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12 Abstract: In this paper, we first report that WOx contained nanoalloys exhibit stable electrocatalytic
13 performance in alkaline media, though bulk WOs are easy to be dissolved in NaOH solutions.
14 Carbon supported oxide-rich Pd-W alloy nanoparticles (PdW/C) with different Pd:W atom ratios
15 were prepared by reduction-oxidation method. Among the catalysts, the oxide-rich Pdo.sWo.2/C
16 (Pd/W = 8:2, atom ratio) exhibits the highest catalytic activity for oxygen reduction reaction. The
17 X-ray photoelectron spectroscopy data shows that ~40% of Pd atoms and ~ 60% of the W atoms are
18 in their oxides form. The Pd 3ds2 peaks in oxide-rich Pd-W nanoalloys are positive shift compared
19 with that of Pd/C, which indicates the electronic structure of Pd is affected by the strong interaction
20 between Pd and W/WOs. Compare to Pd/C, the onset potential of oxygen reduction reaction at the
21 oxide-rich PdosWo2/C is positive shifted. The current density (mA-mg Pd) at the oxide-rich
22 PdosWo2/C is ~1.6 times of that at Pd/C. The oxide-rich PdosWo2/C also exhibits higher catalytic
23 stability than Pd/C, which demonstrate that it is a prospective candidate for the cathode of fuel cells
24 operated with alkaline electrolyte.

25 Keywords: WOs; electrocatalysts; alkaline; Pd-W alloy; oxygen reduction reaction; reduction-oxidation
26 method

27
28

29 1. Introduction

30 The study of oxygen reduction reaction (ORR) has a long history of more than one century
31  since Grove fabricated the earliest hydrogen-oxygen fuel cell with Pt as the catalyst for ORR in 1839.
32  In recent years, the research of ORR are promoted by the increasing demand of clean energy
33  technology like fuel cells. The energy efficiency and battery voltage of the electrochemical cells are
34 obviously limited by the slow kinetics of the ORR[1,2], thus there is a great need of high efficient
35 catalysts for ORR. Various of electrocatalysts for ORR have been developed, include but not limit to
36  Ptbased catalysts[3-5], Pd-based catalysts[6,7], catalysts based on non-precious metals[8,9],
37  catalysts based on carbon nanostructure/nanocomposites[ 10-13], catalysts based on metal
38  oxides[ 14,15], catalysts based on metal-organic frameworks[ 16,17 ], catalysts based on
39  complexes[18,19], enzyme-based catalysts[20-24], metal carbides[25-28], and so on. Among the
40  catalysts for ORR, Pt-based catalysts are regarded as the most active catalysts[29]. However, the
41  scarcity of platinum limited the large scale application of Pt-based electrocatalysts. As one of the
42  alternative candidates, palladium is about 200 times abundant on the earth than platinum[30].
43  There have been some reviews about Pd-based electrocatalysts[31-33]The ORR [34]can be
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44 performed under both acid conditions and alkaline conditions in fuel cells. It is reported that the
45  alkaline media is benefit for the kinetics of ORR[35-37]. In alkaline solutions, the oxygen can be
46  reduced through four-electron pathway or two-electron pathway([38,39]. A lot of novel Pd-based
47  electrocatalysts for ORR appears, include but not limit to carbon or metal supported Pd alloys
48  [40-42], nitrogen and sulfur co-doped carbon supported PdNi catalyst (PdNi-NS/C)[43], Pd
49  supported on TiO» with oxygen vacancy(Pd/TiO>-Vo) [44], PAW nanoparticles supported on
50  sulfur-doped graphene(PdW/SG)[45], PANiCu/PdNiCo supported on nitrogen dope graphene[46],
51  PdSnCo/nitrogen-doped -graphene [47], electrochemically reduced graphene-oxide supported
52 Pd-Mn20s nanoparticles [ 48 |, AuPd@PdAu alloy nanocrystals [ 49 ]three-dimensional
53  nitrogen-doped graphene supports for palladium nanoparticles (Pd-N/3D-GNS)[50], and so on.
94 Most of the latest reports about Pd-based electrocatalysts for ORR in alkaline media mentioned
55 above are supported on graphene that had been specially treated (doping, modifying, and so on).
56  Though carbon black is the mostly used support for noble metal electrocatalysts in fuel cells,
57  Pd-based electrocatalysts supported on carbon black (C) for ORR in alkaline media is rarely
58  reported in the recent two or three years. Besides the boom of novel support materials like doped
59  graphene, one of the possible reasons is the high activity of Pd/C for ORR in alkaline media. It is
60  reported that Pd/C exhibit significantly high activity that is close to Pt/C in alkaline solutions[51,52],
61  so other electrocatalysts for ORR in alkaline media is difficult to exhibit much higher activity than
62  Pd/C. The new reports about carbon-black supported Pd based catalysts for ORR in alkaline media
63  have to face the awkward situation that compared with the ultra high active catalyst Pd/C.

64 After DFT calculations, Goddard et.al.[53]predict that PdsW is a prospective catalyst for ORR,
65  which have been confirmed by our previous work PdesWos in acid media[54]. In this work, we
66  attempt to fabricate high performance Pd-W/C systems for ORR in alkaline media. Most of the
67  noble metal electrocatalysts used in fuel cells are in the form of naonoparticles supported on carbon.
68  Since the surface of metal nanoparticles nanoalloy are easy to be oxidized by ambient air, the effect
69  of oxides in the Pd-based catalysts for ORR in alkaline media should be discussed. The interaction
70 of metal and metal oxides in catalysts has attracted research interests for decades[55-58].It is
71 reported recently that metal and metal oxides interactions greatly affect with the catalytic
72 consequence for the electrocatalysis reactions such as oxygen reduction reaction [59]and ethanol
73 oxidation reaction[60,61]. Bulk WOs crystal can be dissolved in strong NaOH solutions, which
74 limited its direct application in fuel cells operated in alkaline conditions. At the beginning of this
75  work, we imagine that one of the possible solutions to solve this problem is to separate the W atoms
76 with noble metals such as Pd in the atomic scale before their oxidation. Thus the chemical bonds
77  attached to most of the W atoms are not the W-O-W bonds but Pd-W metallic bonds. The Pd-W
78  bonds is more stable than W-O-W bonds in alkaline solutions. According to Monte Carlo simulation
79  [62,63], alloy clusters at the surface of nano-materials sometimes exhibit higher stability. As
80  mentioned above, we have studied the PdosWos catalyst for ORR in acid media[64]. Though some of
81 the W dealloyed from the surface of PdosWos alloy during the ORR in acid media, the
82  electrocatalytic performance of PdosWos catalyst kept stable. Thus we suppose that even if a part of
83  W/WOx leak out, the catalytic activity of the catalyst will not decay rapidly. In this paper, we
84  fabricate WOx-contained Pd-W nanoalloys with the reduction-oxidation method (Scheme 1.). The
85  onset potential of ORR at the as prepared oxide-rich PdosWo2/C (Pd/W=8:2, metal atomic ratio) is
86  close to the Pd/C and Pt/C fabricate with chemical reduction method[65]. The ORR stability and
87  current density (mA-mg Pd"!) of the oxide-rich PdosWo2/C is higher than that of Pd/C, which
88  indicates that the oxide-rich PdosWo2/C is a prospective candidate for the cathode of the fuel cells
89  operated in alkaline conditions.
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91 Scheme 1. Schematic illustration of the formation of catalyst. Dimensions are not in scales
92 2. Results and Discussion
93  2.1. Characterization of oxide-rich PdW/C catalysts
9 The X-ray diffraction (XRD) patterns of Pd/C (a), oxide-rich Pd0.6W0.4/C (b), Pd0.7W0.3/C (c),

95  Pd0.8W0.2/C (d), Pd0.9W0.1/C (e) are shown in Figure 1. Five typical diffraction peaks of the

96 catalyst were observed at about 24.8°, 40°, 46°, 68°, 82° in the diffractogram, which correspond to

97  the Vulcan XC-72R carbon (002) crystal face, face centered cubic (FCC) metal Pd (111), (200), (220)

98 and (311) crystal plane diffraction. The XRD patterns do not show any diffraction peaks

99  corresponding to W (fcc) or WO3, this indicates that most of the W atoms do not exist as an
100  individual phase, but entered into the lattice of Pd crystal. The absence of peaks for tungsten also
101  appears in our previous reported PdosWaos catalyst [64] used in acid conditions. The diffraction angle
102  of crystal plane diffraction peak of the Pd element in all the PAW/C catalysts is higher than that of
103  the corresponding Pd/C catalyst. The size of catalyst metal particles can be estimated with Scherrer’s
104  equation[66]. The estimated particle size of Pd/C, PdosWo.4/C, PdosWo3/C, PdosWo2/C and PdosWo1/C
105 were 5.6 nm, 4.8 nm, 4.5 nm, 43 nm and 5.2 nm. The particle size of the oxide-rich Pd-W/C
106  nanoparticles is smaller than that of Pd/C
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107
108 Figure 1. XRD patterns of Pd/C (a), oxide-rich PdosWo4/C (b), oxide-rich PdosWos/C (c), oxide
109  rich PdosWo2/C (d), and oxide rich PdosWo1/C (e).
110 The morphology and particle distribution (Figure 2) of Pd/C (a, b) and oxide-rich PdosWo./C (c,

111 d) have been characterized by transmission electron microscope (TEM). The oxide-rich PdosWo.:
112 nanoparticles are more uniformly dispersed on the carbon surface than Pd. The average diameter of
113 Pd nanoparticles is 5.6 nm while the average metal particle diameter of oxide-rich PdosWoz is 4.3
114  nm. Which are consistent with the XRD results. Figure 3 (a, b, ¢) showes the HRTEM of oxide-rich
115  PdosWo./C catalyst. The lattice spacing in Figure 3 (a, b, c) is 0.224 nm, 0.193 nm and 0.263 nm

116  which respectively correspond to the(111), (200) crystal planes of face-centered cubic Pd and (220)
117  plane of WO, respectively. The lattice fringes of WOs can be found in a few nanoparticles. Which
118  support the existence of WOx in the PdosWo2/C catalysts. Though their is no diffraction peaks

119  corresponding to W in the XRD patterns mentioned avove, the energy dispertive spectrum (EDS) of
120  the as prepared oxide-rich (Figure 3d) shows the content of W in the Pd-W nanoalloys.
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122 Figure 2. The morphology and particle distribution of Pd/C (a, b) and oxide-rich Pd0.8W0.2/C
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Figure 3. HR-TEM (a, b, c) and EDS (d) spectra of the oxide-rich PdosWo. / C catalyst
127
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128

129 Figures 4 shows the X-ray photoelectron spectroscopy (XPS) spectra of oxide-rich Pd0.6W0.4/C,
130  Pd0.7W0.3/C, Pd0.8W0.2/C, Pd0.9W0.1/C. The XPS spectra of Pd/C has been published in our recent
131  works [67-69].All XPS curves were fitted using the Gaussian-Lorentzian (20%) method after
132 substracting the background with Shirley's method. The compositions obtained by XPS analysis is
133 shown in Table 1. The surface composition ratios of the Pd: W elements in oxide-rich PdosWo.4/C,
134 PdosWo3/C, PdosWo2/C and PdosWoi/C are PdosrWous « PdoznoWo2o « Pdo7sWoar « PdosrWoas,
135  respectively. In Figure 4 (a), the peaks of Pd 3ds2 and Pd 3dsz are corresponding to Pd and PdOy
136  (0<2<y), and the Pd element is present in all the samples as Pd metal and PdOy. The binding energy
137  of Pd 3d5/2 peak of PAW/C catalysts shift +0.21 eV, +0.28 eV, +0.36 eV, +0.52 eV respectively
138  compared with that of Pd/C (335.6 eV, the solid line).The positive shifts of the Pd 3d binding energy
139  indicate the decrease of Pd 3d electronic cloud densities. Which is due to the formation of
140  high-valency oxides. Figure 4 (b) is the peak of W 4f.

3 Pd 3d,, Pd 3d b W 4f
Pd 3d,,

PO,

Pd, W, ./C
Pd,,W,,/C Pdy W, /C
o _.// Pdgv-,on‘;'IC A
Pd,,W,,/C
141 335 340 345 30 35 40
142 Figure 4. XPS spectra of oxide-rich PdAW/C catalyst
143 2.2. Electrochemical performance
144 Figure 5 show the cyclic voltammograms (CV) of Pd/C (a), oxide-rich Pd0.6W0.4/C (b),

145  Pd0.7W0.3/C(c), Pd0.8W0.2 /C (d),Pd0.9W0.1/C (e), all the CVs were measured in 1 M NaOH
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146  solution at a scan rate of 10 mV-s''. The peak of hydrogen adsorption / desorption is at about -0.7 V.
147  The peak of OH- adsorbed on the surface of the electrocatalys is at is the range from -0.6 to -0.4 V,
148  while the oxidation of the surface metal and the resulting reduction of the oxide are at the range
149  from-04Vto02V.
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150
151 Figure 5. Cyclic voltammograms (CV) of Pd/C (a), oxide-rich PdosWos/C (b), oxide-rich

152  PdosWos/C(c), oxide-rich PdosWo2/ C (d),oxide-rich PdosWoi1 / C (e). In 0.1 M NaOH solution. Scan
153  rate 10 mV-s-!

154 Figure 6 displays the linear sweep voltammetry (LSV) of Pd/C (a), oxide-rich PdosWo.4/C (b),
155  PdosWos/C (c), PdosWoo/C (d), PdosWo.1/C (e) catalysts were measured in 0.1 M NaOH solution with
156  saturated O: at a speed of 2000 r/min and a scan rate of 1 mV-s"l. Compare to Pd/C catalyst, the
157  onset potential of oxide-rich PdosWo./C catalysts is positive shifted. Which is consistent to the
158  theoretic calculation results about the high activity of PdsW by Goddard[70] and his coworkers .
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160 Figure 6. LSV of Pd/C (a), oxide-rich PdosWos/ C (b), oxide-rich PdosWos / C (c), oxide-rich

161  PdosWo2/C (d), oxide-rich PdosWo1/C (e) . In 0.1 M NaOH solution saturated with O» . Rotating
162  speed 2000 r/min. Scan rate 1 mV-s.

163 Electrocatalytic stability of Pd/C and oxide-rich Pd0.8W0.2C catalysts were characterized by
164  chronoamperometry (Figure 7) at -0.3 V vs Hg/HgO in 0.1 M NaOH solution.At the beginning both
165  current of Pd/C and oxide-rich Pd0.8W0.2/C catalyst decreased rapidly, then the current density of
166  each catalyst was relatively stable. Obviously the oxide-rich PdosWo2/C catalyst exhibits higher
167  electrocatalytic stability than Pd/C. Though the electrocatalytic stability is confirmed, it is still
168  difficulty for us to draw a conclusion that the composition of the WOs contained Pd-W nanoalloys is
169  unchanged during the ORR measurements. Some catalysts with unchanged compositions such as
170 pure Pd[71] or pure Pt[72] sometimes exhibit poor electrocatalytic stability. The catalysts PdosWos
171  [64] for ORR in acid media exhibit high catalytic stability. However, its surface composition changed
172 during the ORR measurement. It can be seen from figure 6 that PdosWo.1/C also exhibit high activity.
173 That means even if a half of the W/WOs dealloyed from the PdosWo2 nanoalloys, the Pd-W catalysts
174 still keep high activity. The current density (mA-mg Pd-) at the oxide-rich PdosWo2/C is more than
175 1.6 times of that at Pd/C
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176
177 Figure 7. Electrocatalytic stability of Pd/C (a) and oxide-rich PdosWo2/C (b) . In 0.1 mol/L

178  NaOH solution saturated with oxygen. Potential -0.3 V vs Hg/HgO. Rotating speed 2000 r/min.

179 3. Materials and Methods
180 3.1 Preparation and characterization of the catalysts

181 PdClz was purchased from Sinopharm Chemical Reagent Co.Ltd (Shanghai, China). The
182 Vulcan carbon powder XC-72R was obtained from Cabot Corporation (Cabot Corp., Billerica, MA,
183  USA). Nafion solution (5%) was obtained from DuPont (Delaware, DE, USA). All other chemicals
184  were of analytical grade and used as acquired unless otherwise noted. Triple-distilled water was
185  used through-out. The WOs contained Pd-W catalysts were prepared with the reduction-oxidation
186  procedures, which is schematically illustrated in Scheme 1.

187 Pd/C and PdW/C catalysts with the metal loading of 20 wt% were prepared by the NaBHs
188  chemical reduction method (Scheme 1, step 1) we have used before [73] . PACl> and Na2WO: were
189  wused as the precursors. Electrocatalysts with different atomic ratios are controlled by the molar ratio

190  of metal precursors. The Pd-W nanoalloys are easy to be oxide in the ambient airs and formed the
191  WOs-contained Pd-W/C catalysts (Scheme 1, step 2).

192 The X-ray diffraction analysis (XRD) was carried out by a Bruker D8 advance X-ray
193  diffractometer operating at 40 keV and 30 mA with Cu Ka radiation source, A = 0.15406 nm. The
194  TEM/HRTEM images were obtained on a JEOL JEM-2100 transmission electron microscopy . The
195  content of metal elements on the surface of the samples was analyzed by EDS. The presence of the
196  metal was excited by X-ray photoelectron spectroscopy (XPS) using Al Ka X-ray radiation on an
197  ESCALAB 250 (Thermo Fisher SCIENTIFIC) spectrometer. Peak fitting using Gaussian / Lorentzian
198  (20% Gaussian) method after background subtraction using Shirley’s method[74].
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199 3.2 Electrochemical Measurements

200  The electrochemical measurements were performed with a CHI832B electrochemical workstation
201 (CHInstruments, Austin, TX, USA) and a conventional three-electrode electrochemical cell. A
202  carbon-rod was used as the auxiliary electrode. Hg/HgO electrode was used as the reference
203  electrode. The working electrode was prepared with the following procedures: The glassy carbon
204 electrode (GCE, 3 mm in diameter) was carefully polished with 0.05 um alumina (A1203) powder,
205  and washed with the triple-distilled water before use. 10 mg of the catalyst powder in a mixture of
206 0.5 mL water and 0.5 mL ethanol was ultrasonicated for 15 min to prepare the ink of catalysts. 20 uL
207 (2 uLx 10 times) of the ink was dropped on the GCE. 3uL of Nafion solution (5 wt%) was dropped
208  on the surface after the ink was dried in air.

209
210 4. Conclusions

211 The WOs contained oxide-rich Pd-W/C catalysts were successful fabricated by
212 reduction-oxidation procedures. The As prepared oxide-rich PdosWo2/C catalysts exhibit high
213  electrocatalytic activity and stability. Which demonstrates that the as prepared oxide-rich PdosWo2/C
214 isa prospective candidate for the cathode of the fuel cells operated with alkaline electrolyte..
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