

1 Article

2 Environmental Lead Exposure and Adult Literacy in 3 Myanmar: An Exploratory Study of Potential 4 Associations at the Township Level

5 Robert C. MacTavish ¹, Liam W. Remillard ² and Colleen M. Davison ^{2,*}

6 ¹ Department of Environmental Sciences, University of Guelph

7 ² Department of Public Health Sciences, Queen's University

8 * Correspondence: davisonc@queensu.ca; Tel.: +011-613-533-6000x79518

9

10 **Abstract:** Environmental lead exposure is a population health concern in many low- and middle-
11 income countries. Lead is found throughout Myanmar and prior to the 1940s, the country was the
12 largest producer of lead worldwide. The aim of this study was to examine any potential association
13 between lead mining and adult literacy rates at the level of the 330 townships in Myanmar.
14 Townships were identified as lead or non-lead mining areas and 2015 census data were examined
15 with association being identified using descriptive, analytical and spatial statistical methods.
16 Overall, there does appear to be a significant relationship between lead mining activity and adult
17 literacy levels ($P<0.05$) among townships with both low access [$OR= 2.701 (1.136-6.421)$] as well as
18 townships with high access to safe sanitation [$OR=18.40 (1.794-188.745)$]. LISA cluster maps confirm
19 these findings. This exploratory analysis is a first step in the examination of potential environmental
20 lead exposure and its implications in Myanmar.

21 **Keywords:** lead exposure, adult literacy, global health, environmental health, Myanmar.
22

23 1. Introduction

24 Literacy, traditionally defined as proficiency in reading and writing, is an important determinant of
25 health and can support an individual's functional role in society¹. Adult literacy has been used as
26 one marker of cognitive proficiency and intelligence², as well as being a facilitator of
27 comprehension and reasoning³. Illiteracy in adult populations may be attributed to many variables,
28 including limited access to educational institutions or opportunities due to low socioeconomic
29 status^{4,5}. Exposure to harmful environmental contaminants has also been adversely associated with
30 cognitive function and literacy. Lead exposure specifically has been associated with negative
31 outcomes related to neurological function, cognitive proficiency, intelligence quotient (IQ) and
32 literacy³.

33 The most common pathway of lead toxicification is through inhalation of lead via the respiratory
34 tract, but the heavy metal can also be absorbed in the gastrointestinal tract via ingestion⁶. Lead can
35 then be redistributed to the skeletal system, where it may have a half-life of five to nineteen years^{6,7}.
36 The main anatomical target during lead absorption and toxicification is the nervous system, which
37 can lead to adverse neurological functions such as ataxia, coma, or even death⁶. Additional
38 neurological impacts include reductions in attention span and levels of educational engagement,
39 leading to a subsequent decrease in educational attainment⁵. Furthermore, heavy metals such as
40 lead have high affinity and can bind N-methyl-D-aspartate receptors found in nerve cells, resulting
41 in cognitive dysfunction due to reactive oxygen species⁸.

42 There are no previous studies specifically looking at the cognitive outcome of adult literacy in
43 relation to lead exposure at a population level. However, one previous study does conclude that

44 people residing in lead mining communities have a higher exposure, and greater absorbance, of
45 lead than populations residing in areas without lead mining activity¹⁰. This increase in lead
46 absorption could be detrimental to human health and development, as prolonged exposure may
47 result in the neurological impacts mentioned.

48 Myanmar (previously known as Burma), is a country with a large mining industry and great
49 potential for further mine development, as its lands are rich with jade, oil and metals^{13,14}. Lead has
50 great historical significance in the country. Prior to the Second World War, Myanmar was the
51 world's largest producer of lead, providing a significant source of economic activity¹⁴. Today,
52 following recent political and economic reform, many lead mines in Myanmar are developed
53 through foreign investment as well as Myanmar's Ministry of Mines¹⁴. However, it is recognized
54 that private investors, small-scale artisan extraction, and informal or undocumented groups also
55 conduct lead mining. Despite the potential economic benefits, there are many negative human
56 health implications of lead toxicification, particularly regarding impacts upon human brain
57 development and neurological function^{3,4,6}. To date there is no research evidence available related to
58 the level of environmental contamination or the potential health effects of lead exposure for
59 populations in Myanmar. However, studies conducted on Burmese refugee populations in the
60 United States indicate that blood lead levels may be elevated in this population⁴³.

61 In this exploratory study, townships in Myanmar were categorized as "lead" or "non-lead" mining,
62 and census data for adult literacy levels and socioeconomic levels were examined. Myanmar's
63 country-wide adult literacy rate was reported as 89.5%, and this cognitive-related indicator has also
64 been determined at the township level in the 2014 Myanmar Census¹². This study specifically
65 explored the relationship between lead exposure and adult literacy level, based on residency in
66 townships of lead mining. This relationship may be modified by the level of affluence or poverty
67 (measured by a basic sanitation indicator), so this was explored as an effect-modifying variable. As
68 there is minimal research regarding the human health impact of lead mining in Myanmar, this
69 study may reveal potential population-level health and mining exposure patterns that could be
70 further investigated in future field-based studies.

71 **2. Materials and Methods**

72 The main research question for this study was whether adult literacy levels differed across lead
73 mining and non-lead mining townships in Myanmar when taking into consideration access to safe
74 sanitation as an indicator of affluence. To answer this question our research objectives were to
75 screen and categorize the 330 townships in Myanmar as either lead-mining or non-lead-mining; to
76 use the 2014 Myanmar Census data, to describe and map the adult literacy level, and level of access
77 to safe sanitation (as a measure of poverty/affluence) at the township level in Myanmar; to
78 statistically examine the relationship between lead exposure and Myanmar's adult literacy level at a
79 township level, taking into consideration poverty/affluence as a potential effect modifying variable;
80 to explore global and local tests of spatial autocorrelation to identify patterns of clustering; and to
81 map and report the results to inform future studies.

82 We began by establishing a series of study hypotheses. First, that adult literacy levels will be lower
83 in lead-mining townships than in townships without lead mining. It is assumed this relationship is
84 due to the negative effect of lead exposure upon neurological and cognitive development of which
85 adult literacy is a proxy measure; second, that poverty or affluence levels modify the relationship
86 between lead mining exposure and adult literacy; third that access to safe sanitation is a proxy
87 measure for poverty/affluence that has a relevant threshold in Myanmar, and finally fourth that
88 townships with low adult literacy levels may cluster in similar locations to lead-mining townships.

89

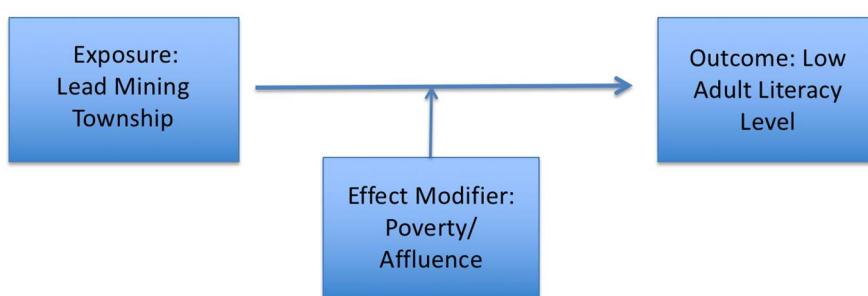
90 Data Collection:

91 Data for the outcome, adult literacy, and data for the development indicator (safe sanitation) was
92 available in Myanmar's 2014 Census, which was undertaken by the Ministry of Immigration and
93 Population, and supported by the United Nations Development Program (UNDP). Data collected
94 from the country-wide census was accessed through the Myanmar Information Management Unit
95 (MIMU). The 2014 Myanmar Census was the first census conducted in Myanmar since 1983,
96 following the transition of Burma to Myanmar¹². Receiving a vast amount of international support,
97 the census results included over 50 million Burmese citizens. The adult literacy levels, and levels of
98 access to safe sanitation as an indicator of socioeconomic status were collected at a township level.

99 Locations of lead deposits in Myanmar are well documented and tend to be concentrated in specific
100 areas including the Shan State and the Kayah State¹⁴. Lead mining takes place at large and small
101 scales in the country and there are no complete and current maps of lead mining activity in
102 Myanmar. The specific location of lead mining sites, and thus the lead mining townships, were
103 identified using three sources of information. First, coordinates for lead mines were recorded using
104 yearly reports from the United States Geological Survey (USGS) for Myanmar. In addition, socio-
105 economic analyses and occupational reports from MIMU were used to corroborate and add to the
106 USGS records of lead mining activity. The mineralogy database Mindat was used to identify and
107 confirm mining sites across Myanmar. It should be noted that these data comprehensively captured
108 large and medium scale mining activities but it is possible that very small-scale lead mines went
109 undetected.

110 Study Population:

111 Myanmar has a population of approximately 51.5 million people located in 14 state regions,
112 subdivided further into 330 townships¹². As stated previously, Myanmar's lead mining
113 development could have critical implications for human health and development particularly in
114 lead mining areas. For instance, the Hpasaung Township in the Kayah State is known to have a
115 large portion of its population working in lead mines. Citizens in this township have expressed
116 concern about water pollution from lead mine development, indicating worry for adequate safety
117 regulations¹⁵. Improper safety precautions in regions of lead mining development could not only
118 provide a hazardous occupational exposure towards workers in the mining industry, but also could
119 impact the surrounding township through lead dust or contamination of sediments and water
120 sources.


121 Study Design:

122 The first portion of this exploratory cross-sectional study was a descriptive analysis. The descriptive
123 analysis explored the prevalence of illiteracy and lead mining in Myanmar, and visually assessed
124 patterns of distribution of adult literacy levels, access to safe sanitation, and lead mining. Basic
125 descriptive tables were first created, followed by Geographic Information System (GIS) maps
126 including the 330 townships using GeoDa mapping software (v1.12). Townships were identified as
127 a lead mining township if there was a confirmed active lead mine, or if there had been a mine
128 within the last 50 years, as lead has the ability to leech into soils and continuously contaminate the
129 surrounding groundwater long after such mining sites close¹⁶. Townships were also considered as
130 lead mining if there was an active lead mine within 15 kilometers of its borders, as research
131 indicates that communities living several kilometers from lead mines still have a significant
132 exposure to lead when compared to the general population¹⁰. The maps created through GeoDa
133 provide a visual representation of adult literacy in Myanmar, as well as other variables considered
134 within this study.

135 To assess the degree of patterning in the data, techniques of exploratory spatial data analysis were
 136 applied. First, a global indicator of spatial autocorrelation – Moran's I – was applied to the adult
 137 literacy, safe sanitation, and lead mining variables^{17,18}. Spatial autocorrelation is a measure of how
 138 similar one value is to its neighboring values¹⁹. Moran's I is measured from negative one to positive
 139 one with values further from zero indicating decreasing spatial randomness, whereby a value of
 140 positive one indicates perfect clustering, and a value of negative one indicates perfect dispersion¹⁹.
 141 Although the Moran's I provides insight towards the global spatial patterns, this method is not able
 142 to identify cluster locations or the type of clustering. Local Indicators of Spatial Association (LISA)
 143 was applied to each of the three variables to identify the presence of localized clusters²⁰. LISA is a
 144 spatial analytic tool adapted from the Moran's I and conducts spatial autocorrelation test statistics
 145 at a localized level for each unit of geography to identify statistically significant clusters. To verify
 146 the significance of the LISA cluster maps, 999 random Monte Carlo permutations were calculated.
 147 The LISA maps characterize five different types of spatial relationships: (1) High-High, indicating
 148 clustering of high values surrounded by high values; (2) High-Low, indicating high values
 149 surrounded by low values; (3) Low-Low, indicating clustering of low values surrounded by low
 150 values; (4) Low-High, indicating low values surrounded by high values; and (5) Not-Significant,
 151 indicating the absence of spatial autocorrelation²⁰.

152 To conduct global and local tests of spatial autocorrelation, a spatial weights matrix had to be
 153 specified^{19,20}. The purpose of the spatial weights matrix is to identify the extent to which
 154 neighboring geographic units are associated with each other. This study utilized a first-order queen
 155 contiguity spatial weights matrix, whereby a geographic unit will only be affected by the
 156 immediately contiguous units sharing a common border or vertex.

157 Following the descriptive analysis, the relationship between lead exposure and adult literacy was
 158 assessed to determine whether there was a significant association, using the statistical program
 159 SPSS (v.24). The primary exposure was lead mining in Myanmar's townships, while the primary
 160 outcome was low adult literacy levels (Figure 1). Townships were categorized as having high adult
 161 literacy levels if over 89.1% of their adult population was literate. This was chosen as the cutoff for
 162 the dichotomy, as it included the upper two tertiles and had practical relevance. Effect modification
 163 by level of access to safe sanitation (as an indicator of development or poverty/affluence) was
 164 determined using the Mantel-Haenszel Chi-square test for homogeneity. Townships were
 165 categorized as having high access to safe sanitation if over 83.3% of their population had access to
 166 safe sanitation, also representing the upper two tertiles. The association between lead mining and
 167 adult literacy was assessed primarily through a one-tailed Chi-square test for independence, both
 168 for townships of low and high access to safe sanitation. However, if any cells during the statistical
 169 analysis had a sample under 5 townships, the Fisher's Exact test was used as an alternative
 170 calculation. Finally, assuming effect modification did exist, the stratum-specific odds ratio test was
 171 conducted with related confidence intervals. Through the use of descriptive, statistical and spatial
 172 analyses, the potential threat of lead mining towards cognitive development was identified.

173

174 *Figure 1: The causal pathway between the exposure (lead mining township) and outcome (adult literacy
 175 level) of interest, while taking into consideration poverty/affluence as a potential effect-modifying variable.*

176 **3. Results**177 **3.1 Demographic description**178
179
180
181

The demographic description of Myanmar's population (Table 1) indicates that there are discrepancies between Myanmar's townships in terms of both access to safe sanitation and adult literacy levels.

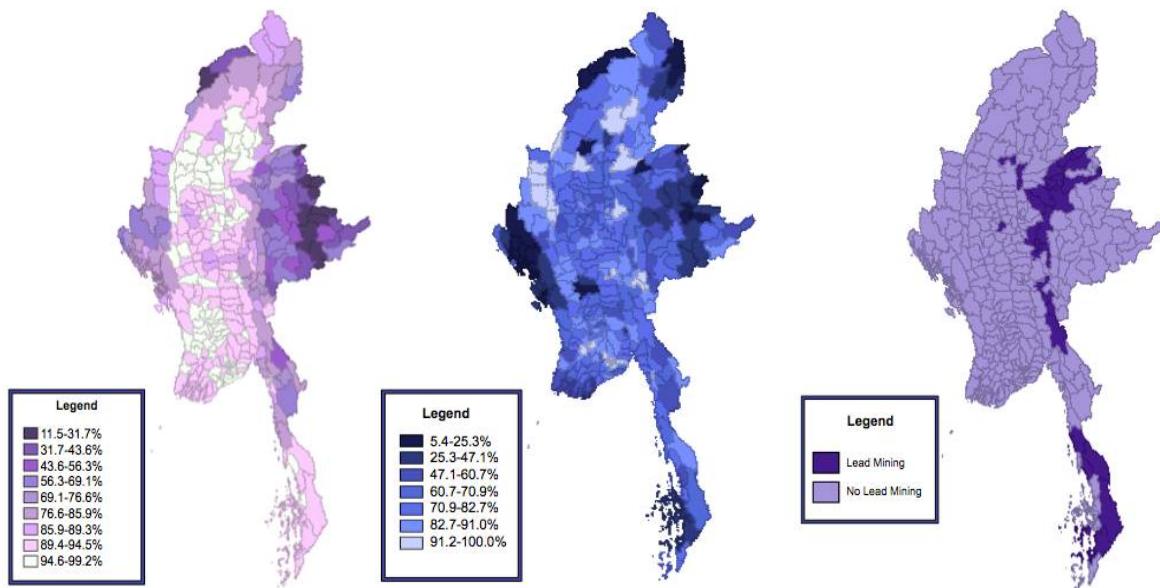
182

183 **Table 1.** Descriptive Characteristics of the Study Sample (Townships in Myanmar, n=330)

Descriptor	Townships in Myanmar n (%)
Lead Mine Development:	
Lead mining activity	29 (8.79%)
No lead mining activity	301 (91.21%)
Adult Literacy:	
High adult literacy level (>95% of township population) ¹	105 (31.82%)
Low adult literacy level (<95% of township population)	225 (68.18%)
Access to Safe Sanitation:	
Access for >90% of township population ²	63 (19.09%)
Access for 70-90% of township population	148 (44.85%)
Access for <70% of township population	120 (36.6%)
Average and Range of Descriptors at the Township Level	
Average adult literacy rate	85.56%
Range of adult literacy rates	11.5-99.2%
Average level of access to safe sanitation	71.42%
Range of access to safe sanitation	5.4-100.0%

184 ¹ The United Nations Educational, Scientific and Cultural Organization (UNESCO) reported that there was a National
185 Goal to achieve 95.0% adult literacy levels in Myanmar by 2010²².186 ² The national strategy for the Government of Myanmar is to achieve 90% of the population having access to safe
187 sanitation within the next 10 years²³.

188


189 For instance, there is a large range of access to safe sanitation in Myanmar (5.4-100.0%). It was
190 reported that many urban centres have relatively high levels of access to safe sanitation, while many
191 rural areas are not able to afford infrastructure for improved sanitation¹⁸. Similarly, the range of adult
192 literacy levels among townships was large (11.5-99.2%). The Ayeyarwady State had the highest adult
193 literacy rates (99.82%), while the Shan State had the lowest adult literacy rates (55.9%)¹⁹. Alongside
194 the low adult literacy levels, the Shan State also had the majority of lead mining activity in Myanmar,
195 with 17 lead mining townships. It is worth noting that the Shan State also had generally low levels of
196 access to safe sanitation (average of 56.75%), indicating that it may be a state of low affluence or more
197 limited development.

198

199 The demographic descriptions of adult literacy levels, access to safe sanitation, and lead mining are
200 represented in Figure 2, while the LISA cluster maps for each of the respective variables are
201 represented in Figure 3.

202

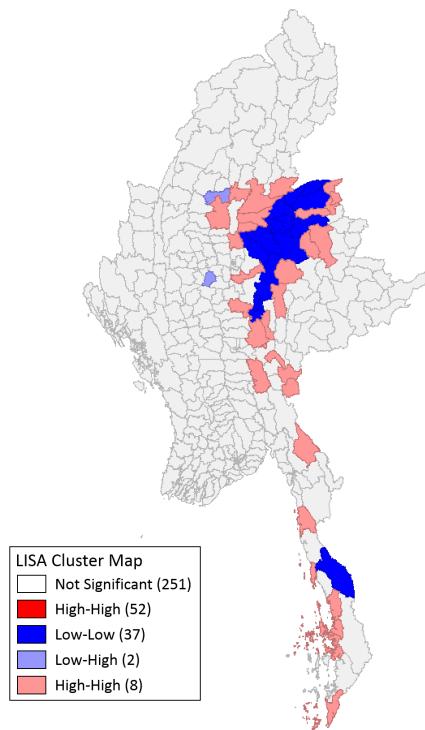
203

204


205 **Figure 2a-c:** Descriptive maps of Myanmar visually representing adult literacy levels (2a-left), access to safe
 206 sanitation (2b-middle), and lead mining activity status (2c-right). * Both access to safe sanitation and adult
 207 literacy levels were mapped using natural breaks calculated through GeoDa, while the lead mining map
 208 represents dichotomous variables.

209

210


211 **Figure 3a.** LISA Cluster Map of Adult Literacy at the
 212 Geographic Level of Myanmar Townships.
 213

214

215 **Figure 3b.** LISA Cluster Map of Access to Safe Sanitation at the
216 Geographic Level of Myanmar Townships.

217

218

219 **Figure 3c.** LISA Cluster Map of Lead Mining at the
220 Geographic Level of Myanmar Townships

221

222

223

224 **3.2 Adult Literacy**

225

226 When exploring the choropleth map of adult literacy in Figure 2a, it appears that there is a high
227 concentration of low adult literacy townships in the Eastern regions of Myanmar, followed by smaller
228 aggregations in the Western and Northern regions. Further analysis with the Moran's I also suggests
229 a strong degree of positive spatial autocorrelation with a test statistic of 0.83. When exploring the
230 LISA map of adult literacy in Figure 3a, it is apparent that there are statistically significant "Low-
231 Low" clusters of low adult literacy predominantly in the Eastern and Western regions of Myanmar
232 previously identified in the choropleth maps of Figure 2, and two distinct "High-High" clusters of
233 high adult literacy in central Myanmar.

234

235 **3.3 Access to Safe Sanitation**

236

237 Similar the spatial patterns depicted by adult literacy rates, there appears to be a concentration of
238 townships with low access to safe sanitation in most Eastern, Western, and Northern regions of
239 Myanmar as depicted in Figure 2b. A Moran's I statistic of 0.53 suggests that access to safe sanitation
240 exerts moderate positive spatial autocorrelation, albeit less than what was depicted with adult
241 literacy. When exploring the LISA map of access to safe sanitation in Figure 3b, three "Low-Low"
242 clusters of poor access to safe sanitation emerge in the areas identified by the choropleth maps, as
243 well as 5-6 "High-High" clusters in central Myanmar.

244

245 **3.4 Lead Mining**

246

247 The lead mining choropleth map depicted in Figure 2c differs from the previous two figures in that
248 there appears to be a narrow ribbon of lead mining townships from central to southern Myanmar.
249 The Moran's I statistic of 0.38 indicates a low degree of positive spatial autocorrelation and suggests
250 that lead mining is relatively diffuse in Myanmar. The findings from the LISA cluster map in Figure
251 3c parallel that of the Moran's I since the LISA map uncovered two localized clusters of lead mining
252 townships in central and southern Myanmar.

253

254 **3.5 Cluster Location Comparisons**

255

256 Based on the exploratory spatial data analysis, it reveals there is likely a spatial correlation between
257 adult literacy and access to safe sanitation, based on the location of the statistically significant "Low-
258 Low" cluster in Eastern Myanmar. In addition, it appears there could be a relationship between lead
259 mining activity and low adult literacy levels due to overlapping geographic units depicted in the
260 central-Myanmar clusters for both variables. These descriptive assessments were further investigated
261 during the statistical analysis.

262

263 **3.6 Lead Mining and Adult Literacy**

264

265 According to the results (Table 2), there does appear to be a significant relationship between lead
266 mining activity and adult literacy levels ($P<0.05$) among townships with high access and those with
267 low access to safe sanitation as an indicator of relative affluence and development. The Fisher's Exact
268 test was used for the relationship between lead mining and adult literacy in townships of high access
269 to sanitation, as there were under 5 townships with high levels of access to improved sanitation that
270 were also lead mining townships for both high and low adult literacy levels. The majority of lead
271 mining townships also had low access to safe sanitation (86.2% of lead mining townships).

272

273

274
275**Table 2.** Cross Tabulation of Lead Mining Activity and Adult Literacy in Myanmar's Townships, and the Effect of Access to Safe Sanitation on This Relationship (n=330).

Descriptor	Low Adult Literacy Level ($\leq 89.1\%$ of Population)	High Adult Literacy Level ($> 89.1\%$ of Population)	P-Value
Lead Mining Development:			
Lead Mining	19 (5.76%)	10 (3.03%)	<0.01*
No Lead Mining	92 (27.88%)	209 (63.33%)	
Access to Safe Sanitation:			
High Proportion ($> 83.3\%$ of Population)	18 (5.45%)	93 (28.18%)	<0.01*
Low Proportion ($< 83.3\%$ of Population)	93 (28.18%)	126 (38.18%)	
Townships with High Access to Safe Sanitation ($> 83.3\%$):			
Lead Mining	3 (0.91%)	1 (0.30%)	0.013**
No Lead Mining	15 (4.55%)	92 (27.88%)	
Townships with Low Access to Safe Sanitation ($< 83.3\%$):			
Lead Mining	16 (4.85%)	9 (2.73%)	<0.05*
No Lead Mining	77 (23.33%)	117 (35.45%)	

*P-value from Chi-Square test (one-tailed), with significance indicated when P<0.05.

**P-value from Fisher's Exact Test (one-tailed) with significance indicated when P<0.05.

276

277

It was also concluded that access to safe sanitation interacted (was an effect modifier) in the relationship between lead mining and adult literacy levels. Both townships with low access to safe sanitation [OR=2.701 (1.136-6.421)] as well as townships with high access to safe sanitation [OR=18.40 (1.794-188.745)] appeared to have an increased risk of lower adult literacy levels in lead mining townships. These was a meaningful difference in the odds ratios of these two strata. Due to small cell sizes in the contingency tables, however, there were wide confidence intervals. Overall, the statistical tests seem to confirm the assumptions made in the geographic descriptive assessment, as lead mining activity appears associated with lower literacy levels at the township-level, with access to safe sanitation acting as an effect modifier on this relationship, but the statistical results have to be interpreted with caution.

288 4. Discussion

289 Lead mining activity in Myanmar tends to be localized in certain spatial areas, such as Kayah, Shan
290 and Tanintharyi States, all regions of large lead deposits¹³. Spatial and statistical analyses reveal
291 significant associations between lead mining and adult literacy at the township level, with differential
292 risks in areas of low and high access to safe sanitation, our chosen development or affluence indicator.
293 Many areas of low access to safe sanitation also had low levels of adult literacy, and we acknowledge
294 the well-established relationship between poverty and adult literacy^{20,22}. However, our findings
295 indicate that citizens living in townships with high access to safe sanitation and lead mining activity
296 may also be more at risk of having lower adult literacy than those in similar situations but in non-
297 mining townships. Further exploration of this pattern is warranted particularly at community and
298 individual levels. Do citizens in these townships have high lead levels in biological samples?

299

300 Myanmar citizens located in proximity to lead mines could be exposed to lead from contaminated
301 soils, lead dust, or ingesting contaminated drinking water or food items³⁸⁻³⁹. As many people living
302 in lead mining townships don't have adequate access to safe drinking water or sanitation, this could

303 increase their consumption of lead due to contaminated water sources^{15,19} while it is also possible that
304 bottled water is used. Lower adult literacy levels in lead mining townships could be due to lead's
305 ability to impact neurological functions⁵. It is expected that there is an increased exposure to
306 environmental lead for children in lead mining townships. For instance, dust lead levels have been
307 found to be significantly associated with blood lead levels in children whose specific behavioural and
308 physiological characteristics make them particularly at risk for environmental exposures²³⁻²⁴. It is
309 likely that Myanmar citizens located in lead mining townships could have increased lead toxification
310 if exposed to lead from an early age. Additionally, it was reported in one study that children from
311 low-income families are at a differential risk for being exposed to environmental lead, highlighting
312 ongoing environmental injustices occurring today²⁵. It is possible that lower-income families have
313 resided near lead mining activities for a lack of a better option, demonstrating the relationship
314 between lead mining activity and affluence. The collection and testing of biological specimens from
315 residents in different townships could confirm or refute these ideas although currently there is
316 limited opportunity to conduct these kinds of studies in Myanmar (personal communication, WHO-
317 Myanmar Country Representative Dr. J. Luna, February 2, 2016).

318
319 Early exposure to environmental lead could have severe and long-lasting impacts upon cognitive
320 function, causing cognitive impairment that lasts well into adulthood. It has been determined that
321 along with hypochromic anemia and lead-caused encephalopathy, high lead exposure has also
322 resulted in poorer school performance, a decreased IQ and hyperactivity²⁷. Many studies have
323 reported a positive association between lead exposure and encephalopathy²⁷⁻²⁹. Lead encephalopathy
324 may abrupt neurological function, as it is associated with difficulties concentrating, behavioural
325 problems, and restlessness. In more severe cases, it may cause confusion, difficulty in understanding,
326 and deterioration of memory storage. Understandably, the occurrence of encephalopathy should be
327 further explored, as alongside other cognitive dysfunction, it could have resulted in increased
328 illiteracy rates found in Myanmar's lead mining townships.

329
330 As mentioned previously, many studies have looked at the association between lead exposure and
331 reduced IQ^{3,27,30-31}. It has been reported that alongside a lower IQ, high lead exposure can also impact
332 emotional well being, aggression and anxiety³⁰. These negative impacts on emotional health could
333 contribute to poor performance in academic settings and potential illiteracy. Although adult literacy
334 has not been used as an indicator of cognitive function in studies of lead exposure, there are studies
335 indicating that IQ and memory are significantly associated with performance in adult literacy tests³².
336 A reduction in IQ from lead toxification could therefore contribute to decreased adult literacy levels
337 in lead mining townships.

338
339 Although children are arguably at a much greater risk of the acute and chronic impacts of
340 environmental lead exposure, lead may also have direct detrimental consequences upon the cognitive
341 functioning of adults. Therefore, it is also possible that short-term residents of lead mining townships
342 in Myanmar could also have had neurological impacts decreasing literacy capability. For instance,
343 lead accumulation in adults may result in increased brain lesions, and a subsequent decline in
344 cognitive function³³. This decrease in cognitive function could result in reduced verbal and visual
345 memory, declining verbal learning and a decrease in actual brain size from cell death. In fact,
346 epidemiological studies have indicated that lead exposure may increase the rate of cognitive decline
347 in older populations, as increased blood lead concentrations were associated with lower scores on a
348 mental status examination³⁴. The neurodegenerative effects of lead exposure have also been studied,
349 and it has been reported that increased lead exposure is significantly associated with Parkinson's
350 Disease, amyotrophic lateral sclerosis, and potentially Alzheimer's Disease³⁵⁻³⁷. Therefore, it is
351 possible that even individuals without early age exposure to lead could encounter cognitive deficits
352 when moving to a lead mining township in Myanmar. This could reduce the literacy capability in
353 Myanmar's adult population.

354

355 This exploratory study fills an important gap in literature that could help inform future etiological
356 studies about the negative health effects of lead exposure from mining development in Myanmar. As
357 previous studies have not investigated lead mining in Myanmar, this is the first study to categorize
358 and map Myanmar's townships as lead or non-lead mining. There has also been an absence of studies
359 exploring lead's impact upon adult literacy as an indicator of cognitive function. Additionally, the
360 2014 Myanmar Census was the first undertaken in 30 years and provides extensive data for the
361 majority of Myanmar's population. Along with other reports from MIMU, the USGS, and mineralogy
362 databases, this study draws information from high-quality and current data sources. The study plan
363 and results were discussed with public health stakeholders in Myanmar to ensure the
364 appropriateness of the design, analysis and dissemination of findings. The World Health
365 Organization (WHO) outlined that lead mining in lower-income countries, including Myanamr, is a
366 grave concern because of possible adverse effects during brain development¹⁷.
367

368 There are many strengths of the study, however there are also limitations important to consider. As
369 mentioned, even though Myanmar's larger lead mining development areas are identified, it is
370 possible that smaller-scale productions could go unnoticed. Small and independent operations may
371 not necessarily report lead mining activity to Myanmar's government^{13,15}. In addition, lead can travel
372 in water, air and soil, and is present in leaded gasoline, paints and other products. We recognize that
373 lead exposure could extend beyond the immediate zones around mining sites. This kind of more
374 extended assessment of broader environmental exposure will not be possible to capture in this study
375 and this limitation is recognized. Although adults readily absorb lead, or may have absorbed lead
376 when they were children, direct measures of cognitive development among younger populations
377 would have been an ideal addition to this study. Unfortunately, there are no township-specific data
378 sets available for cognitive or neurological indicators for children in Myanmar. Lead exposure is
379 cumulative and affects neurological function over time, so if adults had moved in and out of lead-
380 mining areas this may represent a limitation to the study. Migration between townships was not
381 available in the census data, and therefore could not be incorporated into the results. Moreover, there
382 is a potential for ecological fallacy in this study, as data in the Census was not available at a finer-
383 scale than at the township level. It is unlikely that information at the township level can account for
384 individual citizen diversity within a township, however it is also worth noting that there are
385 relatively large discrepancies between townships in relation to safe sanitation access and adult
386 literacy. Therefore, although it is difficult to generalize populations within a township, many of these
387 townships do have distinct differences. Given the limitations mentioned, and the inherent inability
388 to measure all potential confounding variables, we propose this study as the first exploratory step in
389 what might represent a longer program of research. The current study has successfully tested an
390 approach to spatial and population health analysis that could be used to examine other potential
391 environmental health concerns, particularly in areas where field study might be difficult. These kinds
392 of studies, while inherently limited, represent starting points in examining potential health or illness
393 threats. Results from this study are being used to advocate for further focused study in Myanmar.

394 5. Conclusions

395 With growing development of lead mining projects in Myanmar¹³ and other low- and middle-income
396 countries, these results signify the importance of further investigation and the implementation of
397 safety measures to guard against harmful exposure. It is essential to test and regulate lead
398 concentrations found in soil and water sources and to protect workers in lead mines to prevent lead
399 poisoning and toxification³⁸. Ongoing surveillance should be explored in current lead mining
400 operations, while site-specific remediation plans should be implemented on inactive lead mining
401 sites.
402

403 Overall, there was a significant relationship calculated between lead mining and adult literacy at the
404 township level in Myanmar. Future studies should measure the extent of human and environmental
405 lead accumulation in lead mining and neighbouring areas. Lead exposure, health and cognitive

406 function research should be conducted at the individual level. In addition, further studies should
407 investigate the role of lead exposure in the cognitive development of Myanmar's children.

408 **Acknowledgments:** The authors would like to acknowledge stakeholders at WHO, UNFPA, Community
409 Partners International and B.K. Kee International in Myanmar who provided advice in the design of the study
410 and interpretation of data.

411 **Author Contributions:** R.M. and C.D. conceived and designed the original study; R.M. compiled the datasets;
412 R.M. and L.R. analyzed the data; L.R. contributed mapping expertise; all authors contributed to the writing of
413 the paper.

414 **Conflicts of Interest:** The authors declare no conflict of interest. Funders or sponsors had no role in the design
415 of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
416 decision to publish the results.

417

418 **References**

- 419 1. White, S.; McCloskey, M. *Framework for the 2003 National Assessment of Adult Literacy*. U.S. Department of
420 Education; National Center for Education Statistics: Washington, DC, United States, 2003.
- 421 2. OECD/ Statistics Canada. Learning a Living: First Results of the Adult Literacy and Life Skills Survey;
422 OECD Publishing: Paris, France, 2005.
- 423 3. Carlisle, J.C.; Dowling, K.C.; Siegel, D.M.; G.V., Alexeff. A blood lead benchmark for assessing risks from
424 childhood lead exposure. *J Environ Sci Health A Tox Hazard Subst Environ Eng* **2009**, *44*(12), 1200-1208.
- 425 4. Von Stumm, S.; Plomin, R. Socioeconomic status and the growth of intelligence from infancy through
426 adolescence. *Intelligence* **2015**, *48*, 30-36.
- 427 5. Lind, A.; Johnston, A. Adult literacy in the third world: A review of objectives and strategies. *Swedish
428 International Development Authority* **1990**, 1-144.
- 429 6. Katzung, B.G.; Masters, S.B.; Trevor, A.J. Heavy metal intoxication & chelators. In *Basic & Clinical
430 Pharmacology*, 12th ed.; McGraw-Hill, 2012, Volume 12, pp. 1013-17.
- 431 7. Rabinowitz, M.B. Toxicokinetics of bone lead. *Environ Health Perspect* **1991**, *91*, 33-37.
- 432 8. Karri, V.; Schuhmacher, M.; Kumar, V. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive
433 dysfunction: A general review of metal mixture mechanism in brain. *Environ Toxicol Pharmacol* **2016**, *48*,
434 203-213.
- 435 9. Grigoryan, R.; Petrosyan, V.; Melkom Melkomian, D.; Khachadourian, V.; McCartor, A.; Crape, B. Risk
436 factors for children's blood lead levels in metal mining and smelting communities in Armenia: a cross-
437 sectional study. *BMC Public Health* **2016**, *16*, 945.
- 438 10. Reynolds, N. Myanmar's Mining Industry. CSA Global, 2015.
- 439 11. Gardiner, N.J.; Robb, L.J.; Searle, M.P. The metallogenic provinces of Myanmar. *Applied Earth Science* **2014**,
440 123(1), 25-38.
- 441 12. Myanmar Extractive Industries Transparency Initiative. EITI report for the period April 2013-March 2014:
442 Oil, gas, and mining sector. Available online: http://www.themimu.info/sites/themimu.info/files/documents/Report_MEITI_Report_for_the_Period_Apr_2013-Mar_2014_Oil_Gas_Mining_Sectors_Dec2015.pdf (accessed on January 21 2018).
- 443 13. Mitchell, T.; Jentes, E.; Ortega, L.; Sucosky, M.S.; Jefferies, T.; Bajcevic, P.; Parr, V.; Jones, W.; Brown, M.J.;
444 Painter, J. Lead poisoning in United States-bound refugee children: Thailand-Burma border, 2009.
445 *Pediatrics* **2012**, *129*(2).
- 446 14. Myanmar Information Management Unit (MIMU). Population in General. Available online:
447 http://www.themimu.info/Census_2014_SR_dashboard%20 (accessed on January 21 2018).
- 448 15. Myanmar Information Management Unit (MIMU). Kayah State socio-economic analysis. Available
449 online: http://www.themimu.info/sites/themimu.info/files/documents/Asses-sment_Ka-yah_State_Socio-Economic_Analysis_-_Annexes_EU_Oct2013.pdf (accessed on January 21 2018).
- 450 16. Kwak, J.; Kim, K.; Park, M.; Kim, J.; Park, K. Determination of lead in soil at a historical mining and
451 smelting site under laser-induced breakdown spectroscopy. *Environmental Technology* **2012**, *33*(18), 2177-
452 2184.
- 453 17. Anselin, L. *Spatial econometrics: Methods and models*; Kluwer Academic Publishers; 2008.
- 454 18. Moran, P. The interpretation of statistical maps. *J. R. Stat. Soc.* **1948**, *B*, 243-251.
- 455 19. Getis, A. A history of the concept of spatial autocorrelation: A geographer's perspective. *Geogr. Anal.*
456 2008, *40*, 297-309.
- 457 20. Anselin, L. Local Indicators of Spatial Association—LISA. *Geogr. Anal.* **1995**, *27*, 93-115.
- 458 21. Getis, A.; Aldstadt, J. in *Perspectives on Spatial Data Analysis*. Anselin, L.; Ray, S. Springer, 2010, Volume
459 36, 147-163.
- 460 22. UNESCO.. The Government of the Republic of the Union of Myanmar Ministry of Education: National
461 Education For All (EFA) Review Report. Available online: <http://unesdoc.unesco.org/images/0022/-002297/229723E.pdf>. (accessed on January 21 2018).
- 462 23. Myanmar Information Management Unit. National Strategy for Rural Water Supply, Sanitation and
463 Hygiene (WASH). Available online: http://www.themimu.info/sites/themimu.info/files/documents/National_Strategy_for_Rural_Water_Supply_Sanitation_Hygiene_WASH_2016-2030_ENG.pdf.
464 (Accessed on January 21 2018).
- 465 24. Kirsch, I.S. Adult literacy in America: A first look at the results of the National Adult Literacy Survey.
466 National Center for Education Statistics (ED), Washington, DC, 1993.

472 25. Kutner, M.; Greenberg, E.; Jin, Y.; Boyle, B.; Hsu, Y.; Dunleavy, E. Literacy in everyday life: Results from
473 the 2003 National Assessment of Adult Literacy. National Center for Education Statistics (ED),
474 Washington, DC, 2003.

475 26. Agneta, L.; Anton, J. Adult literacy in the third world: A review of objectives and strategies. Swedish
476 International Development Authority (SIDA), 1990. Available online: <https://eric.ed.gov/?id=ED339819>
477 (accessed on January 21 2018).

478 27. Pekar, Z.; Riley, N.. Lead human exposure and health risk assessments and ecological risk assessment for
479 selected areas: External review draft technical report. The International Classification of Functioning,
480 Disability and Health, 2006, 1-221.

481 28. Maddaloni, M.; Bellew, M.; Diamond, G.; Follansbee, M.; Gefell, D.; Goodrum, P.; Johnson, M.; Koporec,
482 K.; Khouri, G.; Luey, J.; Odin, M.; Troast, R.; Van, L.P.; Zaragoza, L. Assessing lead risks at non-
483 residential hazardous waste sites. *Human and Ecological Risk Assessment* **2005**, *11*, 967-1005.

484 29. Lanphear, B.P.; Roghmann, K.J. Pathways of lead exposure in urban children. *Environmental Research*
485 **1997**, *74*(1), 67-73.

486 30. Harvey, P.G.; Spurgeon, A.; Morgan, G.; Chance, J.; Moss, E. A method for assessing hand-to-mouth
487 activity in children as a possible transport route for toxic substances. *Proc. 5th Int. Conf. Heavy Metals in the*
488 *Environment* **1985**, *1*, 436-438.

489 31. Malcoe, L.H.; Lynch, R.A.; Keger, M.C.; Skaggs, V.J. Lead sources, behaviours, and socioeconomic factors
490 in relation to blood lead of native American and white children: a community-based assessment of a
491 former mining area. *Enviro Health Perspect* **2002**, *110*(2), 221-231.

492 32. Papanikolaou, N.C.; Hatzidakis, E.G.; Belivanis, S.; Tzanakakis, G.N.; Tsatsakis, A.M. Lead toxicity update:
493 A brief review. *Med Sci Monit* **2005**, *11*(10), 329-336.

494 33. Jarup, L. Hazards of heavy metal contamination. *Br Med Bull* **2003**, *68*(1), 167-182.

495 34. Chisolm, J.J. The road to primary prevention of lead toxicity in children. *Pediatrics* **2001**, *107*(3).

496 35. Chen, A.; Cai, B.; Dietrich, K.N.; Radcliffe, J.; Rogan, W.J. Lead exposure, IQ, and behavior in urban 5- to
497 7-year olds: Does lead affect behavior only by lowering IQ? *Pediatrics* **2007**, *119*(3).

498 36. McMichael, A.J.; Baghurst, P.A.; Vimpani, G.V.; Wigg, N.R.; Robertson, E.F.; Tong, S. Tooth lead levels
499 and IQ in school-age children: The Port Pirie cohort study. *Am J Epidemiol* **1994**, *140*(6), 489-499.

500 37. Alloway, T.P.; Gregory, D. The predictive ability of IQ and working memory scores in literacy in an adult
501 population. *International Journal of Education Research* **2013**, *57*, 51-56.

502 38. Stewart, W.F.; Schwartz, B.S.; Davatzikos, C.; Shen, D.; Liu, D.; Wu, X.; Todd, A.C.; Shi, W.; Bassett, S.;
503 Youssem, D. Past adult lead exposure is linked to neurodegeneration measured by brain MRI. *Neurology*
504 **2006**, *66*(10), 1476-1484.

505 39. Wright, R.O.; Tsaih, S.W.; Schwartz, J. Lead exposure biomarkers and mini-mental status exam scores in
506 older men. *Epidemiology* **2003**, *14*, 713-718.

507 40. Weisskopf, M.G.; Weuve, J.; Nie, H.; Saint-Hilaire, M.H.; Sudarsky, L.; Simon, D.K.; Hersh, B.; Schwartz,
508 J.; Wright, R.O.; Hu, H. Association of cumulative lead exposure with Parkinson's Disease. *Environ*
509 *Health Perspect* **2010**, *118*(11).

510 41. Kamel, F.; Umbach, D.M.; Hu, H.; Munsat, T.L.; Shefner, J.M.; Taylor, J.A.; Sandler, D.P. Lead exposure as
511 a risk factor for amyotrophic lateral sclerosis. *Neuro-degenerative Diseases* **2005**, *2*(3-4), 195-201.

512 42. Bakulski, K.M.; Rozek, L.S.; Dolinoy, D.C.; Paulson, H.L.; Hu, H. Alzheimer's Disease and environmental
513 exposure to lead: The epidemiologic evidence and potential role of epigenetics. *Curr Alzheimer Res.* **2012**,
514 *9*(5), 563-573.

515 43. Tong, S.; Schirnding, Y.E.; Prapamontol, T. Environmental lead exposure: a public health problem of
516 global dimensions. *Bulletin of the World Health Organization* **2000**, *78*(9), 1068-1077.

517 44. Pekar, Z.; Riley, N. Lead human exposure and health risk assessments and ecological risk assessment for
518 selected areas: External review draft technical report. The International Classification of Functioning,
519 Disability and Health, 2006, 1-221. Available online: https://www3.epa.gov/ttn/naaqs/standards/pb/data/PbNAAQS_pilot_riskassessment_technical-report.pdf. (Accessed on January 21 2018).

521