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Abstract. Information molecules of DNA and RNA should obey principles of 
quantum mechanics where unitary operators in form of unitary matrices have 
key meanings. Unitary matrices are the basis of calculations in quantum 
computers. This article presents some author's results, which show that matrix 
forms of the representation of structured systems of molecular-genetic alphabets 
can be considered as sets of sparse unitary matrices related with 
phenomenologic features of the degeneracy of the genetic code. These sparse 
unitary matrices have orthogonal systems of functions in their rows and 
columns. A complementarity exists among some unitary genetic matrices in 
relation each other.  Decompositions of numeric genetic matrices into sets of 
sparse unitary matrices are connected with the logical operation of modulo-2 
addition used in quantum computers as well. Tensor (or Kronecker)  families of 
unitary genetic matrices with their fractal-like properties are also considered. 
The described results are discussed in the frame of development of quantum-
information approaches for modeling genetic systems.  
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1. Introduction. 
 
The information molecules of DNA and RNA of the genetic coding system belong 
to the world of molecules, in which the principles of quantum mechanics 
manage. This article presents results of the author's study of abilities of using 
formalisms of quantum mechanics and quantum informatics to model regular 
structures of molecular-genetic systems. First of all, we are talking about 
searching for correspondences between unitary operators and structured 
alphabets of DNA and RNA in their matrix forms of representation. The article 
provides additional materials for the development of quantum information 
modeling of structured molecular-genetic ensembles; elements of the quantum 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 April 2018                   doi:10.20944/preprints201804.0131.v1

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201804.0131.v1
http://creativecommons.org/licenses/by/4.0/


information modeling have been described in the author's work about tetra-
group symmetries in long DNA texts [Petoukhov, 2017].  

In line with one of the postulates of quantum mechanics, the evolution of 
a closed quantum system is described by unitary transformations. 
Computational processes in quantum computer science are based on unitary 
operators that serve as quantum gates. “Any unitary matrix specifies a valid 
quantum gate” [Nielsen, Chuang, 2010, p. 18]. Any physical impact on a qubit in 
quantum mechanics is described by a linear unitary operator. 
               In quantum mechanics and quantum computer science, an important role 
is played by unitary operators in form of Hadamard matrices with complete 
orthogonal systems of Walsh functions in them. Hadamard operators are also 
widely used for spectral representations of signal vectors in the technique of 
noise-immune communication  [Seberry, Wysocki, Wysocki, 2005], the sequency 
analysis of Harmuth [Harmuth, 1977, 1989], the digital logical 
holography  [Derzhypolskyy, Melenevskyy, Gnatovskyy, 2007; Morita, Sakurai, 
1973; Soroko,  1974] and algorithms of quantum informatics [Nielsen, Chuang, 
2010]. But the Hadamard matrices with their complete systems of orthogonal 
functions are not the only unitary matrices with complete systems of orthogonal 
functions in them. 

In this paper, we present other unitary matrices with other complete 
systems of orthogonal functions that were discovered by the author in the course 
of the algebraic modeling of molecular alphabets of DNA and RNA. These unitary 
matrices are sparse ones and they form sets of mutual-complementary matrices 
(in some algebraic sence). We conditionally call them unitary genetic matrices 
(or briefly, unitary geno-matrices). This makes us recall the well-known 
proposition that different natural systems may need  - for their spectral analysis 
- in their own systems of orthogonal functions: “after Fourier it was found that for 
some problems, harmonic sinusoids rather than other systems of orthogonal 
functions, for example, the Legendre polynomials, are better suited. In fact, any 
particular problem needs its own system of orthogonal functions. This was most 
clearly manifested in the course of the development of quantum mechanics”  
[Soroko, 1973]. These unitary sparse geno-matrices contain complete systems of 
orthogonal functions and have special algebraic properties. They can serve as the 
basis for a new class of spectral representations of vectors in biology and other 
fields of science, as well as a new class of bio-mathematical models and 
algorithms in classical and quantum computer sciences. 

One should add that quantum-information aspects of life are actively 
discussed in modern science, for example, in the book [Quantum aspects of life, 
2008]; in articles about a biology of quantum information [Matsuno, 1999, 2003, 
2015; Matsuno, Paton, 2000]; in articles about a possible meaning of the 
quantum algorithm of Grower in genetic information [Patel, 2001 a,b,c], etc. 
 

2. Matrix representations of DNA-alphabets and genetic binary 
oppositions  

Science does not know why the basic alphabet of DNA has been created by 
Nature from just four letters (adenine A, thymine T, cytosine C and guanine G), 
and why just these very simple molecules were chosen for the DNA-alphabet 
(out of millions of possible molecules). But science knows [Fimmel, Danielli, 
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Strüngmann, 2013; Petoukhov, 2008; Petoukhov, He, 2009; Stambuk, 1999] that 
these four molecules are interrelated due to their symmetrical peculiarities into 
the united molecular ensemble with its three pairs of binary-oppositional traits 
or indicators (Fig. 1). 

 

 

№  Binary Symbols  C A G T/U 

1 01 — pyrimidines 

11 — purines  

01 11 11 01 

2 02 — amino 

12 — keto 

02 02 12 12 

3 03 — three hydrogen bonds; 

13 — two hydrogen bonds 

03 13 03 13 

 

 
Fig. 1.  Left: the four nitrogenous bases of DNA: adenine A, guanine G, cytosine C, 
and thymine T. Right: three binary sub-alphabets of the genetic alphabet on the 
basis of three pairs of binary-oppositional traits or indicators.  
 

These three pairs of binary-oppositional traits or indicators are the following: 

(1) Two letters are purines (A and G), and the other two are pyrimidines (C and 
T). From the standpoint of these binary-oppositional traits one can denote      
C = T = 0, A = G = 1. From the standpoint of these traits, any of the DNA-
sequences are represented by a corresponding binary sequence. For 
example, GCATGAAGT is represented by 101011110; 

(2) Two letters are amino-molecules (A and C) and the other two are keto-
molecules (G and T). From the standpoint of these traits one can designate A 
= C = 0, G = T = 1. Correspondingly, the same sequence GCATGAAGT is 
represented by another binary sequence, 100110011;  

(3) The pairs of complementary letters, A-T and C-G, are linked by 2 and 3 
hydrogen bonds, respectively. From the standpoint of these binary traits, 
one can designate C = G = 0, A = T = 1. Correspondingly, the same sequence 
GCATGAAGT is read as 001101101. 

Accordingly, each of the DNA-sequences of nucleotides is the carrier of three 
parallel messages on three different binary languages. At the same time, these 
three types of binary representations form a common logic set on the basis of the 
logic operation of modulo-2 addition denoted by the symbol ⊕: modulo-2 
addition of any two such binary representations of the DNA-sequence gives the 
third binary representation of the same DNA-sequence: for example, 101011110 
⊕ 100110011 = 001101101. One can remind here the rules of the bitwise 
modulo-2 addition: 0 ⊕ 0 = 0; 0 ⊕ 1 = 1; 1 ⊕ 0 = 1; 1 ⊕ 1 = 0. The logic 
operation of modulo-2 addition is actively used in classical and quantum 
computers. Below we use the operation of modulo-2 addition for those 
decompositions of genetic matrices, which lead to interesting sets of inter-
complementary unitary matrices of sparse types for special kinds of spectral 
representations of vectors. 
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Taking into account the phenomenological fact that each of DNA-letters          
C, A, T and G is uniquely defined by any two kinds of mentioned binary-
oppositional indicators (Fig. 1), these genetic letters can be represented by 
means of corresponding pairs of binary symbols, for example, from the 
standpoint of two first binary-oppositional indicators. It is convenient for us - for 
the further description - use at the first position of each of letters its binary 
symbol from the second pair of binary-oppositional indicators (the indicator 
"amino or keto": C=A=0,  T=G=1) and at the second positions of each of letters its 
binary symbol from the first pair of binary-oppositional indicators (the indicator 
"pyrimidine or purine": C=T=0, A=G=1). In this case the letter C is represented by 
the binary symbol 0201 (that is as 2-bit binary number), A – by the symbol 0211,  
T – by the symbol 1201, G – by the symbol 1211. Using these representations of 
separate letters, each of 16 doublets is represented as the concatenation of the 
binary symbols of its letters (that is as 4-bit binary number): for example, the 
doublet CC is represented as 4-bit binary number 02010201, the doublet CA – as 
4-bit binary number 02010211, etc. By analogy, each of 64 triplets is represented 
as the concatenation of the binary symbols of its letters (that is as 6-bit binary 
number): for example, the triplet CCC is represented as 6-bit binary number 
020102010201,  the triplet CCA – as 6-bit binary number 020102010211, etc. In 
general, each of n-plets is represented as the concatenation of the binary 
symbols of its letters (below we will not show these indexes 2 and 1 of separate  
letters in binary representations of n-plets but will remember that each of 
positions corresponds to its own kind of indicators from the first or from the 
second set of indicators in Fig. 1). 

It is convenient to represent DNA-alphabets of 4 nucleotides, 16 doublets, 64 
triplets, … 4n n-plets in a form of appropriate square tables (Fig. 2), which rows 
and columns are numerated by binary symbols in line with the following 
principle. Entries of each column are numerated by binary symbols in line with 
the first set of binary-oppositional indicators in Fig. 1 (for example, the triplet 
CAG and all other triplets in the same column are the combination “pyrimidine-
purin-purin” and so this column is correspondingly numerated 011). By contrast, 
entries of each of rows are numerated by binary numbers in line with the second 
set of indicators (for example, the same triplet CAG and all other triplets in the 
same row are the combination “amino-amino-keto” and so this row is 
correspondingly numerated 001). In such tables (Fig. 2), each of 4 letters, 16 
doublets, 64 triplets, … takes automatically its own individual place and all 
components of the alphabets are arranged in a strict order. 

 

 

 

 

 

 

 

 

 

 0 1 

0 C A 

1 T G 
 

  00 01 10 11 

00 CC CA AC AA 

01 CT CG AT AG 

10 TC TA GC GA 

11 TT TG GT GG 
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 000  001 010  011 100 101 110 111 

000  CCC CCA CAC CAA ACC ACA AAC AAA 

001  CCT CCG CAT CAG ACT ACG AAT AAG 

010  CTC CTA CGC CGA ATC ATA AGC AGA 

011  CTT CTG CGT CGG ATT ATG AGT AGG 

100  TCC TCA TAC TAA GCC GCA GAC GAA 

101 TCT TCG TAT TAG GCT GCG GAT GAG 

110 TTC TTA TGC TGA GTC GTA GGC GGA 

111 TTT TTG TGT TGG GTT GTG GGT GGG 

 

Fig. 2. The square tables of DNA-alphabets of 4 nucleotides, 16 doublets and 
64 trilets with a strict arrangement of all components. Each of tables is 
constructed in line with the principle of binary numeration of its column and 
rows on the basis of binary-oppositional traits of the nitrogenous bases (see 
explanations in the text).  

 

It is essential that these 3 separate genetic tables form the joint tensor 
family of matrices since they are interrelated by the known operation of the 
tensor (or Kronecker) product of matrices (Fig. 3). So they are not simple tables 
but matrices. By definition, under tensor multiplication of two matrices, each of 
entries of the first matrix is multiplied with the whole second matrix [Bellman, 
1960]. The second tensor power of the (2*2)-matrix [C, A; T, G] of 4 DNA-letters 
gives automatically the (4*4)-matrix of 16 doublets; the third tensor power of 
the same (2*2)-matrix of 4 DNA-letters gives the (8*8)-matrix of 64 triplets with 
the same strict arrangement of entries as in Fig. 2. In this tensor construction of 
the tensor family of genetic matrices, data about binary-oppositional traits of 
genetic letters C, A, T and G are not used at all. So, the structural organization of 
the system of DNA-alphabets is connected with the algebraic operation of the 
tensor product (Fig. 3). It is important since the operation of the tensor product 
is well known in mathematics, physics and informatics, where it gives a way of 
putting vector spaces together to form larger vector spaces. The following 
quotation speaks about the crucial meaning of the tensor product: «This 
construction is crucial to understanding the quantum mechanics of multiparticle 
systems» [Nielsen, Chuang, 2010, p. 71]. For us the most interesting is that the 
tensor product is one of basic instruments in quantum informatics. 
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Fig. 3. The tensor family of genetic matrices [C, A; T, G](n) (here tensor power n = 
1, 2, 3) of DNA-alphabets of 4 nucleotides, 16 doublets and 64 triplets. The 
symbol ⨂ means the tensor product. 

As is known, the degeneracy of the genetic code has the important 
specificity: the entire set of 64 triplets is divided by Nature into 2 equal binary-
opposition subsets [Rumer, 1968]:  

• 32 triplets with “strong roots” (black colors in Fig. 4), i.e., with 8   
    "strong" doublets AC, CC, CG, CT, GC, GG, GT, TC; 

• 32 triplets with “weak roots” (white colors in Fig. 4), i.e., with 8  
    "weak" doublets CA, AA, AG, AT, GA, TA, TG, TT. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 00 01 10 11 

00 CC (00) CA (01) AC (10) AA (11) 

01 CT (01) CG (00) AT (11) AG (10) 

10 TC (10) TA (11) GC (00) GA (01) 

11 TT (11) TG (10) GT (01) GG (00) 
 

 
 000  001 010  011 100 101 110 111 

000  
CCC 
(000) 

CCA 
(001) 

CAC 
(010) 

CAA 
(011) 

ACC 
(100) 

ACA 
(101) 

AAC 
(110) 

AAA 
(111) 

001  CCT  
(001) 

CCG 
(000) 

CAT 
(011) 

CAG 
(010) 

ACT 
(101) 

ACG 
(100) 

AAT 
(111) 

AAG 
(110) 

010  CTC 
(010) 

CTA 
(011) 

CGC 
(000) 

CGA 
(001) 

ATC 
(110) 

ATA 
(111) 

AGC 
(100) 

AGA 
(101) 

011  CTT 
(011) 

CTG 
(010) 

CGT 
(001) 

CGG 
(000) 

ATT 
(111) 

ATG 
(110) 

AGT 
(101) 

AGG 
(100) 

100  
TCC 
(100) 

TCA 
(101) 

TAC 
(110) 

TAA 
(111) 

GCC 
(000) 

GCA 
(001) 

GAC 
(010) 

GAA 
(011) 

101 
TCT 
(101) 

TCG 
(100) 

TAT 
(111) 

TAG 
(110) 

GCT 
(001) 

GCG 
(000) 

GAT 
(011) 

GAG 
(010) 

110 
TTC 
(110) 

TTA 
(111) 

TGC 
(100) 

TGA 
(101) 

GTC 
(010) 

GTA 
(011) 

GGC 
(000) 

GGA 
(001) 

111 
TTT 
(111) 

TTG 
(110) 

TGT 
(101) 

TGG 
(100) 

GTT 
(011) 

GTG 
(010) 

GGT 
(001) 

GGG 
(000) 
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Fig. 4.  Black-and-white mosaics represent the distribution of strong and weak 
doublets in the matrix of 16 doublets (left) and the distribution of triplets with 
strong and weak roots in the matrix of 64 triplets (on the right). Binary number 
in brackets in each of matrix cells is a sum of modulo-2 addition of binary 
numberings of the row and the column of the cell. 
 

Code meanings of triplets with strong roots do not depend on the letters on 
their third position; code meanings of triplets with weak roots depend on their 
third letter. What are locations of these strong (black) and weak (white) 
members of DNA-alphabets in the genetic matrices shown in Figs. 2 and 3?  

The unexpected phenomenological fact is a symmetrical location (Fig. 4) of 
all black and white entries in the genetic matrices of 16 doublets and 64 triplets, 
which were constructed very formally without any mention about amino acids 
and the degeneracy of the genetic code. 
        Symmetrical properties of mosaics in the genetic matrices in Fig. 4 are the 
following:  
1) the left and right halves of the matrix mosaic are  
        mirror-anti-symmetric each to other in its colors:  
        any pair of cells, disposed by mirror-symmetrical    
        manner in the halves, possesses the opposite colors; 
2)  the block mosaic of the matrix has the cruciform character: both quadrants  
      along each  diagonals are identical each other from the standpoint of their   
      mosaic; 
3) mosaic of each of rows has the meander character  
         identical to known Rademacher functions rn(t) = sign(sin2nπt), n = 1, 2, 3,…,   
         (https://www.encyclopediaofmath.org/index.php/Rademacher_system),   
         which are particular cases of Walsh functions and contain only values +1   
         and -1.  

Using this analogy with Rademacher-Walsh functions, one can represent 
the symbolic genetic matrices in Fig. 4 in forms of numeric matrices R4 and R8 
with their entries +1 and -1 in Fig. 5 where numbers +1 (-1) represent black 
(white) doublets and triplets correspondingly. Taking into account that 
meander-like mosaics of rows of matrices R4 and R8 correspond Rademacher 
functions, we conditionally called these matrices “Rademacher matrices” in all 
our publications beginning from our book [Petoukhov, 2008] (although Hans 
Rademacher himself never worked with such matrices). 

 
R4 = 

1 -1 1 -1 

1 1 -1 -1 

1 -1 1 -1 

-1 -1 1 1 
 

R8 = 
1 1 -1 -1 1 1 -1 -1 
1 1 -1 -1 1 1 -1 -1 

1 1 1 1 -1 -1 -1 -1 
1 1 1 1 -1 -1 -1 -1 

1 1 -1 -1 1 1 -1 -1 
1 1 -1 -1 1 1 -1 -1 

-1 -1 -1 -1 1 1 1 1 
-1 -1 -1 -1 1 1 1 1 

 

 
Fig. 5. Numeric representations R4 and R8 of the genetic matrices of 16 

doublets and 64 triplets from Fig. 4. Matrix cells with number +1 (-1) correspond 
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cells with black (white) doublets and triplets in Fig. 4. Each of rows of the 
numeric matrices represents one of Rademacher-Walsh functions. 

 
It should be noted that a huge quantity 64! ≈ 1089 of variants exists for 

dispositions of 64 triplets in a separate (8*8)-matrix. For comparison, the 
modern physics estimates time of existence of the Universe in 1017 seconds. It is 
obvious that an accidental disposition of black and white triplets in a separate 
(8*8)-matrix will give almost never any symmetry. But in our approach, this 
matrix of 64 triplets is not a separate matrix, but it is one of members of the 
family of matrices of genetic alphabets interrelated by means of binary-
oppositional traits of nitrogenous bases A, T, C, G  (and additionally it is one of 
members of the tensor family of matrices [C, A; T, G](n) of interrelated alphabets 
of DNA). 

These numeric matrices R4 and R8 with their mosaics (Fig. 5) represent 
the phenomenological peculiarities of the degeneracy of the genetic code. The 
exponentiation of these genetic matrices in the second power leads to their 
doubling and quadrupling: R42 = 2*R4 and R82 = 4*R8. This resembles the 
doubling and quadrupling the genetic material under mitosis and meiosis of 
biological cells. Let us analyze algebraic properties of these genetic matrices R4 
and R8 more deeply. 

 
3. The genetic matrix R4 and sparse unitary matrices 

 
We begin the algebraic analysis of the (4*4)-matrix R4 in Fig. 5. Fig. 6 

shows the decomposition of this matrix into a sum of 4 sparse matrices: R4 = R04 
+ R14 + R24 + R34 (below we will explain that this decomposition is not arbitrary 
but constructed on the principle of dyadic-shift decompositions known in 
technology of digital signal processing). 

 
1 -1 1 -1 

1 1 -1 -1 

1 -1 1 -1 

-1 -1 1 1 
 

 
 
= 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

 
 + 
 
 

0 -1 0  0 
1  0  0  0 
0  0  0 -1 
0  0  1  0 

 
+ 

0 0 0 -1 
0 0 -1 0 
0 -1 0 0 
-1 0 0 0 

 
+ 

0  0 1  0 
0  0 0 -1 
1  0 0  0 
0 -1 0  0 

 
     Fig. 6. The dyadic-shift decomposition of the matrix R4 (Fig. 5) into the sum of 
4 sparse matrices: R4 = R04 + R14 + R24 + R34, where R04 is the identity matrix. 

 
By definition, a complex square matrix U is unitary if its conjugate 

transpose U† is also its inverse: UU† = I, where I is the identity matrix (its 
conjugate transpose U† is also its inverse matrix U-1). The real analogue of a 
unitary matrix is an orthogonal matrix, for which the conjugate transposition U† 
is identical to the ordinary transposition: UUT = I. In this article we consider only 
the case of real square matrix. Unitary matrices have significant importance in 
quantum mechanics because they preserve norms, and thus, probability 
amplitudes (https://en.wikipedia.org/wiki/Unitary_matrix). The tensor product 
of two unitary matrices always generates a unitary matrix [Rumer, Fet, 1970, p. 
38]. 

It is interesting that each of sparse matrices R04, R14, R24 and R34 are 
unitary (or orthogonal since their entities are real):  
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               R04R04T = I,  R14R14T = I,    R24R24T = I,  R34R34T = I                      (1) 

 

In molecular-genetic systems, relations of complementarity play the very 
important role. The book [Chapeville, Haenni, 1974, Chapter 1] notes that the 
proof of the complementary structure of the bases in DNA has led to the most 
fundamental discoveries in modern biology: this complementarity provides the 
most important properties of DNA as a carrier of genetic information, including 
DNA replication in the course of cell division and also all mechanisms of 
manifestation of genetic information. But one can note that the set of unitary 
genetic matrices R04, R14, R24 and R34 (Fig. 6) contains the following algebraic 
complementarities in their pairs: unitary matrices R04 and R24 form the first pair 
of the algebraic complementarity since they are transformed into each other by 
the mirror reflection relative to the average vertical line with simultaneous 
inversion of signs of their non-zero entries (the mirror-anti-symmetry). The 
same is true for unitary matrices R14 and R34, which form the second pair with 
the similar algebraic complementarity of the mirror-anti-symmetric type. The 
degeneracy of the genetic code is connected with such algebraic 
complementarities in the set of unitary genetic matrices. 

Determinants of all the unitary matrices R04, R14, R24 and R34 are equal 
to 1; by this reason the matrices R04, R14, R24 and R34 belong to the type of so 
called special unitary matrices. The special unitary matrices are closed under 
multiplication and the inverse operation, and therefore form a matrix group 
called the special unitary group 
(http://mathworld.wolfram.com/SpecialUnitaryMatrix.html ). 

               The table of multiplication of the closed set of genetic unitary matrices 
R04, R14, R24 and R34 is shown in Fig. 7. It coincides with the known 
multiplication table of the algebra of split-quaternions by J.Cockle, which are 
used in mathematics and physics [http://en.wikipedia.org/wiki/Split-
quaternion ; Frenkel, Libine, 2011]. 
 

 
x R04 R14 R24 R34 

R04 R04 R14 R24 R34 
R14 R14 -R04 R34 - R24 
R24 R24 - R34 R04 - R14 
R34 R34 R24 R14 R04 

 

 

 
 

Fig. 7. On left: the multiplication table of the unitary genetic  

            (4*4)-matrices R04, R14, R24 and R34 from Fig. 6.  

            On right: the multiplication table of split-quaternions by J. Cockle  

            (from [http://en.wikipedia.org/wiki/Split-quaternion]). 

 

From this fact, one can conclude that the division of the set of 16 doublets 
in line with the degeneracy of the genetic code is connected with the set of 
sparse unitary matrices R40, R41, R42 and R43. 
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The rows of each of the unitary genetic matrices R04, R14, R24 and R34 form 
a complete orthogonal system of functions. The action of each of these matrices 
(except for the identity matrix R04) on an arbitrary 4-dimensional vector                   
X = [x0, x1, x2, x3] transforms it into a new vector Y, which can be considered as a 
spectral representation of the vector X on the basis of the orthogonal system of 
functions in the rows of the given matrix. The action of the same unitary matrix, 
taken in its transposed form, on this vector Y restores the original vector X. The 
exponentiation of each of the matrices R40, R41, R42 and R43 in a tensor power 
generates a new unitary matrix with an orthogonal system of functions in its 
rows and columns. 

One can add that each of (2*2)-matrices in 4 quadrants of the genetic 
matrix R4 is the sum of 2 unitary matrices. Really, the matrix in two quadrants 
along the main diagonal [1, -1; 1, 1] is the sum of two unitary matrices [1, 0; 0, 1] 
and [0, -1; 1, 0]; the matrix in two quadrants along the secondary diagonal is also 
the sum of two unitary matrices [1, 0; 0, -1] and [0, -1; -1, 0]. One of these unitary 
matrices is the well-known quantum gate Z=[1, 0; 0, -1]. 

Unitary matrices are used in quantum informatics as quantum logic 
elements (quantum gates) for performing quantum computations on their basis. 
In the case of multi-qubit systems, the operation of the tensor product of 
matrices is of key importance in connection with the postulate of quantum 
mechanics: the state space of a composite system is the tensor product of the 
state spaces of its components. In the light of this, it is especially interesting that 
the entire genetic (4x4)-matrix R4 (Fig. 5) is constructed as the sum of the tensor 
products of four unitary (2*2)-matrices, that is, of four quantum gates U0, U1, U2 
and U3 (Fig. 8) in line with the following expression (2): 

 

                              R4 = U0⊗U0 + U0⊗U1 + U3⊗U2 + U3⊗(-U3)                            (2) 

 

where matrices U0, U1, U2 and U3 are shown in Fig. 8. These matrices are unitary: 

U0*U0T = I2, U1*U1T = I2, U2*U2T = I2, U3*U3T = I2, where I2 is the identity matrix.  

 

 
   U0 = 

1, 0 
0, 1 

 
;     U1 = 

0, -1 
1,  0 

 
;     U2 = 

-1, 0 
  0, 1 

 
;     U3 = 

0, -1 
-1, 0 

 
       Fig. 8. Unitary (2*2)-matrices U0, U1, U2 and U3. 

 
The set of these 4 matrices is also closed under multiplication. Fig. 9 

shows their multiplication table, which coincides with the multiplication table of                   
split-quaternions by J. Cockle by analogy with the case of unitary (4*4)-matrices 
in Figs. 6 and 7. 

 

* U0 U1 U2 U3 

U0 U0 U1 U2 U3 

U1 U1 -U0 U3 -U2 

U2 U2 -U3 U0 -U1 

U3 U3 U2 U1 U0 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 April 2018                   doi:10.20944/preprints201804.0131.v1

http://dx.doi.org/10.20944/preprints201804.0131.v1


 
Fig. 9. The multiplication table of unitary (2*2)- matrices U0, U1, U2 and U3 

             from Fig. 8. It coincides with the multiplication table of split- 

             quaternions by J. Cockle reproduced in Fig. 8. 

 

It should be noted that unitary matrices U0, U1, U2 and U3 (Fig. 8) have 
relations with quantum gates used widely in quantum computing  [Nielsen, 
Chuang, 2010, p. XXX]. 

Exponentiation of unitary matrices U1, U2 and U3 into ordinary integer 
powers n = 2, 3, 4,… gives cyclic groups of matrices with the following periods:  

 U1n = U1n+4,   U2n = U2n+2,   U3n = U3n+2.  In this article we specially note a 
connection of cyclic groups with algebraic properties of genetic unitary matrices 
since such cyclic groups can be useful for modeling many inherited cyclic 
processes in physiology of organisms. 

Exponentiation of each of unitary matrices U0, U1, U2 and U3 into tensor 
(or Kronecker) powers k = 2, 3, 4, … generates corresponding tensor families of 
unitary matrices: U0(k), U1(k), U2(k) and U3(k) where (k) means the tensor power. 

 

4. The complementarity of sparse unitary matrices in genetics  

     and the cruciform principle in inherited sensory informatics 

 

   This Section considers the cruciform character of the block black-and-white 
mosaic of the (4*4)-matrix R4 of 16 doublets, which reflects essential 
peculiarities of the degeneracy of the genetic code (Figs. 4 and 5).  One can note 
that genetically inherited constructions of physiological sensory-motor systems 
demonstrate similar cruciform structures. For example, the connection between 
the hemispheres of human brain and the halves of a human body possesses the 
similar cruciform character: the left hemisphere serves the right half of the body 
and the right hemisphere (Fig. 10) [Annett, 1985, 1992; Gazzaniga, 1995; Hellige, 
1993]. The system of optic cranial nerves from two eyes possesses the cruciform 
structures as well: the optic nerves transfer information about the right half of 
field of vision into the left hemisphere of brain, and information about the left 
half of field of vision into the right hemisphere. The same is held true for the 
hearing system [Penrose, 1989, Chapter 9]. In particular, due to existence of such 
inter-complementary right and left parts in genetically inherited visual and 
hearing systems, a person has a stereoscopic perception of his environment. 
Now we show that a similar cruciform character, which is represented in the 
mosaic matrix of 16 doublets (Figs. 4, 5, 11), is connected with the following fact: 
this mosaic matrix is a sum of two sparse unitary matrices that are algebraic 
complementary to each other (they are mirror-anti-symmetric to each other by 
analogy with the left and right halves of a human body) and that can be 
considered as the right and left parts of the cruciform matrix R4. 
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   Fig. 10. The cruciform schemes of some morpho-functional structures in human 
organism. On the left side: the cruciform connections of brain hemispheres with 
the left and the right halves of a human body. In the right side: the cruciform 
structure of optic nerves from eyes in brain. 
 

One can suppose that this inherited cruciform character of sensory-motor 
systems is connected with genetic cruciform structures that include, in 
particular, the genetic matrices R4 and R8 [Petoukhov, 2008; Petoukhov, He, 
2009]. Taking into account the quantum-informational character of molecular-
genetic systems and also an important role of unitary matrices in quantum 
mechanics, it is interesting that – as we have discovered - these genetic matrices 
R4 and R8 are connected with inter-complementary sparse unitary matrices 
described below. 

Let us begin with a consideration of the genetic matrix R4 of 16 doublets. 
We reveal that its cruciform character is connected with a pair of two sparse 
unitary matrices, which are mirror-anti-symmetric to each other. Fig. 11 shows 
that the genetic cruciform matrix R4 is the sum of two sparse matrices R4R and 
R4L: R4 = R4R+R4L. These two sparse matrices are inter-complementary in an 
algebraic sense since they mirror-anti-symmetric to each other and they jointly 
form the non-sparse matrix R4. Using the analogy with our stereoscopic vision by 
means of two – left and right – eyes, we conditionally call the pair of 
complementary matrices R4R and R4L as the stereoscopic pair (or briefly, the 
stereo-pair) where the matrix R4R is called the right stereo-matrix and the matrix 
R4L is called the left stereo-matrix. 
 

1 -1 1 -1 

1 1 -1 -1 

1 -1 1 -1 

-1 -1 1 1 
 

 
 

= 

1 -1 0 0 

1 1 0 0 

0 0 1 -1 

0 0 1 1 
 

 
+ 
 
 

0 0 1 -1 

0 0 -1 -1 

1 -1 0 0 

-1 -1 0 0 
 

 

     Fig. 11. The cruciform matrix R4 is the sum of two sparse matrices R4R and R4L, 
non-zero entries of which coincide with non-zero entries in corresponding 
quadrants along the main diagonal and the secondary diagonal of the matrix R4.  

 

Taking with the factor 2-0.5, each of these stereo-matrices R4R and R4L is 
the unitary matrix:  

 

               (2-0.5*R4R)*(2-0.5*R4R)T = I;         (2-0.5*R4L)*(2-0.5*R4L)T = I.            (3) 

 

Under actions of unitary matrices 2-0.5*R4R and 2-0.5*R4L, an arbitrary        
4-dimensional vector 𝑋̅ = [x0, x1, x2, x3] is transformed by the following manner: 
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             (2-0.5*R4R)*𝑋̅T = 2-0.5*[x0-x1, x0+x1, x2-x3, x2+x3]T 

             (2-0.5*R4L)*𝑋̅T = 2-0.5*[x2-x3, -x2-x3, x0-x1, -x0-x1]T                              (4) 

 

In each of unitary matrices 2-0.5*R4R and 2-0.5*R4L, the set of its rows 
contains a complete orthogonal system of functions. The multiplication of each of 
these sparse unitary matrices with an arbitrary 4-dimensional vector 𝑌̅ leads to a 
spectral representation 𝑍̅ of the vector 𝑌̅ on the basis of the complete orthogonal 
system of functions in rows of the unitary matrix. For example, in the case of the 
vector 𝑌̅ = [5, -3, 7, 9], its spectral representation 𝑍̅R on the basis of the system of 
functions in rows of the unitary matrix 2-0.5*R4R is the following (𝑌̅T means the 
transposition of the vector 𝑌̅):  

                                                𝑍̅R = (2-0.5*R4R)*𝑌̅T = 2-0.5*[8, 2, -2, 16]T             (5) 
 
This spectral representation 𝑍̅R means that the vector 𝑌̅ is the sum of the 

following 4 basic vectors:  
• the vector 2-0.5*[1,-1,0,0] from the first row of the matrix 2-0.5*R4R (Fig. 11) 

multiplied by the factor 2-0.5*8; 
• the vector 2-0.5*[1,1,0,0] from the second row of 2-0.5*R4R multiplied by the 

factor 2-0.5*2; 
• the vector 2-0.5*[0,0,1,-1] from the third row of 2-0.5*R4R multiplied by the 

factor -2-0.5*2;   
• the vector 2-0.5*[0,0,1,1] from the fourth row of 2-0.5*R4R multiplied by the 

factor 2-0.5*16. 
 
Really, 2-0.5*8*(2-0.5*[1,-1,0,0]) + 2-0.5*2*(2-0.5*[1,1,0,0]) – 2-0.5*2*(2-0.5*[0,0,1,-1]) 
+ 2-0.5*16*(2-0.5*[0,0,1,1]) = [5, -3, 7, 9] = 𝑌̅. 

The multiplication of the spectral vector 𝑍̅RT with unitary transposed 
matrix 2-0.5*R4RT restores automatically the initial vector 𝑌̅:  𝑍̅RT*(2-0.5*R4RT) =          
[5, -3, 7, 9].  

Turning to the left stereo-matrix R4L, one can check that the action of the 
unitary matrix 2-0.5*R4L on the same vector 𝑌̅ = [5, -3, 7, 9] leads to the following 
spectral representation 𝑍̅L of the vector 𝑌̅ on the basis of orthogonal functions in 
its rows:   

                 𝑍̅L = (2-0.5*R4R)*𝑌̅T = 2-0.5*[-2,  -16,     8,    -2]T                                           (6) 
 
The multiplication of the spectral vector 𝑍̅LT with unitary transposed 

matrix 2-0.5*R4LT restores automatically the initial vector 𝑌̅:  𝑍̅LT*(2-0.5*R4LT) =          
[5, -3, 7, 9]. Such spectral representations (5, 6) of vector-signals can be used for 
noise-immunity coding of information by some analogies with known noise-
immunity coding on the basis of Hadamard matrices in digital signal processing. 

Exponentiation of the unitary matrix 2-0.5*R4L into integer powers 
generates a cyclic group with the period 2: (2-0.5*R4L)n = (2-0.5*R4L)n+2 (the matrix 
R4L specifies the transformation of reflection in the informational 4-dimensional 
space). In contrast, exponentiation of the unitary matrix 2-0.5*R4R in integer 
powers generates a cyclic group with the period 8: (2-0.5*R4R)n = (2-0.5*R4R)n+8 
(the matrix 2-0.5*R4R specifies the transformation of turn in the informational      
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4-dimensional space). Fig. 12 shows transformations of the vector                              
𝑋̅ = [x0, x1, x2, x3] under actions of the matrix (2-0.5*R4R)n. 

 
(2-0.5*R4R)*𝑋̅T =  

2-0.5*[x0-x1, x0+x1, x2-x3, x2+x3]T 

(2-0.5*R4R)5 *𝑋̅T = 
2-0.5*[x1-x0, -x0-x1, x3-x2, -x2-x3]T 

(2-0.5*R4R)2 *𝑋̅T = [-x1, x0, -x3, x2]T (2-0.5*R4R)6 *𝑋̅T = [x1, -x0, x3, -x2]T 

(2-0.5*R4R)3 *𝑋̅T =  
2-0.5*[-x0-x1, x0-x1, -x2-x3, x2-x3]T 

(2-0.5*R4R)7 *𝑋̅T = 
2-0.5*[x0+x1, x1-x0, x2+x3, x3-x2]T 

(2-0.5*R4R)4 *𝑋̅T = [-x0, -x1, -x2, -x3]T (2-0.5*R4R)8 *𝑋̅T = [ x0, x1, x2, x3]T  
 (2-0.5*R4R)9 *𝑋̅T =  

2-0.5*[x0-x1, x0+x1, x2-x3, x2+x3]T 
Fig. 12. Transformations of the vector 𝑋̅ = [x0, x1, x2, x3] under actions of 

the matrix (2-0.5*R4R)n. 
 
 Another important difference between unitary matrices 2-0.5*R4R and       
2-0.5*R4L is the following: the matrix 2-0.5*R4L is symmetric and correspondingly 
all its eigenvalues are real. By contrast, the matrix 2-0.5*R4R is asymmetric and 
has complex eigenvalues.  
 The multiplication of the stereo-matrices R4R and R4L are non-
commutative: R4R*R4L ≠ R4L*R4R. Their commutator R4R*R4L - R4L*R4R taken with 
the factor 8-0.5 is the unitary matrix: (R4R*R4L-R4L*R4R)*(R4R*R4L-R4L*R4R)T/8 = I. 

In relation to each other, the right and left stereo-matrices R4R and R4L are 
amicable and disjoint (these algebraic notions are used in different applications 
of matrices). In linear algebra, by definition, two square matrices M and N of 
order n are said to be amicable if MNT = NMT (see, for example, [Seberry, 
Wysocki, Wysocki, 2005]). Also by definition, two {0,±1} matrices M and N of the 
same size are said to be disjoint if for all of their positions the following rule is 
true: if M has a nonzero entry at the (i, j)-th position then N has zero entry at the 
same position and vice versa, i.e., M*N=0.  

Stereo-matrices R4R and R4L taken in tensor power k = 1, 2, 3,… defines 
tensor families of matrices R4R(k) and R4L(k) of order 4k, members of which satisfy 
the condition (6): 
 
                         R4R(k)*(R4R(k))T = Is*4k/2  and R4L(k)*(R4L(k))T = Is*4k/2 ,                     (7) 

 
where Is is the identity matrix of order 4k. 

The second tensor power of (4*4)-matrices R4R and R4L, that is (16*16)-
matrices R4R(2) and R4L(2), can be written in line with the block algorithms in Fig. 
13. (64*64)-matrices R4R(3) and R4L(3) can be similarly generated from R4R(2) and 
R4L(2) correspondingly. 
 
 
R4R(2) =             
 
 

 
R4R - R4R 0 0 
R4R R4R 0 0 
0 0 R4R -R4R 
0 0 R4R R4R 

 

 
 
;   R4L(2) = 
 

 
0 0 R4R -R4R 
0 0 -R4R -R4R 

R4R -R4R 0 0 
-R4R -R4R 0 0 

 

 
Fig. 13. The algorithmic construction of the second tensor power of genetic 
stereo-matrices R4R and R4L from Fig. 11. 
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 Genetic stereo-matrices R4R(k) and R4L(k) have some analogies with 
Hadamard matrices. By definition, Hadamard matrices Hn of order n is a square 
matrix with entries +1 or -1 that satisfies the condition (8): 
 

                                                             HnHnT = nIn ,                                                             (8) 
 
where In is the n*n identity matrix. The mentioned analogies allow considering 
applications of stereo-matrices R4R(k) and R4L(k) in quantum informatics, noise-
immune coding and recovering information in the presence of noise and 
interferences, and in some other fields in a parallel with traditional using 
Hadamard matrices there (a web search of bibliography of different applications 
of Hadamard matrices gives 44 thousands of publications in the period 1978-
2005 years [Seberry, Wysocki, Wysocki, 2005]).   

As we can judge, stereo-matrices R4R and R4L didn't meet previously in 
mathematical natural sciences. They were discovered in the analysis of 
molecular-genetic structures and they seem to be new interesting mathematical 
tools for genetic researches, quantum informatics and some other areas. The pair 
of complementary stereo-matrices R4R and R4L gives new materials to 
discussions existing from the ancient time about a role of binary principles "Yin-
Yang", "left-right", "male-female", "odd-even" in organization of Nature (see, for 
example, a collection of facts in the book [Ivanov, 1978]). 

Exponentiation of each of genetic unitary (4*4)-matrices 2-0.5*R4R and      
2-0.5*R4L in tensor (Kronecker) powers k = 2, 3, 4, … gives new tensor families of 
unitary matrices (2-0.5*R4R)(k) and  (2-0.5*R4L)(k) of order 4k with complete 
orthogonal systems of functions in their rows and columns. As known, 
exponentiation of matrices in tensor power can generate matrices with fractal 
structures [Gazale, 1999]. Fig. 14 shows examples of fractal structures inside 
tensor families of matrices (2-0.5*R4R)(k) and  (2-0.5*R4L)(k). 
 

2-0.5*R4R 

 
 

(2-0.5*R4R)(2) 

 

(2-0.5*R4R)(3) 

 
 

2-0.5*R4L 

 

(2-0.5*R4L)(2) 

 

(2-0.5*R4L)(3) 

 
 
Fig. 14. Initial members of tensor families of matrices (2-0.5*R4R)(k) and                          
               (2-0.5*R4L)(k) having fractal structures. Entries +1, -1 and 0 are  
                marked by yellow, blue and green correspondingly. 
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Let us note additionally that described decompositions of the matrix R4 of 
16 doublets (Figs. 4, 6, 11) into sparse unitary matrices were not arbitrary but 
they were based on objective binary-oppositional indicators of nitrogenous 
bases C, A, G, A and T/U (Fig. 1) and on the logical operation of modulo-2 
addition. One can check that these decompositions were constructed in line with 
binary numbers in brackets inside matrix cells (Fig. 4). In each cell, such binary 
number is equal to a sum of binary numberings of the row and the column of the 
cell on the basis of modulo-2 addition. For example, the cell with the triplet CAG 
is located in the row 001 and in the column 011. The operation of modulo-2 
addition gives their sum: 001⊕011 = 001; this binary number is shown in 
brackets in the cell with the triplet CAG. Such type of numeration of cells in 
matrices, whose rows and columns are numerated by means of dyadic groups of 
binary numbers, is known in theory of processing digital signals as a "dyadic-
shift numeration" [Ahmed, Rao, 1975; Harmuth, 1989; Petoukhov, He, 2009]. 
Matrices with such numeration of their cells are called dyadic-shift matrices. One 
can see that such dyadic-shift numeration of cells of the (4*4)-matrix R4 of 16 
doublets (Fig. 4, left) divides the set of 16 doublets into 4 subsets with 4 doublets 
in each: the subset of cells with binary numberings 00 contains doublets CC, CG, 
GC and GG; the subset of cells with numberings 01 contains CA, CT, GA and GT; 
the subset of cells with numberings 10 contains AC, AG, TC and TG; the subset of 
cells with numberings 11 contains AA, AT, TA and TT. Below we use similar 
dyadic-shift decompositions for the (8*8)-matrix R8 of 64 triplets from Fig. 5 
with non-trivial results. As known, if any system of elements demonstrates its 
connection with dyadic shifts, it indicates that the structural organization of its 
system is related to the logic of modulo-2 addition. Correspondingly the 
structural organization of the genetic system is related to the logic of modulo-2 
addition. 

One should note that each of two stereo-matrices R4R and R4L (Fig. 11) is 
the sum of two unitary matrices shown in Fig. 15: R4R = K0+K1, R4L = K2+K3. 
Really, K0*K0T =I4, K1*K1T =I4, K2*K2T =I4 and K3*K3T =I4, where I4 is the identity 
matrix of order 4 and the matrix K0 resembles the well-known quantum gate 
“controlled-NOT”: [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0] [Nielsen, Chuang, 2010, 
p. XXXI]. 

Rows and columns of sparse matrices K0, K1, K2 and K3 correspond to 
complete orthogonal systems of functions. Below we will also meet other 
examples that genetic unitary matrices with block structures are constructed as 
sums of more simple unitary matrices. 
 
 
R4R = 

 
1 -1 0 0 

1 1 0 0 

0 0 1 -1 

0 0 1 1 
 

 
 
= 

 
1 0 0 0 

0 1 0 0 

0 0 0 -1 

0 0 1 0 
 

 
 
+ 

 
0 -1 0 0 

1 0 0 0 

0 0 1 0 

0 0 0 1 
 

 
 
= K0 + K1 

 
R4L = 

 
0 0 1 -1 

0 0 -1 -1 

1 -1 0 0 

-1 -1 0 0 
 

 
= 

 
0 0 1 0 

0 0 0 -1 

0 -1 0 0 

-1 0 0 0 
 

 
+ 

 
0 0 0 -1 

0 0 -1 0 

1 0 0 0 

0 -1 0 0 
 

 
 
= K2 + K3 
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Fig. 15. Each of stereo-matrices R4R and R4L (Fig. 11) is the sum of two unitary 
matrices: R4R = K0+K1, R4L = K2+K3, where K0, K1, K2 and K3 are unitary matrices. 

 
Exponentiations of genetic unitary (4*4)-matrices K0, K1, K2 and K3       

(Fig. 15) in tensor (Kronecker) powers n = 2, 3, 4, … give tensor families of 
unitary matrices K0(n), K1(n), K2(n) and K3(n) of order 4n with complete orthogonal 
systems of functions in their rows and columns. Fig. 16 shows initial members of 
these tensor families with their fractal structures, which are constituent parts of 
the fractal structures in Fig. 14. 

 
K0 

 

K0(2) 

 

K0(3) 

 
 

K2 

 

K2(2) 

 

K2(3) 

 

K1 

 

K1(2) 

 

K1(3) 

 

K3 

 

K3(2) 

 

K3(3) 

 
 
   Fig. 16. Initial members of tensor families of unitary matrices K0(n), K1(n), K2(n)   
                 and K3(n) having fractal structures and complete orthogonal systems of  
                 functions in their rows and columns. Entries +1, -1 and 0 are marked by  
                 yellow, blue and green correspondingly. 

 
4. The 8 sparse unitary matrices in the dyadic-shift decomposition 

of genetic matrix R8 of 64 triplets 
 

Turn now to the algebraic analysis of the (8*8)-matrix R8 (Fig. 5).  Fig. 17 
shows the dyadic-shift decomposition of the matrix R8 into 8 sparse unitary 
matrices: R8 = R80 + R81 + R82 + R83 + R84 + R85 + R86 + R87.  

One can note that the set of 8 unitary genetic matrices R80, R81, R82, R83, 
R84, R85, R86, R87 (Fig. 17) also contains the following algebraic complementarities 
in corresponding pairs of these matrices: unitary matrices R80 and R87 form the 
first pair of the algebraic complementarity since they are transformed into each 
other by mirror reflection relative to the average vertical line with inversion of 
signs of their non-zero entries (the mirror-anti-symmetry). The same is true for 
the pairs of unitary matrices R81 and R86, R82 and R85, R83 and R84, which form the 
other pairs with their similar algebraic complementarity of the mirror-anti-
symmetric type. 

 
 
 
R8 = 

1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 

 
 
 
+ 
 

0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 

 
 
 
+ 

0 0 -1  0 0 0  0   0 
0 0  0 -1 0 0  0   0 
1 0  0  0 0 0  0   0 
0 1  0  0 0 0  0   0 
0 0  0  0 0 0 -1   0 
0 0  0  0 0 0   0 -1 
0 0  0  0 1 0   0   0 
0 0  0  0 0 1   0   0 

 
 
 
+ 

0 0   0 -1 0 0  0  0 
0 0 -1   0 0 0  0  0 
0 1   0   0 0 0  0  0 
1 0   0   0 0 0  0  0 
0 0   0   0 0 0  0 -1 
0 0   0   0 0 0 -1  0 
0 0   0   0 0 1   0  0 
0 0   0   0 1 0   0  0 
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Fig. 17. The dyadic-shift decomposition of the matrix R8 into 8 sparse 

unitary matrices: R8 = R80 + R81 + R82 + R83 + R84 + R85 + R86 + R87. 
 
Each of these 8 sparse matrices is unitary: R80*R80T = I, R81*R81T = I, 

R82*R82T = I, R83*R83T = I, R84*R84T = I, R85*R85T = I, R86*R86T = I, R87*R87T = I.  
Determinants of all these 8 unitary matrices are equal to 1; by this reason 

they belong to the type of so called special unitary matrices. The special unitary 
matrices are closed under multiplication and the inverse operation. They form 
the special unitary group 
(https://en.wikipedia.org/wiki/Special_unitary_group). The multiplication table 
(Fig. 18) of this closed set of 8 unitary matrices coincides with the multiplication 
table of the algebra of bi-split-quaternions of Cockle. 

 
 

* R80 R81 R82 R83 R84 R85 R86 R87 

R80 R80 R81 R82 R83 R84 R85 R86 R87 

R81 R81 R80 R83 R82 R85 R84 R87 R86 

R82 R82 R83 -R80 -R81 -R86 -R87 R84 R85 

R83 R83 R82 -R81 -R80 -R87 -R86 R85 R84 

R84 R84 R85 R86 R87 R80 R81 R82 R83 

R85 R85 R84 R87 R86 R81 R80 R83 R82 

R86 R86 R87 -R84 -R85 -R82 -R83 R80 R81 

R87 R87 R86 -R85 -R84 -R83 -R82 R81 R80 

 
Fig. 18. The multiplication table of 8 genetic unitary matrices R80, R81, R82, 

R83, R84, R85, R86, R87 from Fig. 17 coincides with the multiplication table of the 
algebra of bi-split-quaternions of Cockle. 

 
The set of these 8 sparse matrices is divided into 2 equal subsets with 4 

matrices in each. The first subset contains matrices R80, R81, R82, R83, whose non-
zero entries belong only to two quadrants along the main diagonal of the matrix 
R8 (in the symbolic matrix of triplets in Fig. 4, all triplets in these two quadrants 
begin with letters C or G). In this subset two matrices R80 and R81 are symmetric 
and two other matrices R82 and R83 are asymmetric. The second subset contains 
matrices R84, R85, R86, R87, whose non-zero entries belong only to two quadrants 

 
 
 
 
    + 

0 0  0  0 1 0  0  0 
0 0  0  0 0 1  0  0 
0 0  0  0 0 0 -1  0 
0 0  0  0 0 0  0 -1 
1 0  0  0 0 0  0  0 
0 1  0  0 0 0  0  0 
0 0 -1  0 0 0  0  0 
0 0  0 -1 0 0  0  0 

 
 
 
 
+ 

0 0  0  0 0 1  0  0 
0 0  0  0 1 0  0  0 
0 0  0  0 0 0  0 -1 
0 0  0  0 0 0 -1  0 
0 1  0  0 0 0  0  0 
1 0  0  0 0 0  0  0 
0 0  0 -1 0 0  0  0 
0 0 -1  0 0 0  0  0 

 
 
 
 
+ 
 
 

 0  0  0  0  0  0 -1  0 
 0  0  0  0  0  0  0 -1 
 0  0  0  0 -1  0  0  0 
 0  0  0  0  0 -1  0  0 
 0  0 -1  0  0  0  0  0 
 0  0  0 -1  0  0  0  0 
-1  0  0  0  0  0  0  0 
 0 -1  0  0  0  0  0  0 

 
 
 
 
+ 

0 0 0 0 0 0 0 -1 
0 0 0 0 0 0 -1 0 
0 0 0 0 0 -1 0 0 
0 0 0 0 -1 0 0 0 
0 0 0 -1 0 0 0 0 
0 0 -1 0 0 0 0 0 
0 -1 0 0 0 0 0 0 
-1 0 0 0 0 0 0 0 
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along the second diagonal of the matrix R8 (in the symbolic matrix of triplets in 
Fig. 4, all triplets in these two quadrants begin with letters A or T). All these 4 
matrices are symmetric and correspondingly have real eigenvalues.  

The exponentiation of the sum of matrices R80, R81, R82 and R83 (Fig. 17) 
taken with the factor 8-0.5 defines a cyclic group with its period 8:                               
(8-0.5*(R80+R81+R82+R83))n = (8-0.5*(R80+R81+R82+R83))n+8.  

The exponentiation of the sum of matrices R84, R85, R86 and R87 (Fig. 17) 
taken with the factor 8-0.5 defines a cyclic group with its period 2:                              
(8-0.5*(R84+R85+R86+R87))n = (8-0.5*(R84+R85+ R86+R87))n+8. Correspondingly this 
matrix 8-0.5*(R84+R85+R86+R87) defines transformation of reflection in the                
8-dimensional informational space. 

One should note that these two subsets of 8 unitary genetic matrices have 
some relations to evolution changes of the genetic code. Modern science knows 
more than 20 variants (or dialects) of the genetic code represented on website 
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi. As this website 
shows, these dialects differ from the Standard Code only by the code meanings of 
a small number of triplets. For example, in the Standard Code the triplet TAG 
encodes the amino acid Leu but in the Chlorophycean Mitochondrial Code it 
serves as the stop-codon. One can check that in all dialects without exception all 
stop-codons have their first letter A or T; practically all initiative codons also 
begin with the letters A or T. Beside this, practically all triplets with changed 
coding meaning are triplets with the first letters A or T in them; such triplets 
belong to two quadrants along the second diagonal of the matrix in Fig. 4. All 
entries of these two quadrants in the corresponding numeric matrix in Fig. 5 
belong to the second subset of symmetric unitary matrices R84, R85, R86 and R87 
(Fig. 17). A small exception is the case of two genetic codes of yeast (the Yeast 
Mitochondrial Code and the Alternative Yeast Nuclear Code), in which the 
triplets CUU, CUC, CUA and CUG, having the first letter C, change their coding 
meaning: in the Standard Code, all these 4 triplets encode the amino acid Leu but 
in the Yeast Mitochondrial Code they encode the amino acid Thr. These 4 triplets 
having strong roots are located in the upper quadrant of the matrix of triplets in 
Fig. 4, and their representations by entries +1 in the numeric matrix R8 belong to 
the unitary matrices R82 and R83 (Fig. 17).  

 The genetic (8*8)-matrix R8 can be represented via unitary genetic (2*2)-
matrices U0, U1, U2 and U3 from Fig. 8:  

 
R8 = U0⊗U0⊗U0 + U0⊗U0⊗(-U3) + U0⊗U1⊗U0 + U0⊗U1⊗(-U3) + 
    U3⊗U2⊗U0 + U3⊗U2⊗(-U3) + U3⊗(-U3)⊗U0 + U3⊗(-U3)⊗(-U3)    (9) 
 
Each of the 8 summands on the right-hand side of the expression (9) 

coincides with one of the above unitary matrices R80, R81, R82, R83, R84, R85, R86, 
R87 (Fig. 17). 

 
     5. Connections among amino acids and triplets from the standpoint of  
          unitary genetic matrices  
 
Our results about connections of the genetic (8*8)-matrix R8 (Fig. 5) with unitary 
matrices give additional approaches to study symmetric relations between the 
set of 64 triplets and the set of 20 amino acids and stop-codons encoded by 
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triplets. Fig. 19 reproduces the symbolic matrix of 64 triplets from Fig. 4 but with 
the additional indication of amino acids and stop-codons in the Vertebrate 
Mitochondrial Code; this dialect is the most symmetrical among all dialects of the 
genetic code in line with known data of the website 
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi. One can see in Figs. 
4, 5 and 18 that the genetic symbolic matrix of 64 triplets and its corresponding 
numeric representation R8 (Fig. 5) have pairs of adjacent rows 0 and 1, 2 and 3,  
4 and 5, 6 and 7, whose mosaics are identical inside each of pairs. Moreover, both 
rows inside each of these pairs have the identical list of amino acids and stop-
codons marked by identical colors (Fig. 19). 
 

 000  001 010  011 100 101 110 111 

000  
CCC 
Pro 

CCA 
Pro 

CAC 
His 

CAA 
Gln 

ACC 
Thr 

ACA 
Thr 

AAC 
Asn 

AAA 
Lys 

001  CCT 
Pro 

CCG 
Pro 

CAT 
His 

CAG 
Gln 

ACT 
Thr 

ACG 
Thr 

AAT 
Asn 

AAG 
Lys 

010  CTC 
Leu 

CTA 
Leu 

CGC 
Arg 

CGA 
Arg 

ATC 
Ile 

ATA 
Met 

AGC 
Ser 

AGA 
Stop 

011  CTT 
Leu 

CTG 
Leu 

CGT 
Arg 

CGG 
Arg 

ATT 
Ile 

ATG 
Met 

AGT 
Ser 

AGG 
Stop 

100  
TCC 
Ser 

TCA 
Ser 

TAC 
Tyr 

TAA 
Stop 

GCC 
Ala 

GCA 
Ala 

GAC 
Asp 

GAA 
Glu 

101 
TCT 
Ser 

TCG 
Ser 

TAT 
Tyr 

TAG 
Stop 

GCT 
Ala 

GCG 
Ala 

GAT 
Asp 

GAG 
Glu 

110 
TTC 
Phe 

TTA 
Leu 

TGC 
Cys 

TGA 
Trp 

GTC 
Val 

GTA 
Val 

GGC 
Gly 

GGA 
Gly 

111 
TTT 
Phe 

TTG 
Leu 

TGT 
Cys 

TGG 
Trp 

GTT 
Val 

GTG 
Val 

GGT 
Gly 

GGG 
Gly 

 
Fig. 19. The correspondence among 64 triplets and 20 amino acids and 

stop-codons in the case of the Vertebrate Mitochondrial Code. Both rows inside 
each of pairs of adjacent rows 0-1, 2-3, 4-5, 6-7 with their even-odd numberings 
have identical black-and-white mosaics (reproduced in the numeric matrix R8 in 
Fig. 5) and also identical lists of amino acids and stop-codons (marked with the 
same colors).  

 
The described decomposition (Fig. 17) of the numeric matrix R8 of triplets 

into sums of unitary matrices is accompanied by a separation of the complete set 
of 64 triplets into corresponding subsets of triplets. This separation of the set of 
64 triplets is accompanied by a relevant separation of the complete set of 20 
amino acids and stop–codons into appropriate subsets taking into account the 
code meaning of each of triplets. For example, the matrix R8 can be represented 
in the following form using the decomposition in Fig. 17:  
 
                     R8 = (R80 + R82) + (R81 + R83) + (R84 + R86) + (R85 + R87)                   (10) 
 
Here each of 4 expressions in brackets taken with the factor 2-0.5 is a unitary 
matrix: 
               0.5*(R80+R82)(R80+R82)T = I8;   0.5*(R81+R83)(R81+R83)T = I8;     
               0.5*(R84+R86)(R84+R86)T = I8;   0.5*(R85+R87)(R85+R87)T = I8                 (11)                          
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where I8 is the identity matrix of order 8. 
Fig. 20 shows these 4 inter-complementary matrices (R80+R82), (R81+R83), 

(R84+R86) and (R85+R87) whose sum is equal to the matrix R8 from Fig. 5. 
 
 
 
 

 
 
 
 
R80+R82 = 

1 0 -1  0 
0 1  0 -1 
1 0  1  0 
0 1  0  1 

0 0  0  0 
0 0  0  0 
0 0  0  0 
0 0  0  0 

 
 
 
;        R81+R83 = 

0 1  0 -1 
1 0 -1  0 
0 1  0  1 
1 0  1  0 

0 0  0  0 
0 0  0  0 
0 0  0  0 
0 0  0  0 

0 0  0  0 
0 0  0  0 
0 0  0  0 
0 0  0  0 

1 0 -1  0 
0 1  0 -1 
1 0  1  0 
0 1  0  1 

0 0  0  0 
0 0  0  0 
0 0  0  0 
0 0  0  0 

0 1  0 -1 
1 0 -1  0 
0 1  0  1 
1 0  1  0 

 
 
 
 
R84+R86 = 

 0  0   0  0 
 0  0   0  0 
 0  0   0  0   
 0  0   0  0   

 1  0 -1  0 
 0  1  0 -1 
-1  0 -1  0 
 0 -1  0 -1 

 
 
 
;   R85+R87 = 

 0  0  0  0 
 0  0  0  0 
 0  0  0  0   
 0  0  0  0   

 0  1  0 -1 
 1  0 -1  0 
 0 -1  0 -1 
-1  0 -1  0 

 1  0 -1  0 
 0  1  0 -1 
-1  0 -1  0 
 0 -1  0 -1 

 0  0   0  0 
 0  0   0  0 
 0  0   0  0 
 0  0   0  0 

 0  1  0 -1 
 1  0 -1  0 
 0 -1  0 -1 
-1  0 -1  0 

 0   0  0  0 
 0   0  0  0 
 0   0  0  0   
 0   0  0  0   

 
Fig. 20. The result of the decomposition of the genetic matrix R8 (Fig. 5) into       
               4 inter-complementary matrices (R80+R82), (R81+R83), (R84+R86) and   
               (R85+R87), which, taken with the factor 2-0.5, are unitary matrices with   

  their own complete systems of orthogonal functions. Matrices R80, R81,  
  R82, R83, R84, R85, R86, R87 are shown in Fig. 17. 
 
Rows and columns of each of the 4 unitary matrices 2-0.5*(R80+R82),           

2-0.5*(R81+R83), 2-0.5*(R84+R86) and 2-0.5*(R85+R87) represent complete systems of 
orthogonal functions. By this reason, these 4 matrices can be used for a 
decomposition of an arbitrary 8-dimensional vector 𝑉̅=[x0, x1, x2, x3, x4, x5, x6, x7] 
on the basis of orthogonal functions of each of these orthogonal systems. By this 
way, an 8-dimensional vector 𝑉̅ receives different spectral representations in a 
general case. The multiplication of any of such spectral representations of the 
vector 𝑉̅ with correspondence transposed unitary matrix restores the initial 
vector 𝑉̅. Such spectral representations of vector-signals can be used for noise-
immunity coding of information by some analogies with known noise-immunity 
coding on the basis of Hadamard matrices in digital signal processing. 

Determinants of all the unitary matrices 2-0.5*(R80+R82), 2-0.5*(R81+R83),    
2-0.5*(R84+R86) and 2-0.5*(R85+R87) are equal to 1. Some multiplications of the 
matrices PR0, PR1, PL0 and PL1 each with other are commutative and others are 
non-commutative (12): 
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                                        (R80+R82)(R81+R83) = (R81+R83)(R80+R82);  
                                        (R84+R86)(R85+R87) = (R85+R87)(R84+R86);    
                                        (R80+R82)(R84+R86) ≠ (R84+R86)(R80+R82) ;  
                                        (R80+R82)(R85+R87) ≠ (R85+R87)(R80+R82);  
                                        (R81+R83)(R84+R86) ≠ (R84+R86)(R81+R83); 
                                        (R81+R83)(R85+R87) ≠ (R85+R87)(R81+R83)                       (12) 

 
Exponentiation of unitary matrices 2-0.5*(R80+R82) and 2-0.5*(R81+R83) 

defines cyclic groups with their period 8: (2-0.5*(R80+R82))n = (2-0.5*(R80+R82))n+8; 
(2-0.5*(R81+R83))n = (2-0.5*(R81+R83))n+8. Exponentiation of unitary matrices               
2-0.5*(R84+R86) and 2-0.5*(R85+R87) defines cyclic groups with their period 2:                      
(2-0.5*(R84+R86))n = (2-0.5*(R84+R86))n+2; (2-0.5*(R85+R87))n = (2-0.5*(R85+R87))n+2. 

 
2-0.5*(R80+R82) 

 

(2-0.5*(R80+R82))(2) 

 

(2-0.5*(R80+R82))(2) 

 
2-0.5*(R81+R83)

 

(2-0.5*(R81+R83))(2) 

 

(2-0.5*(R81+R83))(3) 

 
2-0.5*(R84+R86) 

 

(2-0.5*(R84+R86))(2) 

 

(2-0.5*(R84+R86))(3) 

 
2-0.5*(R85+R87)  

 

(2-0.5*(R85+R87))(2) 

 

(2-0.5*(R85+R87))(3) 

 
 

     Fig. 21. Initial members of tensor families of unitary matrices                                     
                    (2-0.5*(R80+R82))(k), (2-0.5*(R81+R83))(k), (2-0.5*(R84+R86))(k) and                    
                    (2-0.5*(R85+R87))(k) having fractal structures and complete orthogonal  
                    systems of functions.  Entries +2-0.5, -2-0.5 and 0 are marked by yellow,  
                    blue and green correspondingly. 
 

Exponentiation of genetic unitary (8*8)-matrices 2-0.5*(R80+R82),                    
2-0.5*(R81+R83),   2-0.5*(R84+R86) and 2-0.5*(R85+R87)  in tensor (Kronecker) powers 
k = 2, 3, 4, … gives tensor families of new unitary matrices of order 8k with new 
complete systems of orthogonal functions: (2-0.5*(R80+R82))(k), (2-0.5*(R81+R83))(k), 
(2-0.5*(R84+R86))(k) and (2-0.5*(R85+R87))(k) (Fig. 21). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 April 2018                   doi:10.20944/preprints201804.0131.v1

http://dx.doi.org/10.20944/preprints201804.0131.v1


The 4 matrices (R80+R82), (R81+R83), (R84+R86) and (R85+R87) are pairwise 
amicable: (R80+R82)(R81+R83)T = (R81+R83)(R80+R82)T;  (R80+R82)(R84+R86)T = 
(R84+R86)(R80+R82)T; (R80+R82)(R85+R87)T = (R85+R87)(R80+R82)T; 
(R81+R83)(R84+R86)T = (R84+R86)(R81+R83)T; (R81+R83)(R85+R87)T = 
(R85+R87)(R81+R83)T.  

Matrices (R80+R82), (R81+R83), (R84+R86) and (R85+R87) taken in tensor 
powers k = 1, 2, 3,… define corresponding tensor families whose matrices satisfy 
the condition (13):  
 
 (R80+R82)(k)*((R80+R82)(k))T =Iw*4k/2,   (R81+R83)(k)*((R81+R83)(k))T =Iw*4k/2,      
 (R84+R86)(k)*((R84+R86)(k))T= Iw*4k/2,   (R85+R87)(k)*((R85+R87)(k))T =Iw*4k/2         (13) 

          
where Iw is the identity matrix of order 8k.  

Now let us comparise the distribution of amino acids and stop-codons in 
the symbolic matrix in Fig. 19 with the distribution of non-zero entries in 
numeric matrices R80+R82, R81+R83, R84+R86 and R85+R87 (Fig. 20). The 
comparison shows that the phenomenon of pairwise distributions of amino acids 
and stop-codons in adjacent rows 0-1, 2-3, 4-5 and 6-7 of the genetic matrix in 
Fig. 19 is connected with the set of 4 complementary unitary matrices R80+R82, 
R81+R83, R84+R86 and R85+R87. More precisely, these 4 matrices define the 
symmetric separations of the set of 64 triplets and the set of 20 amino acids and 
stop-codons into the following subsets: 

• the set of non-zero entries in the matrix R80+R82 corresponds to the set of 
10 amino acids Pro, His, Gln, Leu, Arg, Ala, Asp, Glu, Val, Gly, which are 
encoded by the set of 16 triplets - CCC, CAC, CCG, CAG, CTC, CGC, CTG, 
CGG, GCC, GAC, GCG, GAG, GTC, GGC, GTG and GGG; 

• the set of non-zero entries in the matrix R81+R83 corresponds to the same  
set of 10 amino acids Pro, His, Gln, Leu, Arg, Ala, Asp, Glu, Val, Gly, which 
are encoded by another set of 16 triplets - CCA, CAA, CCT, CAT, CTA, CGA, 
CTT, CGT, GCA, GAA, GCT, GAT, GTA, GGA, GTT, GGT; 

• the set of non-zero entries in the matrix R84+R86 corresponds to the 
following set of amino acids and stop-codons: Thr, Asn, Lys, Ile, Met, Ser, 
Tyr, Phe, Leu, Cys, Trp and 2 stop-codons, which are encoded by the set of 
16 triplets – ACC, AAC, ACG, AAG, ATC, AGC, ATG, AGG, TCC, TAC, TCG, 
TAG, TTC, TGC, TTG and TGG; 

• the set of non-zero entries in the matrix R85+R87 corresponds to the same 
set of amino acids and stop-codons: Thr, Asn, Lys, Ile, Met, Ser, Tyr, Phe, 
Leu, Cys, Trp and 2 stop-codons, which are encoded by another set of 16 
triplets – ACA, AAA, ACG, AAG, ATC, AGC, ATG, AGG, TCA, TAA, TCT, TAT, 
TTA, TGA, TTT and TGT. 
 
The 32 triplets in both matrices R80+R82 and R81+R83 begin with letters C 

or G and define the content of two quadrants along the main diagonal of the 
symbolic matrix in Figs. 2, 19. Other 32 triplets in both matrices R84+R86 and 
R85+R87 begin with letters A and T  and define the content of two quadrants along 
the secondary diagonal of the same matrix. It was mentioned above that in all 
dialects of the genetic code without exception all stop-codons have their first 
letters A or T; practically all initiative codons also begin with the letters A or T 
(so they are connected with unitary matrices 2-0.5*(R84+R86) and 2-0.5*(R85+R87)). 
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Beside this, practically all triplets with changed coding meaning in different 
dialects are also triplets with the first letters A or T in them and they are 
connected with the same unitary matrices. 

One can note that our study belongs to the field of applications of 
algebraic methods and notions of quantum mechanics for modeling molecular-
genetic structures where works of many authors exist, for example, the following 
[Dragovich, Dragovich, 2007; Dragovich, Khrennikov, Misic, 2017; Fimmel, 
Danielli, Strüngmann, 2013; Fimmel, Strüngmann, 2016; Igamberdiev, 1993; Ji, 
2015, 2017; Hu, Petoukhov, 2017; Hu, Petoukhov, Petukhova, 2017; Matsuno, 
1999, 2003, 2015; Matsuno, Paton, 2000; Moon Ho Lee et al, 2017; Pellionis, 
2008; Pellionisz et al, 2012; Penrose, 1996; Perez, 2010, 2013, 2017; Petoukhov, 
2008, 2010a,b, 2011, 2012, 2015a,b,c,d,c,  2016, 2017a,b; Petoukhov, He, 2009; 
Petoukhov, Petukhova, 2017a,b; Petoukhov, Svirin, 2012; Petoukhov et al, 2017; 
Rapoport, 2016a,b,c; Rumer, 1968; Simeonov, 2013; Stambuk, 1999].  

 
 
Some concluding remarks 
 
The article describes author's results about connections of genetic 

matrices with unitary matrices, the logical operation of the modulo-2 addition 
and complete orthogonal systems of functions.  These genetic matrices represent 
genetic alphabets jointly with known features of the degeneracy of the genetic 
code. These results are interesting by the following main reasons. 

Firstly, they give new approaches to model some genetic structures and 
phenomena on the basis of mathematical formalisms of quantum mechanics and 
quantum informatics where unitary operators have a key meaning. 
Correspondingly – from this standpoint - a hidden logic organization of the 
genetic system should be considered in the light of notions of quantum logic. Our 
results show that, from this modeling standpoint, the genetic system is a whole 
hierarchical system of interconnected unitary matrices of different orders woven 
together and formed tensor families of unitary matrices. Some of these unitary 
genetic matrices coincide with well-known quantum gates of quantum 
informatics; all other unitary genetic matrices can be also considered as special 
quantum gates for hidden quantum-information calculations in the genetic 
system. Complementary relations exist among some unitary genetic matrices.  

We suppose that unitary genetic operators (unitary matrices) are the 
basis for calculations in genetics by some analogy with calculations in quantum 
informatics. In the frame of our model approach we put forward the working 
hypothesis that DNA- and RNA-sequences of n-plets (of doublets, triplets, etc.) 
serve to define unitary operators for quantum calculations in genetics by analogy 
with quantum-logical calculations in quatum computing. From this standpoint, 
DNA- and RNA-sequences are instruments to define systems of interconnected 
unitary operators for quantum calculations by means of the quantum logic (in 
particular, this is reflected in the special mosaic organisation of genetic matrices 
in Figs. 4 and 5). The presented materials about connections of genetic systems 
with quantum informatics (see additionally [Petoukhov, 2017a]) can lead to new 
studies of analogies between quantum physics and matrix representations of the 
genetic code. Here one should note that the Hungarian scientist Gyorgy Darvas 
was the first who – in his study of quantum electrodynamics - paid attention on 
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connections of the genetic numeric matrices with Pauli’s matrices [Darvas, 
Petoukhov, 2017]. It is additional interesting that cyclic shifts of positions in 
doublets and triplets transform the mosaic matrices in Figs. 4 and 5 into new 
mosaic matrices [Petoukhov, 2008; Petoukhov, He, 2009], which are connected 
with new systems of unitary genetic matrices.  

Secondly, described unitary genetic matrices contain complete orthogonal 
systems of functions in their rows or columns. But it is known the following: 
“after Fourier it was found that for some problems, harmonic sinusoids rather than 
other systems of orthogonal functions, for example, the Legendre polynomials, are 
better suited. In fact, any particular problem needs its own system of orthogonal 
functions. This was most clearly manifested in the course of the development of 
quantum mechanics”  [Soroko, 1973]. Correspondingly one can think that the 
genetic systems have their own orthogonal systems of functions, which should 
be used in physiology for appropriate spectral decompositions to study 
genetically inherited processes and structures (including genetic sequences, 
information processes in neuronal systems, cardio-vascular processes, etc.). 

Thirdly, described fractal features of the mentioned tensor families of 
unitary genetic matrices give additional materials to the wide topic of inherited 
fractal-like structures in biological bodies, including symmetries in long texts of 
single stranded DNA [Petoukhov, 2017a] and facts about connections of fractals 
with cancer [Baish, Jain, 2000; Bizzarri et al, 2011; Dokukin et al, 2015; Lennon 
et al, 2015; Perez, 2017]. Fractal patterns are related with the theory of dynamic 
chaos, which has many applications in sciences and technology (see, for example, 
[Dmitriev, 2002; Potapov, 2015]). A specifity of fractal patterns in tensor families 
of unitary genetic matrices can be used for a further development of the theory 
of dynamic chaos and its applications. The bridge between knowledges about 
fractals in information techniologies and in bio-information systems can lead to a 
mutual enrichment of both these fields. 

The author hopes that the further usage in genetics the concepts and 
formalisms of quantum informatics, which was undertaken in this article in the 
connection with unitary genetic matrices, will lead to the development of 
substantial quantum-information genetics. This will promote the inclusion of 
genetics and all biology in the field of profound mathematical natural science. 
Consideration of biological phenomena, including the phenomena of inheritance 
of the intellectual abilities of biological bodies, from the standpoint of the theory 
of quantum computers, gives many valuable opportunities for their 
comprehension and also for development of artificial intelligence systems 
[Petoukhov, 2016a,b; Petoukhov, Petukhova, 2017a; Petoukhov et al., 2017] (the 
work [Biamonte et al, 2017] contains a review about quantum computing and 
the problems of artificial intelligence). For example, an adult human organism 
has around 10 trillion (1014) human cells and each of cells containts an identical 
complect of DNA, whose genetic information is used for physiological functioning 
organism as the holistic system of cells. How such huge number of cells can 
reliably functioning as a cooperative whole? Quantum informatics and 
associations with quantum computers can help to model and understand such 
holistic biological systems with their ability of computing complex tasks and  
transfering genetic information from one generation to another. Quantum-
information approaches allow modeling complex biological systems without 
using data and hypotheses about interactions between adjacent molecules or 
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between separate biological cells each with other; all of such separate elements 
are parts of a holistic organism as a quantum-information essence. The 
fundamental question about quantum computing was firstly touched upon in the 
book [Manin, 1980]. 
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