R. A.; Edwards, J. R.; Stubberfield, J.; Stuklis, R.; Roberts-Thomson, K.;
533 Young, G. D.; Cleland, L. G. Effects of fish-oil supplementation on myocardial fatty acids in humans. *Am.
534 J. Clin. Nutr.* **2007**, *85*, 1222–1228. DOI: 10.1093/ajcn/85.5.1222

535 47. Lomivorotov, V. V.; Efremov, S. M.; Pokushalov, E. A.; Romanov, A. B.; Ponomarev, D. N.; Cherniavsky,
536 A. M.; Shilova, A. N.; Karaskov, A. M.; Lomivorotov, V. N. Randomized trial of fish oil infusion to prevent
537 atrial fibrillation after cardiac surgery: data from an implantable continuous cardiac monitor. *J. Cardiothorac.
538 Vasc. Anesth.* **2014**, *28*, 1278–1284. DOI: 10.1053/j.jvca.2014.02.019

539 48. Mozaffarian, D.; Wu, J. H. Y.; de Oliveira Otto, M. C.; Sandesara, C. M.; Metcalf, R. G.; Latini, R.; Libby, P.;
540 Lombardi, F.; O'Gara, P. T.; Page, R. L.; Silletta, M. G.; Tavazzi, L.; Marchioli, R. Fish oil and post-operative
541 atrial fibrillation: a meta-analysis of randomized controlled trials. *J. Am. Coll. Cardiol.* **2013**, *61*, 2194–2196.
542 DOI: 10.1016/j.jacc.2013.02.045

543 49. Christou, G. A.; Christou, K. A.; Korantzopoulos, P.; Rizos, E. C.; Nikas, D. N.; Goudevenos, J. A. The
544 Current Role of Omega-3 Fatty Acids in the Management of Atrial Fibrillation. *Int J Mol Sci* **2015**, *16*, 22870–
545 22887. DOI: 10.3390/ijms160922870

546 50. Sandesara, C. M.; Chung, M. K.; Van Wagoner, D. R.; Barringer, T. A.; Allen, K.; Ismail, H. M.; Zimmerman,
547 B.; Olshansky, B. A Randomized, Placebo-Controlled Trial of Omega-3 Fatty Acids for Inhibition of
548 Supraventricular Arrhythmias After Cardiac Surgery: The FISH Trial. *J Am Heart Assoc* **2012**, *1*, e000547–
549 e000547. DOI: 10.1161/JAHA.111.000547

550 51. Heidarsdottir, R.; Arnar, D. O.; Skuladottir, G. V.; Torfason, B.; Edvardsson, V.; Gottskalksson, G.; Palsson, R.; Indridason, O. S. Does treatment with n-3 polyunsaturated fatty acids prevent atrial fibrillation after open heart surgery? *Europace* **2010**, *12*, 356–363. DOI: 10.1093/europace/eup429

551 52. Yamamoto, T.; Kajikawa, Y.; Otani, S.; Yamada, Y.; Takemoto, S.; Hirota, M.; Ikeda, M.; Iwagaki, H.; Saito, S.; Fujiwara, T. Protective effect of eicosapentaenoic acid on insulin resistance in hyperlipidemic patients and on the postoperative course of cardiac surgery patients: the possible involvement of adiponectin. *Acta Med. Okayama* **2014**, *68*, 349–361. DOI: 10.18926/AMO/53024

552 53. Sorice, M.; Tritto, F. P.; Sordelli, C.; Gregorio, R.; Piazza, L. N-3 polyunsaturated fatty acids reduces post-operative atrial fibrillation incidence in patients undergoing “on-pump” coronary artery bypass graft surgery. *Monaldi Arch Chest Dis* **2011**, *76*, 93–98. DOI: 10.4081/monaldi.2011.196

553 54. Guo, X.-Y.; Yan, X.-L.; Chen, Y.-W.; Tang, R.-B.; Du, X.; Dong, J.-Z.; Ma, C.-S. Omega-3 fatty acids for postoperative atrial fibrillation: alone or in combination with antioxidant vitamins? *Heart Lung Circ* **2014**, *23*, 743–750. DOI: 10.1016/j.hlc.2014.02.018

554 55. Zhang, B.; Zhen, Y.; Tao, A.; Bao, Z.; Zhang, G. Polyunsaturated fatty acids for the prevention of atrial fibrillation after cardiac surgery: an updated meta-analysis of randomized controlled trials. *J Cardiol* **2014**, *63*, 53–59. DOI: 10.1016/j.jcc.2013.06.014

555 56. Farquharson, A. L.; Metcalf, R. G.; Sanders, P.; Stuklis, R.; Edwards, J. R. M.; Gibson, R. A.; Cleland, L. G.; Sullivan, T. R.; James, M. J.; Young, G. D. Effect of dietary fish oil on atrial fibrillation after cardiac surgery. *Am. J. Cardiol.* **2011**, *108*, 851–856. DOI: 10.1016/j.amjcard.2011.04.036

556 57. Saravanan, P.; Davidson, N. C.; Schmidt, E. B.; Calder, P. C. Cardiovascular effects of marine omega-3 fatty acids. *Lancet* **2010**, *376*, 540–550. DOI: 10.1016/S0140-6736(10)60445-X

557 58. Hall, R. Identification of inflammatory mediators and their modulation by strategies for the management of the systemic inflammatory response during cardiac surgery. *J. Cardiothorac. Vasc. Anesth.* **2013**, *27*, 983–1033. DOI: 10.1053/j.jvca.2012.09.013

558 59. Lomivorotov, V. V.; Efremov, S. M.; Shmirev, V. A.; Ponomarev, D. N.; Lomivorotov, V. N.; Karaskov, A. M. Glutamine is cardioprotective in patients with ischemic heart disease following cardiopulmonary bypass. *Heart Surg Forum* **2011**, *14*, E384–8. DOI: 10.1532/HSF98.20111074

559 60. Sufit, A.; Weitzel, L. B.; Hamiel, C.; Queensland, K.; Dauber, I.; Rooyackers, O.; Wischmeyer, P. E. Pharmacologically dosed oral glutamine reduces myocardial injury in patients undergoing cardiac surgery: a randomized pilot feasibility trial. *Journal of Parenteral and Enteral Nutrition* **2012**, *36*, 556–561. DOI: 10.1177/0148607112448823

560 61. McClave, S. A.; Taylor, B. E.; Martindale, R. G.; Warren, M. M.; Johnson, D. R.; Braunschweig, C.; McCarthy, M. S.; Davanos, E.; Rice, T. W.; Cresci, G. A.; Gervasio, J. M.; Sacks, G. S.; Roberts, P. R.; Compher, C.; Society of Critical Care Medicine; American Society for Parenteral and Enteral Nutrition Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). *Journal of Parenteral and Enteral Nutrition* **2016**, *40*, 159–211. DOI: 10.1177/0148607115621863

561 62. Benstoem, C.; Goetzenich, A.; Kraemer, S.; Borosch, S.; Manzanares, W.; Hardy, G.; Stoppe, C. Selenium and Its Supplementation in Cardiovascular Disease-What do We Know? *Nutrients* **2015**, *7*, 3094–3118. DOI: 10.3390/nu7053094

562 63. Stoppe, C.; Schälte, G.; Rossaint, R.; Coburn, M.; Graf, B.; Spillner, J.; Marx, G.; Rex, S. The intraoperative decrease of selenium is associated with the postoperative development of multiorgan dysfunction in cardiac surgical patients. *Crit Care Med* **2011**, *39*, 1879–1885. DOI: 10.1097/CCM.0b013e3182190d48

563 64. Stoppe, C.; Spillner, J.; Rossaint, R.; Coburn, M.; Schälte, G.; Wildenhues, A.; Marx, G.; Rex, S. Selenium blood concentrations in patients undergoing elective cardiac surgery and receiving perioperative sodium selenite administration. *Nutrition* **2012**. DOI: 10.1016/j.nut.2012.05.013

564 65. Schmidt, T.; Pargger, H.; Seeberger, E.; Eckhart, F.; Felten, von, S.; Haberthür, C. Effect of high-dose sodium selenite in cardiac surgery patients: A randomized controlled bi-center trial. *Clin Nutr* **2017**. DOI: 10.1016/j.clnu.2017.04.019

565 66. Stoppe, C.; McDonald, B.; Rex, S.; Manzanares, W.; Whitlock, R.; Fremes, S.; Fowler, R.; Lamarche, Y.; Meybohm, P.; Haberthür, C.; Rossaint, R.; Goetzenich, A.; Elke, G.; Day, A.; Heyland, D. K. SodiUm SeleniTe Adminstration IN Cardiac Surgery (SUSTAIN CSX-trial): study design of an international multicenter randomized double-blinded controlled trial of high dose sodium-selenite administration in high-risk cardiac surgical patients. *Trials* **2014**, *15*, 339. DOI: 10.1186/1745-6215-15-339

604 67. Andersen, L. W.; Liu, X.; Peng, T. J.; Giberson, T. A.; Khabbaz, K. R.; Donnino, M. W. Pyruvate
605 Dehydrogenase Activity and Quantity Decreases After Coronary Artery Bypass Grafting: a Prospective
606 Observational Study. *Shock* **2015**, *43*, 250–254. DOI: 10.1097/SHK.0000000000000306

607 68. Donnino, M. W.; Cocchi, M. N.; Smithline, H.; Carney, E.; Chou, P. P.; Salciccioli, J.; Salciccioli, J. Coronary
608 artery bypass graft surgery depletes plasma thiamine levels. *Nutrition* **2010**, *26*, 133–136. DOI:
609 10.1016/j.nut.2009.06.004

610 69. Andersen, L. W.; Holmberg, M. J.; Doherty, M.; Khabbaz, K.; Lerner, A.; Berg, K. M.; Donnino, M. W.
611 Postoperative Lactate Levels and Hospital Length of Stay After Cardiac Surgery. *J. Cardiothorac. Vasc.
612 Anesth.* **2015**, *29*, 1454–1460. DOI: 10.1053/j.jvca.2015.06.007

613 70. Badreldin, A. M. A.; Doerr, F.; Elsobky, S.; Brehm, B. R.; Abul-dahab, M.; Lehmann, T.; Bayer, O.; Wahlers,
614 T.; Hekmat, K. Mortality prediction after cardiac surgery: blood lactate is indispensable. *Thorac Cardiovasc
615 Surg* **2013**, *61*, 708–717. DOI: 10.1055/s-0032-1324796

616 71. Andersen, L. W.; Holmberg, M. J.; Berg, K. M.; Chase, M.; Cocchi, M. N.; Sulmonte, C.; Balkema, J.;
617 MacDonald, M.; Montissol, S.; Senthilnathan, V.; Liu, D.; Khabbaz, K.; Lerner, A.; Novack, V.; Liu, X.;
618 Donnino, M. W. Thiamine as an adjunctive therapy in cardiac surgery: a randomized, double-blind,
619 placebo-controlled, phase II trial. *Crit Care* **2016**, *20*, 92. DOI: 10.1097/SHK.0000000000000306

620 72. Luger, M.; Hiesmayr, M.; Köppel, P.; Sima, B.; Ranz, I.; Weiss, C.; König, J.; Luger, E.; Kruschitz, R.; Ludvik,
621 B.; Schindler, K. Influence of intravenous thiamine supplementation on blood lactate concentration prior
622 to cardiac surgery: A double-blinded, randomised controlled pilot study. *Eur J Anaesthesiol* **2015**, *32*, 543–
623 548. DOI: 10.1097/EJA.0000000000000205

624 73. Pittas, A. G.; Chung, M.; Trikalinos, T.; Mitri, J.; Brendel, M.; Patel, K.; Lichtenstein, A. H.; Lau, J.; Balk, E.
625 M. Systematic review: Vitamin D and cardiometabolic outcomes. *Ann. Intern. Med.* **2010**, *152*, 307–314. DOI:
626 10.7326/0003-4819-152-5-201003020-00009

627 74. Turan, A.; Grady, M.; You, J.; Mascha, E. J.; Keeyapaj, W.; Komatsu, R.; Bashour, C. A.; Sessler, D. I.; Saager,
628 L.; Kurz, A. Low vitamin D concentration is not associated with increased mortality and morbidity after
629 cardiac surgery. *PLoS ONE* **2013**, *8*, e63831. DOI: 10.1371/journal.pone.0063831

630 75. Carr, A. C.; Shaw, G. M.; Fowler, A. A.; Natarajan, R. Ascorbate-dependent vasopressor synthesis: a
631 rationale for vitamin C administration in severe sepsis and septic shock? *Crit Care* **2015**, *19*, 418. DOI:
632 10.1186/s13054-015-1131-2

633 76. Antonic, M. Effect of Ascorbic Acid on Postoperative Acute Kidney Injury in Coronary Artery Bypass Graft
634 Patients: A Pilot Study. *Heart Surg Forum* **2017**, *20*, E214–E218.

635 77. Polymeropoulos, E.; Bagos, P.; Papadimitriou, M.; Rizos, I.; Patsouris, E.; Toumpouli, I. Vitamin C for the
636 Prevention of Postoperative Atrial Fibrillation after Cardiac Surgery: A Meta-Analysis. *Adv Pharm Bull* **2016**,
637 6, 243–250. DOI: 10.15171/apb.2016.033