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Abstract. Information molecules of DNA and RNA should obey principles of
quantum mechanics where unitary operators in form of unitary matrices have
key meanings. Unitary matrices are the basis of calculations in quantum
computers. This article presents some author's results, which show that matrix
forms of the representation of structured systems of molecular-genetic alphabets
can be considered as sets of sparse unitary matrices related with
phenomenologic features of the degeneracy of the genetic code. These sparse
unitary matrices have orthogonal systems of functions in their rows and
columns. A complementarity exists among some unitary genetic matrices in
relation each other. Decompositions of numeric genetic matrices into sets of
sparse unitary matrices are connected with the logical operation of modulo-2
addition used in quantum computers as well. Tensor (or Kronecker) families of
unitary genetic matrices with their fractal-like properties are also considered.
The described results are discussed in the frame of development of quantum-
information approaches for modeling genetic systems.

Keywords: genetic code, alphabet, unitary matrix, dyadic shift, decomposition,
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1. Introduction.

The information molecules of DNA and RNA of the genetic coding system belong
to the world of molecules, in which the principles of quantum mechanics
manage. This article presents results of the author's study of abilities of using
formalisms of quantum mechanics and quantum informatics to model regular
structures of molecular-genetic systems. First of all, we are talking about
searching for correspondences between unitary operators and structured
alphabets of DNA and RNA in their matrix forms of representation. The article
provides additional materials for the development of quantum information
modeling of structured molecular-genetic ensembles; elements of the quantum
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information modeling have been described in the author's work about tetra-
group symmetries in long DNA texts [Petoukhov, 2017].

In line with one of the postulates of quantum mechanics, the evolution of
a closed quantum system is described by unitary transformations.
Computational processes in quantum computer science are based on unitary
operators that serve as quantum gates. “Any unitary matrix specifies a valid
quantum gate” [Nielsen, Chuang, 2010, p. 18]. Any physical impact on a qubit in
quantum mechanics is described by a linear unitary operator.

In quantum mechanics and quantum computer science, an important role
is played by unitary operators in form of Hadamard matrices with complete
orthogonal systems of Walsh functions in them. Hadamard operators are also
widely used for spectral representations of signal vectors in the technique of
noise-immune communication [Seberry, Wysocki, Wysocki, 2005], the sequency
analysis of Harmuth [Harmuth, 1977, 1989], the digital logical
holography [Derzhypolskyy, Melenevskyy, Gnatovskyy, 2007; Morita, Sakurai,
1973; Soroko, 1974] and algorithms of quantum informatics [Nielsen, Chuang,
2010]. But the Hadamard matrices with their complete systems of orthogonal
functions are not the only unitary matrices with complete systems of orthogonal
functions in them.

In this paper, we present other unitary matrices with other complete
systems of orthogonal functions that were discovered by the author in the course
of the algebraic modeling of molecular alphabets of DNA and RNA. These unitary
matrices are sparse ones and they form sets of mutual-complementary matrices
(in some algebraic sence). We conditionally call them unitary genetic matrices
(or briefly, unitary geno-matrices). This makes us recall the well-known
proposition that different natural systems may need - for their spectral analysis
- in their own systems of orthogonal functions: “after Fourier it was found that for
some problems, harmonic sinusoids rather than other systems of orthogonal
functions, for example, the Legendre polynomials, are better suited. In fact, any
particular problem needs its own system of orthogonal functions. This was most
clearly manifested in the course of the development of quantum mechanics”
[Soroko, 1973]. These unitary sparse geno-matrices contain complete systems of
orthogonal functions and have special algebraic properties. They can serve as the
basis for a new class of spectral representations of vectors in biology and other
fields of science, as well as a new class of bio-mathematical models and
algorithms in classical and quantum computer sciences.

One should add that quantum-information aspects of life are actively
discussed in modern science, for example, in the book [Quantum aspects of life,
2008]; in articles about a biology of quantum information [Matsuno, 1999, 2003,
2015; Matsuno, Paton, 2000]; in articles about a possible meaning of the
quantum algorithm of Grower in genetic information [Patel, 2001 a,b,c], etc.

2. Matrix representations of DNA-alphabets and genetic binary
oppositions

Science does not know why the basic alphabet of DNA has been created by
Nature from just four letters (adenine A, thymine T, cytosine C and guanine G),
and why just these very simple molecules were chosen for the DNA-alphabet
(out of millions of possible molecules). But science knows [Fimmel, Danielli,
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Striingmann, 2013; Petoukhov, 2008; Petoukhov, He, 2009; Stambuk, 1999] that
these four molecules are interrelated due to their symmetrical peculiarities into
the united molecular ensemble with its three pairs of binary-oppositional traits
or indicators (Fig. 1).
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Fig. 1. Left: the four nitrogenous bases of DNA: adenine A, guanine G, cytosine C,
and thymine T. Right: three binary sub-alphabets of the genetic alphabet on the
basis of three pairs of binary-oppositional traits or indicators.

These three pairs of binary-oppositional traits or indicators are the following:

(1) Two letters are purines (A and G), and the other two are pyrimidines (C and
T). From the standpoint of these binary-oppositional traits one can denote
C=T=0,A=0G=1. From the standpoint of these traits, any of the DNA-
sequences are represented by a corresponding binary sequence. For
example, GCATGAAGT is represented by 101011110;

(2) Two letters are amino-molecules (A and C) and the other two are keto-
molecules (G and T). From the standpoint of these traits one can designate A
= C=0,G =T = 1. Correspondingly, the same sequence GCATGAAGT is
represented by another binary sequence, 100110011;

(3) The pairs of complementary letters, A-T and C-G, are linked by 2 and 3
hydrogen bonds, respectively. From the standpoint of these binary traits,
one can designate C=G =0, A =T = 1. Correspondingly, the same sequence
GCATGAAGT isread as 001101101.

Accordingly, each of the DNA-sequences of nucleotides is the carrier of three
parallel messages on three different binary languages. At the same time, these
three types of binary representations form a common logic set on the basis of the
logic operation of modulo-2 addition denoted by the symbol @: modulo-2
addition of any two such binary representations of the DNA-sequence gives the
third binary representation of the same DNA-sequence: for example, 101011110
@ 100110011 = 001101101. One can remind here the rules of the bitwise
modulo-2 addition: 00 =0, 01 =1, 10 =1; 161 = 0. The logic
operation of modulo-2 addition is actively used in classical and quantum
computers. Below we use the operation of modulo-2 addition for those
decompositions of genetic matrices, which lead to interesting sets of inter-
complementary unitary matrices of sparse types for special kinds of spectral
representations of vectors.
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Taking into account the phenomenological fact that each of DNA-letters
C, A, T and G is uniquely defined by any two kinds of mentioned binary-
oppositional indicators (Fig. 1), these genetic letters can be represented by
means of corresponding pairs of binary symbols, for example, from the
standpoint of two first binary-oppositional indicators. It is convenient for us - for
the further description - use at the first position of each of letters its binary
symbol from the second pair of binary-oppositional indicators (the indicator
"amino or keto": C=A=0, T=G=1) and at the second positions of each of letters its
binary symbol from the first pair of binary-oppositional indicators (the indicator
"pyrimidine or purine": C=T=0, A=G=1). In this case the letter C is represented by
the binary symbol 0201 (that is as 2-bit binary number), A - by the symbol 0213,
T - by the symbol 1201, G - by the symbol 1211. Using these representations of
separate letters, each of 16 doublets is represented as the concatenation of the
binary symbols of its letters (that is as 4-bit binary number): for example, the
doublet CC is represented as 4-bit binary number 02010201, the doublet CA - as
4-bit binary number 02010211, etc. By analogy, each of 64 triplets is represented
as the concatenation of the binary symbols of its letters (that is as 6-bit binary
number): for example, the triplet CCC is represented as 6-bit binary number
020102010201, the triplet CCA - as 6-bit binary number 020102010211, etc. In
general, each of n-plets is represented as the concatenation of the binary
symbols of its letters (below we will not show these indexes 2 and 1 of separate
letters in binary representations of n-plets but will remember that each of
positions corresponds to its own kind of indicators from the first or from the
second set of indicators in Fig. 1).

It is convenient to represent DNA-alphabets of 4 nucleotides, 16 doublets, 64
triplets, ... 4" n-plets in a form of appropriate square tables (Fig. 2), which rows
and columns are numerated by binary symbols in line with the following
principle. Entries of each column are numerated by binary symbols in line with
the first set of binary-oppositional indicators in Fig. 1 (for example, the triplet
CAG and all other triplets in the same column are the combination “pyrimidine-
purin-purin” and so this column is correspondingly numerated 011). By contrast,
entries of each of rows are numerated by binary numbers in line with the second
set of indicators (for example, the same triplet CAG and all other triplets in the
same row are the combination “amino-amino-keto” and so this row is
correspondingly numerated 001). In such tables (Fig. 2), each of 4 letters, 16
doublets, 64 triplets, ... takes automatically its own individual place and all
components of the alphabets are arranged in a strict order.

00|01 10|11

0 oofcc |calAc|aAA
ofc|a 01 ] CT | CG | AT | AG
1|T |G 10 | TC | TA| GC | GA

11| TT | TG | GT | GG
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000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

000 J CCC | CCA | CAC | CAA | ACC | ACA | AAC | AAA
001 J CCT | CCG | CAT | CAG | ACT | ACG | AAT | AAG
010 § CTC | CTA | CGC | CGA | ATC | ATA | AGC | AGA
011 J CTT | CTG | CGT | CGG | ATT | ATG | AGT | AGG
100 J TCC | TCA | TAC | TAA| GCC | GCA | GAC | GAA
101 §J TCT | TCG | TAT | TAG | GCT | GCG | GAT | GAG
110 | TTC | TTA | TGC | TGA | GTC | GTA | GGC | GGA
111§ TTT | TTG | TGT | TGG | GTT | GTG | GGT | GGG

Fig. 2. The square tables of DNA-alphabets of 4 nucleotides, 16 doublets and
64 trilets with a strict arrangement of all components. Each of tables is
constructed in line with the principle of binary numeration of its column and
rows on the basis of binary-oppositional traits of the nitrogenous bases (see
explanations in the text).

It is essential that these 3 separate genetic tables form the joint tensor
family of matrices since they are interrelated by the known operation of the
tensor (or Kronecker) product of matrices (Fig. 3). So they are not simple tables
but matrices. By definition, under tensor multiplication of two matrices, each of
entries of the first matrix is multiplied with the whole second matrix [Bellman,
1960]. The second tensor power of the (2*2)-matrix [C, A; T, G] of 4 DNA-letters
gives automatically the (4*4)-matrix of 16 doublets; the third tensor power of
the same (2*2)-matrix of 4 DNA-letters gives the (8*8)-matrix of 64 triplets with
the same strict arrangement of entries as in Fig. 2. In this tensor construction of
the tensor family of genetic matrices, data about binary-oppositional traits of
genetic letters C, A, T and G are not used at all. So, the structural organization of
the system of DNA-alphabets is connected with the algebraic operation of the
tensor product (Fig. 3). It is important since the operation of the tensor product
is well known in mathematics, physics and informatics, where it gives a way of
putting vector spaces together to form larger vector spaces. The following
quotation speaks about the crucial meaning of the tensor product: «This
construction is crucial to understanding the quantum mechanics of multiparticle
systems» [Nielsen, Chuang, 2010, p. 71]. For us the most interesting is that the
tensor product is one of basic instruments in quantum informatics.

clA c/A] Jcc|{calac|aa
tTal Ical lct[T|G|l.a*|T|[G| [cT|[cG|AT|AG
Tlcle|T|c]= ClA c|Al=]Tc|TA|GC | GA

T*|T|G|,.G*|T|G| |TT|TG|GT|GG
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CCC CCA CAC CAA ACC ACA AAC | AAA
CCT CCG CAT CAG ACT ACG | AAT | AAG
CTIC CTA CGC CGA ATC ATA | AGC | AGA
lcla]l [c]a] [c]a
G

CIT CIG CGT CGG ATT ATG | AGT | AGG

TCC | TCA TAC TAA GCC GCA | GAC | GAA
TCT | TCG TAT TAG GCT GCG | GAT | GAG
TTC TTA TGC | TGA GTC GTA | GGC | GGA
TTT TTG TGT TGG GTT GIG | GGT | GGG

Fig. 3. The tensor family of genetic matrices [C, A; T, G]® (here tensor power n =
1, 2, 3) of DNA-alphabets of 4 nucleotides, 16 doublets and 64 triplets. The
symbol ® means the tensor product.

As is known, the degeneracy of the genetic code has the important
specificity: the entire set of 64 triplets is divided by Nature into 2 equal binary-
opposition subsets [Rumer, 1968]:

e 32 triplets with “strong roots” (black colors in Fig. 4), i.e, with 8
"strong" doublets AC, CC, CG, CT, GC, GG, GT, TC;

e 32 triplets with “weak roots” (white colors in Fig. 4), i.e, with 8
"weak" doublets CA, AA, AG, AT, GA, TA, TG, TT.

00 01 10 11

00 | cc (00) | ca (01) | AC(10) | AA (11)
01 | CT (01) | CG (00) | AT (11) | AG (10)

10 | TC (10) | TA (11) | GC (00) | GA (01)
11 | TT (11) | TG (10) | GT (01) | GG (00)

000 | 001 |o010 |011 [100 |101 |110 |111

000 [ €CC_[€ca [cac |caa [Acc [ACA [AAC [AAA

(000) | (001) | (010) | (011) | (100) | (101) | (110) | (111)
ool h€CT [ ccG | caT |cac |AcT [AcG | AAT |AAc
(001) | (000) | (011) | (010) | (101) | (100) | (111) | (110)
010 | €TC [ CTA [cGC [cCGA |ATC |ATA [AGC |AGA
(010) | (011) | (000) | (001) | (110) | (111) | (100) | (101)
011 §CIT | CTG | CGT [CGG |ATT [ATG |AGT |AGG
(011) | (010) | (001) | (000) | (111) | (110) | (101) | (100)
TCC |TCA |TAC |TAA [Gcc [GcA |GAC | GaA
(100) | (101) | (110) | (111) | (000) | (001) | (010) | (011)
TCT | TCG | TAT |TAG |GCT | GCG | GAT | GAG
(101) | (100) | (111) | (110) | (001) | (000) | (011) | (010)
TTC |TTA |TGC |TGA |[GTC |GTA |GGC | GGA
(110) | (111) | (100) | (101) | (010) | (011) | (000) | (001)
TTT |TTG |TGT |TGG |GTT | GTG | GGT | GGG
(111) | (110) | (101) | (100) | (011) | (010) | (001) | (000)

100

101

110

111
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Fig. 4. Black-and-white mosaics represent the distribution of strong and weak
doublets in the matrix of 16 doublets (left) and the distribution of triplets with
strong and weak roots in the matrix of 64 triplets (on the right). Binary number
in brackets in each of matrix cells is a sum of modulo-2 addition of binary
numberings of the row and the column of the cell.

Code meanings of triplets with strong roots do not depend on the letters on
their third position; code meanings of triplets with weak roots depend on their
third letter. What are locations of these strong (black) and weak (white)
members of DNA-alphabets in the genetic matrices shown in Figs. 2 and 3?

The unexpected phenomenological fact is a symmetrical location (Fig. 4) of
all black and white entries in the genetic matrices of 16 doublets and 64 triplets,
which were constructed very formally without any mention about amino acids
and the degeneracy of the genetic code.

Symmetrical properties of mosaics in the genetic matrices in Fig. 4 are the

following:

1) the left and right halves of the matrix mosaic are
mirror-anti-symmetric each to other in its colors:
any pair of cells, disposed by mirror-symmetrical
manner in the  halves, possesses the opposite colors;

2) the block mosaic of the matrix has the cruciform character: both quadrants
along each diagonals are identical each other from the standpoint of their
mosaic;

3) mosaic of each of rows has the meander character
identical to known Rademacher functions rs(t) = sign(sin2"nt),n=1, 2, 3,..,,
(https://www.encyclopediaofmath.org/index.php/Rademacher_system),
which are particular cases of Walsh functions and contain only values +1
and -1.

Using this analogy with Rademacher-Walsh functions, one can represent
the symbolic genetic matrices in Fig. 4 in forms of numeric matrices R4 and Rs
with their entries +1 and -1 in Fig. 5 where numbers +1 (-1) represent black
(white) doublets and triplets correspondingly. Taking into account that
meander-like mosaics of rows of matrices R4+ and Rs correspond Rademacher
functions, we conditionally called these matrices “Rademacher matrices” in all
our publications beginning from our book [Petoukhov, 2008] (although Hans
Rademacher himself never worked with such matrices).

R4 = Re=
1|1 1] -1 1 1 1] 1 1 1 -1 | -1
1] 1 1] -1 1 1 -1 | -1 1 1 -1 | -1
1 |11 1 1 1 1 1 1 -1 -1 -1 -1
EREE ER 1 1 1 1 -1 | -1 -1 | -1
1 1 1] 1 1 1 -1 | -1
1 1 -1 ] -1 1 1 -1 | -1
-1 | 1] -1 ] -1 1 1 1 1
1| 1] -1 ] -1 1 1 1 1

Fig. 5. Numeric representations R4 and Rs of the genetic matrices of 16
doublets and 64 triplets from Fig. 4. Matrix cells with number +1 (-1) correspond
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cells with black (white) doublets and triplets in Fig. 4. Each of rows of the
numeric matrices represents one of Rademacher-Walsh functions.

It should be noted that a huge quantity 64! ~ 108° of variants exists for
dispositions of 64 triplets in a separate (8*8)-matrix. For comparison, the
modern physics estimates time of existence of the Universe in 1017 seconds. It is
obvious that an accidental disposition of black and white triplets in a separate
(8*8)-matrix will give almost never any symmetry. But in our approach, this
matrix of 64 triplets is not a separate matrix, but it is one of members of the
family of matrices of genetic alphabets interrelated by means of binary-
oppositional traits of nitrogenous bases A, T, C, G (and additionally it is one of
members of the tensor family of matrices [C, A; T, G]® of interrelated alphabets
of DNA).

These numeric matrices R4 and Rs with their mosaics (Fig. 5) represent
the phenomenological peculiarities of the degeneracy of the genetic code. The
exponentiation of these genetic matrices in the second power leads to their
doubling and quadrupling: R4? = 2*R4 and Rs? = 4*Rs. This resembles the
doubling and quadrupling the genetic material under mitosis and meiosis of
biological cells. Let us analyze algebraic properties of these genetic matrices R4
and Rs more deeply.

3. The genetic matrix R4 and sparse unitary matrices

We begin the algebraic analysis of the (4*4)-matrix R4 in Fig. 5. Fig. 6
shows the decomposition of this matrix into a sum of 4 sparse matrices: R4 = R04
+ R14 + R24 + R34 (below we will explain that this decomposition is not arbitrary
but constructed on the principle of dyadic-shift decompositions known in
technology of digital signal processing).

1 (1)1 1 1000 0-100 000-1 0010
1(1)-1] 1 0100 |+ J1000 |+ JOO-10 }J+ |JOO0OO0-1
1 |-1]1]| 1 = ]0010 000-1 0-100 1000
ERS 0001 0010 -1000 0-100

Fig. 6. The dyadic-shift decomposition of the matrix R4 (Fig. 5) into the sum of
4 sparse matrices: R4 = R04 + R14 + R24 + R34, where RO041is the identity matrix.

By definition, a complex square matrix U is unitary if its conjugate
transpose Ut is also its inverse: UUt = I, where I is the identity matrix (its
conjugate transpose UT is also its inverse matrix U-1). The real analogue of a
unitary matrix is an orthogonal matrix, for which the conjugate transposition Ut
is identical to the ordinary transposition: UUT = [. In this article we consider only
the case of real square matrix. Unitary matrices have significant importance in
quantum mechanics because they preserve norms, and thus, probability
amplitudes (https://en.wikipedia.org/wiki/Unitary_matrix). The tensor product
of two unitary matrices always generates a unitary matrix [Rumer, Fet, 1970, p.
38].

It is interesting that each of sparse matrices R04, R14, R24 and R34 are
unitary (or orthogonal since their entities are real):
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RO4R04T =1, R14R14T =1, R24R24T =1, R34R34T =1 (D

In molecular-genetic systems, relations of complementarity play the very
important role. The book [Chapeville, Haenni, 1974, Chapter 1] notes that the
proof of the complementary structure of the bases in DNA has led to the most
fundamental discoveries in modern biology: this complementarity provides the
most important properties of DNA as a carrier of genetic information, including
DNA replication in the course of cell division and also all mechanisms of
manifestation of genetic information. But one can note that the set of unitary
genetic matrices R04, R14, R24 and R34 (Fig. 6) contains the following algebraic
complementarities in their pairs: unitary matrices R04 and R24 form the first pair
of the algebraic complementarity since they are transformed into each other by
the mirror reflection relative to the average vertical line with simultaneous
inversion of signs of their non-zero entries (the mirror-anti-symmetry). The
same is true for unitary matrices R14 and R34, which form the second pair with
the similar algebraic complementarity of the mirror-anti-symmetric type. The
degeneracy of the genetic code 1is connected with such algebraic
complementarities in the set of unitary genetic matrices.

Determinants of all the unitary matrices R0s, R14, R24 and R34 are equal
to 1; by this reason the matrices R04, R14, R24 and R34 belong to the type of so
called special unitary matrices. The special unitary matrices are closed under
multiplication and the inverse operation, and therefore form a matrix group
called the special unitary group
(http://mathworld.wolfram.com/SpecialUnitaryMatrix.html ).

The table of multiplication of the closed set of genetic unitary matrices
R0s4, R14, R24 and R34 is shown in Fig. 7. It coincides with the known
multiplication table of the algebra of split-quaternions by ].Cockle, which are
used in mathematics and physics [http://en.wikipedia.org/wiki/Split-
quaternion ; Frenkel, Libine, 2011].

X RO04 R14 R24 R34 x| 1]i|jlk
RO4 RO4 R1s R24 R34 1|1 0]k
R14 R1s | -R04 | R34 | -R24 i i |1 k|-
R24 R24 | -R34 | ROs4 | -R14 Pd|k[1]-
R34 R34 R24 R1s RO4 k k| j|il1

Fig. 7. On left: the multiplication table of the unitary genetic
(4*4)-matrices R04, R14, R24 and R34 from Fig. 6.
On right: the multiplication table of split-quaternions by ]. Cockle
(from [http://en.wikipedia.org/wiki/Split-quaternion]).

From this fact, one can conclude that the division of the set of 16 doublets
in line with the degeneracy of the genetic code is connected with the set of
sparse unitary matrices R4o, R41, R42 and Ras.
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The rows of each of the unitary genetic matrices Ros, R1s4, R24 and R34 form
a complete orthogonal system of functions. The action of each of these matrices
(except for the identity matrix Ros4) on an arbitrary 4-dimensional vector
X = [xo, X1, X2, x3] transforms it into a new vector Y, which can be considered as a
spectral representation of the vector X on the basis of the orthogonal system of
functions in the rows of the given matrix. The action of the same unitary matrix,
taken in its transposed form, on this vector Y restores the original vector X. The
exponentiation of each of the matrices R4o, R41, R42 and Rs3in a tensor power
generates a new unitary matrix with an orthogonal system of functions in its
rows and columns.

One can add that each of (2*2)-matrices in 4 quadrants of the genetic
matrix Rs is the sum of 2 unitary matrices. Really, the matrix in two quadrants
along the main diagonal [1, -1; 1, 1] is the sum of two unitary matrices [1, 0; 0, 1]
and [0, -1; 1, 0]; the matrix in two quadrants along the secondary diagonal is also
the sum of two unitary matrices [1, 0; 0, -1] and [0, -1; -1, 0]. One of these unitary
matrices is the well-known quantum gate Z=[1, 0; 0, -1].

Unitary matrices are used in quantum informatics as quantum logic
elements (quantum gates) for performing quantum computations on their basis.
In the case of multi-qubit systems, the operation of the tensor product of
matrices is of key importance in connection with the postulate of quantum
mechanics: the state space of a composite system is the tensor product of the
state spaces of its components. In the light of this, it is especially interesting that
the entire genetic (4x4)-matrix R4 (Fig. 5) is constructed as the sum of the tensor
products of four unitary (2*2)-matrices, that is, of four quantum gates Uo, U1, U2
and Us (Fig. 8) in line with the following expression (2):

R4 =UoQ®Uo+ Uo@®U1 + Us®U:2 + Us®(-Us) (2)

where matrices Uo, U1, Uz and Us are shown in Fig. 8. These matrices are unitary:
Uo*UoT = I2, Ur*U1T = I2, U2*U2T = Iz, Us*UsT = Iz, where 12 is the identity matrix.

-1,0 0,-1
0,1]; Us=1]-1,0

Fig. 8. Unitary (2*2)-matrices Uo, U1, U2 and Us.

)

1,0
Uo=10,1 |; Ui=

The set of these 4 matrices is also closed under multiplication. Fig. 9
shows their multiplication table, which coincides with the multiplication table of
split-quaternions by J. Cockle by analogy with the case of unitary (4*4)-matrices
in Figs. 6 and 7.

Uo Uo U1 UZ U3

U1 U1 -Uo U3 'UZ

Uz Uz -U3 Uo 'Ul

U3 U3 U2 Ul UO
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Fig. 9. The multiplication table of unitary (2*2)- matrices Uo, U1, U2 and U3
from Fig. 8. It coincides with the multiplication table of split-
quaternions by J. Cockle reproduced in Fig. 8.

It should be noted that unitary matrices Uo, Ui, U2 and Us (Fig. 8) have
relations with quantum gates used widely in quantum computing [Nielsen,
Chuang, 2010, p. XXX].

Exponentiation of unitary matrices Ui, U2 and Us into ordinary integer
powers n = 2, 3, 4,... gives cyclic groups of matrices with the following periods:
Upn = Uint4, Uzn = Uzn*2,  Usn = Usm*2. In this article we specially note a
connection of cyclic groups with algebraic properties of genetic unitary matrices
since such cyclic groups can be useful for modeling many inherited cyclic
processes in physiology of organisms.

Exponentiation of each of unitary matrices Uo, U1, U2 and Us into tensor
(or Kronecker) powers k = 2, 3, 4, ... generates corresponding tensor families of
unitary matrices: Uo®), U1, U2(K) and Us®) where (k) means the tensor power.

4. The complementarity of sparse unitary matrices in genetics
and the cruciform principle in inherited sensory informatics

This Section considers the cruciform character of the block black-and-white
mosaic of the (4*4)-matrix R4 of 16 doublets, which reflects essential
peculiarities of the degeneracy of the genetic code (Figs. 4 and 5). One can note
that genetically inherited constructions of physiological sensory-motor systems
demonstrate similar cruciform structures. For example, the connection between
the hemispheres of human brain and the halves of a human body possesses the
similar cruciform character: the left hemisphere serves the right half of the body
and the right hemisphere (Fig. 10) [Annett, 1985, 1992; Gazzaniga, 1995; Hellige,
1993]. The system of optic cranial nerves from two eyes possesses the cruciform
structures as well: the optic nerves transfer information about the right half of
field of vision into the left hemisphere of brain, and information about the left
half of field of vision into the right hemisphere. The same is held true for the
hearing system [Penrose, 1989, Chapter 9]. In particular, due to existence of such
inter-complementary right and left parts in genetically inherited visual and
hearing systems, a person has a stereoscopic perception of his environment.
Now we show that a similar cruciform character, which is represented in the
mosaic matrix of 16 doublets (Figs. 4, 5, 11), is connected with the following fact:
this mosaic matrix is a sum of two sparse unitary matrices that are algebraic
complementary to each other (they are mirror-anti-symmetric to each other by
analogy with the left and right halves of a human body) and that can be
considered as the right and left parts of the cruciform matrix Ra.
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Fig. 10. The cruciform schemes of some morpho-functional structures in human
organism. On the left side: the cruciform connections of brain hemispheres with
the left and the right halves of a human body. In the right side: the cruciform
structure of optic nerves from eyes in brain.

One can suppose that this inherited cruciform character of sensory-motor
systems is connected with genetic cruciform structures that include, in
particular, the genetic matrices R4+ and Rs [Petoukhov, 2008; Petoukhov, He,
2009]. Taking into account the quantum-informational character of molecular-
genetic systems and also an important role of unitary matrices in quantum
mechanics, it is interesting that - as we have discovered - these genetic matrices
R4 and Rs are connected with inter-complementary sparse unitary matrices
described below.

Let us begin with a consideration of the genetic matrix R4 of 16 doublets.
We reveal that its cruciform character is connected with a pair of two sparse
unitary matrices, which are mirror-anti-symmetric to each other. Fig. 11 shows
that the genetic cruciform matrix R4 is the sum of two sparse matrices Rar and
Rs4r: R4 = Rar+RaL. These two sparse matrices are inter-complementary in an
algebraic sense since they mirror-anti-symmetric to each other and they jointly
form the non-sparse matrix R4. Using the analogy with our stereoscopic vision by
means of two - left and right - eyes, we conditionally call the pair of
complementary matrices Rar and RaL as the stereoscopic pair (or briefly, the
stereo-pair) where the matrix Rar is called the right stereo-matrix and the matrix
RaL is called the left stereo-matrix.

112 1]-1]of o olof1]
i EE 1laJol o]l + JolofJ1] 1
a1l 2] = ]o 1] -1 1]1]o] o

alafla| 1 ooz 2 al1fof o

Fig. 11. The cruciform matrix R4 is the sum of two sparse matrices Rar and Rai,
non-zero entries of which coincide with non-zero entries in corresponding
quadrants along the main diagonal and the secondary diagonal of the matrix Ra.

Taking with the factor 2-05, each of these stereo-matrices Rs4r and RaL is
the unitary matrix:

(205*Rap)*(205*Rer)T=;  (205*Ra)*(205*Ra)T=1  (3)

Under actions of unitary matrices 2-05*Rsr and 2-05*R4y, an arbitrary
4-dimensional vector X = [Xo, X1, X2, x3] is transformed by the following manner:
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(2-05%R4r)*X T = 2-05%[xX0-X1, X0+X1, X2-X3, X2+X3]T
(2-05%¥RaL)*XT = 2-05%[x2-X3, -X2-X3, X0-X1, -X0-X1]T (4)

In each of unitary matrices 2-0-5*Rsr and 2-0-5*Rasi, the set of its rows
contains a complete orthogonal system of functions. The multiplication of each of
these sparse unitary matrices with an arbitrary 4-dimensional vector Y leads to a
spectral representation Z of the vector Y on the basis of the complete orthogonal
system of functions in rows of the unitary matrix. For example, in the case of the
vector Y = [5, -3, 7, 9], its spectral representation Zr on the basis of the system of
functions in rows of the unitary matrix 2-05*R4r is the following (YT means the
transposition of the vector Y):

Zr= (2-05*R4r)*YT= 2:05%[8, 2, -2, 16]T (5)

This spectral representation Zr means that the vector Y is the sum of the
following 4 basic vectors:

e the vector 2-05*[1,-1,0,0] from the first row of the matrix 2-0-5*Rasr (Fig. 11)
multiplied by the factor 2-05*8;

e the vector 2-05%[1,1,0,0] from the second row of 2-0-5*R4r multiplied by the
factor 2-0-5*2;

e the vector 2-95%[0,0,1,-1] from the third row of 2-05*R4r multiplied by the
factor -2-05*%2;

e the vector 2:05*%[0,0,1,1] from the fourth row of 2-0-5*R4r multiplied by the
factor 2-05*16.

Really, 2-:05%8*(2:05%[1,-1,0,0]) + 2-05%2*(2-05%[1,1,0,0]) - 2-05%2*(2-05*%[0,0,1,-1])
+ 2:05%16*%(2-05%[0,0,1,1]) = [5,-3,7,9] = Y.

The multiplication of the spectral vector ZrT with unitary transposed
matrix 2-05*R4rT restores automatically the initial vector Y: ZrT*(2:05*R4rT) =
[5,-3,7,9].

Turning to the left stereo-matrix R4, one can check that the action of the
unitary matrix 2-05*R4L on the same vector Y= [5, -3, 7, 9] leads to the following
spectral representation Z1. of the vector Y on the basis of orthogonal functions in
its rows:

Z1= (2:05*R4p)*YT = 2:05%[-2, -16, 8, -2]T (6)

The multiplication of the spectral vector ZLT with unitary transposed
matrix 2-05*R4.T restores automatically the initial vector Y: ZLT*(2-05%Rq4T) =
[5, -3, 7, 9]. Such spectral representations (5, 6) of vector-signals can be used for
noise-immunity coding of information by some analogies with known noise-
immunity coding on the basis of Hadamard matrices in digital signal processing.

Exponentiation of the unitary matrix 2-05*R4y into integer powers
generates a cyclic group with the period 2: (2-0-5*Ra)" = (2-05*Ra)?*2 (the matrix
R4 specifies the transformation of reflection in the informational 4-dimensional
space). In contrast, exponentiation of the unitary matrix 2-05*R4r in integer
powers generates a cyclic group with the period 8: (2:05%R4r)" = (2:05%R4r)n+8
(the matrix 2-05*R4r specifies the transformation of turn in the informational
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4-dimensional space). Fig. 12 shows transformations of the vector

X = [Xo, X1, X2, X3] under actions of the matrix (2-0-5*Ra4gr)n.

(2-05%R4r)*XT = (2-05*Rar)S *X 1=
2-0-5%[x0-X1, X0+X1, X2-X3, X2+X3]T 270-%[X1-Xo, -X0-X1, X3-X2, -X2-Xs]"
(2-05%R4r)? *XT = [-X1, X0, -X3, X2]T (2-05%R4Rr)6 *XT = [X1, -X0, X3, -x2]T
(2-05*R4R)3 *XT = (2-05*R4R)7 *XT =
2-0-5*[-x0-X1, X0-X1, -X2-X3, X2-X3]T 2°05%[x0+X1, X1-X0, X2+X3, X3-X2|T
(2-05%Rar)* *XT = [-Xo, -X1, -X2, -X3]T (2-0-5%R4r)8 *XT = [ X0, X1, X2, X3]T
(2-05%Rar)? *XT =
2°05%[x0-X1, X0+X1, X2-X3, X2+X3]T

Fig. 12. Transformations of the vector X = [x0, X1, X2, X3] under actions of
the matrix (2-0-5*R4r)".

Another important difference between unitary matrices 2-05*R4r and
2-05%Ryy, is the following: the matrix 2-05*R41, is symmetric and correspondingly
all its eigenvalues are real. By contrast, the matrix 2-0-5*R4r is asymmetric and
has complex eigenvalues.

The multiplication of the stereo-matrices Rsr and Ra4. are non-
commutative: R4r*RaL # Rar*R4r. Their commutator R4r*RaL - RaL*R4r taken with
the factor 805 is the unitary matrix: (R4r*RaL-R4.*R4r)*(R4r*RaL-R4L.*R4r)T/8 = L.

In relation to each other, the right and left stereo-matrices R4r and R4 are
amicable and disjoint (these algebraic notions are used in different applications
of matrices). In linear algebra, by definition, two square matrices M and N of
order n are said to be amicable if MNT = NMT (see, for example, [Seberry,
Wysocki, Wysocki, 2005]). Also by definition, two {0,+1} matrices M and N of the
same size are said to be disjoint if for all of their positions the following rule is
true: if M has a nonzero entry at the (i, j)-th position then N has zero entry at the
same position and vice versa, i.e.,, M*N=0.

Stereo-matrices Rsr and Rsv taken in tensor power k = 1, 2, 3,... defines
tensor families of matrices R«r®) and RaL®) of order 4k, members of which satisfy
the condition (6):

R4r0*(R4rM)T = [s*4K/2 and Rap*(Ra ()T = [s*4k/2 | (7)

where I;s is the identity matrix of order 4k.

The second tensor power of (4*4)-matrices Rar and Rai, that is (16*16)-
matrices R4r(2) and RsL(?), can be written in line with the block algorithms in Fig.
13. (64*64)-matrices R4r(® and R4L(3) can be similarly generated from Rsr(?) and
R4L() correspondingly.

Rk |-Rar |0 0 0 0 R4r | -Rar
Rsr@ = | Rsr | Rar 0 0 ; RaL® = 0 0 | -Rsr | -Rar

0 0 Rsr | -Rar Rsr | -Rar 0 0

0 0 R4r | Rar -Rar | -R4r 0 0

Fig. 13. The algorithmic construction of the second tensor power of genetic
stereo-matrices Rar and Rai from Fig. 11.
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Genetic stereo-matrices R4r® and R4.® have some analogies with
Hadamard matrices. By definition, Hadamard matrices Hn of order n is a square
matrix with entries +1 or -1 that satisfies the condition (8):

HnHnT = nlx ) (8)

where I is the n*n identity matrix. The mentioned analogies allow considering
applications of stereo-matrices Rar® and R4 in quantum informatics, noise-
immune coding and recovering information in the presence of noise and
interferences, and in some other fields in a parallel with traditional using
Hadamard matrices there (a web search of bibliography of different applications
of Hadamard matrices gives 44 thousands of publications in the period 1978-
2005 years [Seberry, Wysocki, Wysocki, 2005]).

As we can judge, stereo-matrices R4r and R4 didn't meet previously in
mathematical natural sciences. They were discovered in the analysis of
molecular-genetic structures and they seem to be new interesting mathematical
tools for genetic researches, quantum informatics and some other areas. The pair
of complementary stereo-matrices Rsr and Rs. gives new materials to
discussions existing from the ancient time about a role of binary principles "Yin-
Yang", "left-right", "male-female”, "odd-even" in organization of Nature (see, for
example, a collection of facts in the book [Ivanov, 1978]).

Exponentiation of each of genetic unitary (4*4)-matrices 2-05*R4r and
2-05*Ryy, in tensor (Kronecker) powers k = 2, 3, 4, ... gives new tensor families of
unitary matrices (2-05*R4r)® and (2-05*%R4)®) of order 4% with complete
orthogonal systems of functions in their rows and columns. As known,
exponentiation of matrices in tensor power can generate matrices with fractal
structures [Gazale, 1999]. Fig. 14 shows examples of fractal structures inside
tensor families of matrices (2-05*R4r)®) and (2-0-5*Rar)®),

2-05*R4R

2-05%R4g)(2)

2-05Ryp) )

(2-05%Rqr)B®)

Fig. 14. Initial members of tensor families of matrices (2-05*R4r)® and
(2-05*R41)®) having fractal structures. Entries +1, -1 and 0 are
marked by yellow, blue and green correspondingly.


http://dx.doi.org/10.20944/preprints201804.0131.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 April 2018 d0i:10.20944/preprints201804.0131.v1

Let us note additionally that described decompositions of the matrix R4 of
16 doublets (Figs. 4, 6, 11) into sparse unitary matrices were not arbitrary but
they were based on objective binary-oppositional indicators of nitrogenous
bases C, A, G, A and T/U (Fig. 1) and on the logical operation of modulo-2
addition. One can check that these decompositions were constructed in line with
binary numbers in brackets inside matrix cells (Fig. 4). In each cell, such binary
number is equal to a sum of binary numberings of the row and the column of the
cell on the basis of modulo-2 addition. For example, the cell with the triplet CAG
is located in the row 001 and in the column 011. The operation of modulo-2
addition gives their sum: 0016011 = 001; this binary number is shown in
brackets in the cell with the triplet CAG. Such type of numeration of cells in
matrices, whose rows and columns are numerated by means of dyadic groups of
binary numbers, is known in theory of processing digital signals as a "dyadic-
shift numeration" [Ahmed, Rao, 1975; Harmuth, 1989; Petoukhov, He, 2009].
Matrices with such numeration of their cells are called dyadic-shift matrices. One
can see that such dyadic-shift numeration of cells of the (4*4)-matrix R4 of 16
doublets (Fig. 4, left) divides the set of 16 doublets into 4 subsets with 4 doublets
in each: the subset of cells with binary numberings 00 contains doublets CC, CG,
GC and GG; the subset of cells with numberings 01 contains CA, CT, GA and GT;
the subset of cells with numberings 10 contains AC, AG, TC and TG; the subset of
cells with numberings 11 contains AA, AT, TA and TT. Below we use similar
dyadic-shift decompositions for the (8*8)-matrix Rs of 64 triplets from Fig. 5
with non-trivial results. As known, if any system of elements demonstrates its
connection with dyadic shifts, it indicates that the structural organization of its
system is related to the logic of modulo-2 addition. Correspondingly the
structural organization of the genetic system is related to the logic of modulo-2
addition.

One should note that each of two stereo-matrices R4r and Raw (Fig. 11) is
the sum of two unitary matrices shown in Fig. 15: R4r = Ko+K1, Rar = K2+Ks.
Really, Ko*KoT =I4, K1*K1T =I4, K2*K2T =I4 and K3s*KsT =I4, where 14 is the identity
matrix of order 4 and the matrix Ko resembles the well-known quantum gate
“controlled-NOT”: [1,0,0,0;0,1,0,0;0,0,0, 1; 0, 0, 1, 0] [Nielsen, Chuang, 2010,
p. XXXI].

Rows and columns of sparse matrices Ko, K1, K2 and K3 correspond to
complete orthogonal systems of functions. Below we will also meet other
examples that genetic unitary matrices with block structures are constructed as
sums of more simple unitary matrices.

1100} o0 110 Jo |o ol-1]1o0o]o0
R4r = 1]1]o0] o0 = 1 J0 |0 + 1/ o0ofo]oO =Ko+ K1
olofl1| o Jo -1 ojloflz1]o0
olofJ1]|1 0 |0 110 olof]o |1
RaL = ojlof1] 1 = Jo |0 110 + Jo (o Jo -1
olofl1]| 0o Jo -1 0 |0 110 =Ky + K3
1/-110] o 1 0 1 0
11101 0 110 Jo |o 0 110 |o
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Fig. 15. Each of stereo-matrices R4r and Rav (Fig. 11) is the sum of two unitary
matrices: Rsr = Ko+K1, RaL = K2+Ks3, where Ko, K1, K2 and K3 are unitary matrices.

Exponentiations of genetic unitary (4*4)-matrices Ko, Ki, K2 and K3
(Fig. 15) in tensor (Kronecker) powers n = 2, 3, 4, ... give tensor families of
unitary matrices Ko™, K1, K2(M and Ks® of order 4" with complete orthogonal
systems of functions in their rows and columns. Fig. 16 shows initial members of
these tensor families with their fractal structures, which are constituent parts of
the fractal structures in Fig. 14.

Ko Ko(2) Ko(3) Kz K2(2)

K2()

K@ Ki®) K®)

Fig. 16. Initial members of tensor families of unitary matrices Ko™, K1®, K2
and K3(® having fractal structures and complete orthogonal systems of
functions in their rows and columns. Entries +1, -1 and 0 are marked by
yellow, blue and green correspondingly.

4. The 8 sparse unitary matrices in the dyadic-shift decomposition
of genetic matrix Rs of 64 triplets

Turn now to the algebraic analysis of the (8*8)-matrix Rs (Fig. 5). Fig. 17
shows the dyadic-shift decomposition of the matrix Rs into 8 sparse unitary
matrices: Rg = Rso + Rs1 + Rs2 + Rs3 + Rss + Rss + Rss + Ray.

One can note that the set of 8 unitary genetic matrices Rso, Rs1, Rs2, Rss,
Rs4, Rss, Rse, Rs7 (Fig. 17) also contains the following algebraic complementarities
in corresponding pairs of these matrices: unitary matrices Rso and Rs7 form the
first pair of the algebraic complementarity since they are transformed into each
other by mirror reflection relative to the average vertical line with inversion of
signs of their non-zero entries (the mirror-anti-symmetry). The same is true for
the pairs of unitary matrices Rs1 and Rse, Rs2 and Rss, Re3z and Rss, which form the
other pairs with their similar algebraic complementarity of the mirror-anti-
symmetric type.

10000000 01000000 00-10000 O 00 0-10000
01000000 10000000 000-1000 O 00-1 00000
00100000 00010000 1000000 0 01 0 00000
Rg= | 00010000 00100000 01000000 +/10 0 00000
00001000 00000100 000000-1 0 00 0 0000-1
00000100 00001000 000000 0-1 00 0 000-10
00000010 00000001 000010 0 O 00 0 001 00
00000001 00000010 000001 00 00 0 010 00O
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00001000 00000100 000000-10 0000000-1
00000100 00001000 0000000O0-1 000000-10
000000-10 0000000-1 0000-1000 00000-100
0000000-1 000000-10 00000-100 0000-1000
+ 10000000 +/01000000 |+ 00200000 |+{000-10000
01000000 10000000 000-10000 00-100000
00-100000 000-10000 -10000000 0-1000000
000-10000 00-100000 0-1000000 -10000000

Fig. 17. The dyadic-shift decomposition of the matrix Rs into 8 sparse
unitary matrices: Rs = Rso + Rs1 + Rs2 + Rs3 + Rs4 + Rss + Rse + Rs7.

Each of these 8 sparse matrices is unitary: Rso*Rso” = I, Rg1*Rs1T = 1,
Rg2*Rs2T = I, Re3*Rs3T = I, Rea*Rsg4T = I, Rgs*RssT = I, Res*RseT = I, Rg7*Re7T = 1.

Determinants of all these 8 unitary matrices are equal to 1; by this reason
they belong to the type of so called special unitary matrices. The special unitary
matrices are closed under multiplication and the inverse operation. They form
the special unitary group
(https://en.wikipedia.org/wiki/Special_unitary_group). The multiplication table
(Fig. 18) of this closed set of 8 unitary matrices coincides with the multiplication
table of the algebra of bi-split-quaternions of Cockle.

* Rgo|Rs1|Rs2 | Rs3 |Rs4 | Rss | Rss | Rg7

RsoJRso | Rs1 | Rs2 | Rs3 [Rss | Rss | Rss | Rs7

Rs1JRs1|Rso|Rs3 |Rs2 [Rss | Rg4 | Rg7 | Rse

Rs2 | Rsz | Rs3 | -Rso | -Rs1 | -Rss | -Rs7 | Rs4 | Rss

Rs3 | Rs3 | Rsz | -Rs1 | -Rso | -Rs7 | -Rss | Rss | Rsa

Rg4JRss | Rss | Rge | Rg7 | Rgo | Rg1 | Rsz2 | Rs3

RssJRss | Rsa | Rs7 | Rss | Re1 | Rso | Rs3 | Rsz

Rss | Rse | R37 | -Rs4 | -Rss | -Rs2 | -Rg3 | Rgo | Rs1

Rg7 ] Rs7 | Rse | -Rss | -Rs4 | -Rs3 | -Rs2 | Rs1 | Rso

Fig. 18. The multiplication table of 8 genetic unitary matrices Rso, Rs1, Rs2,
Rs3, Rss, Rss, Rss, Re7 from Fig. 17 coincides with the multiplication table of the
algebra of bi-split-quaternions of Cockle.

The set of these 8 sparse matrices is divided into 2 equal subsets with 4
matrices in each. The first subset contains matrices Rso, Rs1, Rs2, Rs3, whose non-
zero entries belong only to two quadrants along the main diagonal of the matrix
Rs (in the symbolic matrix of triplets in Fig. 4, all triplets in these two quadrants
begin with letters C or G). In this subset two matrices Rso and Rs1 are symmetric
and two other matrices Rs2 and Rs3 are asymmetric. The second subset contains
matrices Rs4, Rss, Rss, Rg7, whose non-zero entries belong only to two quadrants
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along the second diagonal of the matrix Rs (in the symbolic matrix of triplets in
Fig. 4, all triplets in these two quadrants begin with letters A or T). All these 4
matrices are symmetric and correspondingly have real eigenvalues.

The exponentiation of the sum of matrices Rso, Rs1, Rszand Rs3 (Fig. 17)
taken with the factor 8905 defines a cyclic group with its period 8:
(8-05*(Rgo+Rs1+Rs2+Rs3) )" = (8-0-5*(Rso+Rs1+Rs2+Rs3))n+8,

The exponentiation of the sum of matrices Rs4, Rss, Rgs and Rs7 (Fig. 17)
taken with the factor 80> defines a cyclic group with its period 2:
(8-05*(Rsa+Rss+Rse+Rs7))" = (805*(Rga+Rss+ Rse+Rs7))*8, Correspondingly this
matrix 805*%(Rgs+Rss+Rss+Rs7) defines transformation of reflection in the
8-dimensional informational space.

One should note that these two subsets of 8 unitary genetic matrices have
some relations to evolution changes of the genetic code. Modern science knows
more than 20 variants (or dialects) of the genetic code represented on website
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi. As this website
shows, these dialects differ from the Standard Code only by the code meanings of
a small number of triplets. For example, in the Standard Code the triplet TAG
encodes the amino acid Leu but in the Chlorophycean Mitochondrial Code it
serves as the stop-codon. One can check that in all dialects without exception all
stop-codons have their first letter A or T; practically all initiative codons also
begin with the letters A or T. Beside this, practically all triplets with changed
coding meaning are triplets with the first letters A or T in them; such triplets
belong to two quadrants along the second diagonal of the matrix in Fig. 4. All
entries of these two quadrants in the corresponding numeric matrix in Fig. 5
belong to the second subset of symmetric unitary matrices Rss, Rss, Rgs and Rs7
(Fig. 17). A small exception is the case of two genetic codes of yeast (the Yeast
Mitochondrial Code and the Alternative Yeast Nuclear Code), in which the
triplets CUU, CUC, CUA and CUG, having the first letter C, change their coding
meaning: in the Standard Code, all these 4 triplets encode the amino acid Leu but
in the Yeast Mitochondrial Code they encode the amino acid Thr. These 4 triplets
having strong roots are located in the upper quadrant of the matrix of triplets in
Fig. 4, and their representations by entries +1 in the numeric matrix Rs belong to
the unitary matrices Rsz and Rs3 (Fig. 17).

The genetic (8*8)-matrix Rs can be represented via unitary genetic (2*2)-
matrices Uo, U1, Uz and Us from Fig. 8:

Rs = Uo@®@Uo@Uo + Uo@®@Uo@(-Us) + Us@Q@U1QUo + UoQU1Q (-Us) +
Us@U2Uo + Us@@U2(-Us) + Us®(-U3s)Q@Uo + Us®(-U3)R(-Us) (9)

Each of the 8 summands on the right-hand side of the expression (9)
coincides with one of the above unitary matrices Rso, Rs1, Rs2, Rs3, Rss, Rss, Rae,
Rs7 (Fig. 17).

5. Connections among amino acids and triplets from the standpoint of
unitary genetic matrices

Our results about connections of the genetic (8*8)-matrix Rs (Fig. 5) with unitary
matrices give additional approaches to study symmetric relations between the
set of 64 triplets and the set of 20 amino acids and stop-codons encoded by
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triplets. Fig. 19 reproduces the symbolic matrix of 64 triplets from Fig. 4 but with
the additional indication of amino acids and stop-codons in the Vertebrate
Mitochondrial Code; this dialect is the most symmetrical among all dialects of the
genetic code in line with known data of the  website
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi. One can see in Figs.
4, 5 and 18 that the genetic symbolic matrix of 64 triplets and its corresponding
numeric representation Rs (Fig. 5) have pairs of adjacent rows 0 and 1, 2 and 3,
4 and 5, 6 and 7, whose mosaics are identical inside each of pairs. Moreover, both
rows inside each of these pairs have the identical list of amino acids and stop-
codons marked by identical colors (Fig. 19).

o000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

000 CCC | CCA | CAC | CAA | ACC | ACA | AAC | AAA

Pro | Pro | His | GIn | Thr | Thr | Asn | Lys
001 | CCT | CCG | CAT | CAG | ACT | ACG | AAT | AAG
Pro | Pro | His | Gln | Thr | Thr | Asn | Lys
010 | €TC | CTA | CGC | CGA | ATC | ATA | AGC | AGA
Leu | Leu | Arg | Arg | lle | Met | Ser | Stop
011 | €TT | CTG | CGT | CGG | ATT | ATG | AGT | AGG
Leu | Leu | Arg | Arg | lle | Met | Ser | Stop

TCC | TCA | TAC | TAA | GCC | GCA | GAC | GAA

100 Ser | Ser | Tyr | Stop | Ala | Ala | Asp | Glu
101 TCT | TCG | TAT | TAG | GCT | GCG | GAT | GAG
Ser | Ser | Tyr | Stop | Ala | Ala | Asp | Glu
110 TTC | TTA | TGC | TGA | GTC | GTA | GGC | GGA
Phe | Leu | Cys | Trp j 'Val |"Val [ Gly | Gly
111 TTT | TTG | TGT | TGG | GTT | GTG | GGT | GGG

Phe | Leu | Cys | Trp | Val |["Val [ Gly | Gly

Fig. 19. The correspondence among 64 triplets and 20 amino acids and
stop-codons in the case of the Vertebrate Mitochondrial Code. Both rows inside
each of pairs of adjacent rows 0-1, 2-3, 4-5, 6-7 with their even-odd numberings
have identical black-and-white mosaics (reproduced in the numeric matrix Rs in
Fig. 5) and also identical lists of amino acids and stop-codons (marked with the
same colors).

The described decomposition (Fig. 17) of the numeric matrix Rs of triplets
into sums of unitary matrices is accompanied by a separation of the complete set
of 64 triplets into corresponding subsets of triplets. This separation of the set of
64 triplets is accompanied by a relevant separation of the complete set of 20
amino acids and stop-codons into appropriate subsets taking into account the
code meaning of each of triplets. For example, the matrix Rs can be represented
in the following form using the decomposition in Fig. 17:

Rs = (Rso + Rsz2) + (Rs1 + Rs3) + (Rs4 + Rss) + (Rss + Rs7) (10)

Here each of 4 expressions in brackets taken with the factor 2-05 is a unitary
matrix:
0.5*(Rso+Rs2)(Rso+Rs2)T=1Is; 0.5*(Rs1+Rs3)(Rs1+Rs3)T =Is;
0.5*%(Rs4+Rs6)(Rs4+Rs6)T = Is; 0.5*(Rss+Rs7)(Rss+Rs7)T = Is (11)
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where Ig is the identity matrix of order 8.
Fig. 20 shows these 4 inter-complementary matrices (Rso+Rsz), (Rs1+Rs3),
(Rss+Rss) and (Rss+Rs7) whose sum is equal to the matrix Rs from Fig. 5.

10-10|{0000 010-1|/0000
010-1|/0000 10-10|{0000
1010|0000 0101|0000
Rgo+Rg2= 101 01 0000 |; Rg1+Rg3=]1010 (0000
0000 |10-10 0000(010-1
0000 |010-1 0000 (|10-10
0000|1010 0000|0101
0000|0101 0000|1010
0000|10-10 0000 |010-1
0000|]010-1 0000 |10-10
0000|-10-10 0000 |0-10-1
Rgs+Rgs=] 00 00| 0-1 0-1]; Rss+Rgz=J 0000 [-10-10
10-10{ 0000 010-1{0000
010-1{0000 10-10[0000
-10-10/ 0000 0-10-1{0 000
0-10-1{ 0000 -10-10[{ 0000

Fig. 20. The result of the decomposition of the genetic matrix Rs (Fig. 5) into
4 inter-complementary matrices (Rso+Rsz), (Rs1+Rs3), (Rsa+Rse) and
(Rss+Rs7), which, taken with the factor 2-05, are unitary matrices with
their own complete systems of orthogonal functions. Matrices Rso, Rs1,
Rs2, Rs3, Rs4, Rss, Rse, Re7 are shown in Fig. 17.

Rows and columns of each of the 4 unitary matrices 20-5%(Rso+Rsz),
2-05%(Rg1+Rs3), 2°05%(Rss+Rss) and 2-0-5*(Rss+Rs7) represent complete systems of
orthogonal functions. By this reason, these 4 matrices can be used for a
decomposition of an arbitrary 8-dimensional vector V=[Xo, X1, X2, X3, X4, X5, X6, X7]
on the basis of orthogonal functions of each of these orthogonal systems. By this
way, an 8-dimensional vector V receives different spectral representations in a
general case. The multiplication of any of such spectral representations of the
vector V with correspondence transposed unitary matrix restores the initial
vector V. Such spectral representations of vector-signals can be used for noise-
immunity coding of information by some analogies with known noise-immunity
coding on the basis of Hadamard matrices in digital signal processing.

Determinants of all the unitary matrices 2-05*%(Rgo+Rs2), 20-5%(Rs1+Rs3),
2-05*(Rgs+Rss) and 2-05*(Rgs+Rs7) are equal to 1. Some multiplications of the
matrices Pro, Pr1, PLo and Pr1 each with other are commutative and others are
non-commutative (12):
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(Rso+Rs2)(Rs1+Rs3) = (Rs1+Rs3)(Rso+Rs2);
(Rs4+Rs6)(Rss+Rs7) = (Rss+Rs7) (Rs4+Rss);
(Rso+Rs2)(Rss+Rs6) # (Rsa+Rse)(Rso+Rs2) ;
(Rso+Rs2)(Rss+Rs7) # (Rss+Rs7)(Rso+Rs2);
(Rs1+Rs3)(Rs4+Rss) # (Rs4+Rss)(Rs1+Rs3);
(Rs1+Rs3)(Rss+Rs7) # (Rss+Rs7)(Rs1+Rs3) (12)

Exponentiation of unitary matrices 2-0-5*(Rso+Rsz) and 2-05*(Rs1+Rs3)
defines cyclic groups with their period 8: (2-05*(Rso+Rs2))" = (2:0-5%(Rso+Rs2))"*8;
(2-05*(Rg1+Rs3))n = (205*(Rs1+Rs3))"*8. Exponentiation of unitary matrices
2-05*(Rgs+Rss) and 2-0-5*(Rss+Rs7) defines cyclic groups with their period 2:
(2-05%(Rgsa+Rss) )" = (2-05*%(Rsa+Rss))+2; (2:0-5%(Res+Rs7) )" = (2:0-5%(Rgs+Rs7))n*2,

2-05*(Rgo+Rs2) (2:9°*(Rso+Rs2)) )

(2:95*(Rso+Rs2))

(2-05*(Rg4+Rs6))3)

Fig. 21. Initial members of tensor families of unitary matrices
(2-05*%(Rgo+Rs2)) M), (2-0-5*(Rs1+Rs3)) ), (2-05*(Rss+Rss)) ) and
(2-05*(Rss+Rs7))® having fractal structures and complete orthogonal
systems of functions. Entries +2-05,-2-05 and 0 are marked by yellow,
blue and green correspondingly.

Exponentiation of genetic unitary (8*8)-matrices 20-5%(Rso+Rs2),
205%(Rg1+Rs3), 205*(Rss4+Rss) and 2-0-5*(Rgs+Rs7) in tensor (Kronecker) powers
k =2, 3, 4, ... gives tensor families of new unitary matrices of order 8xwith new
complete systems of orthogonal functions: (2-0-5*(Rgo+Rsz2))®), (2-0-5*(Rg1+Rs3))®),
(2-05*%(Rsa+Rs6))® and (2-05*(Rss+Rs7)) (Fig. 21).
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The 4 matrices (Rso+Rsz), (Rs1+Rs3), (Rs4+Rss) and (Rss+Rs7) are pairwise
amicable: (Rso+Rs2)(Rs1+Rs3)T = (Rs1+Rs3)(Rso+Rs2)T;  (Rso+Rs2)(Rs4+Rse)T =

(Rs4+Rs6)(Rso+Rs2)T; (Rso+Rs2)(Rss+Rs7)T = (Rss+Rs7)(Rso+Rs2)T;
(Rs1+Rs3)(Rs4+Rss)T = (Rss+Rss)(Rs1+Rs3)T; (Rs1+Rs3)(Rss+Rs7)T =
(Rss+Rs7)(Rs1+Rs3)T.

Matrices (Rso+Rsz), (Rs1+Rs3), (Rss+Rss) and (Rss+Rs7) taken in tensor
powers k = 1, 2, 3,... define corresponding tensor families whose matrices satisfy
the condition (13):

(Rso+Rs2) W*((Reo+Rs2) W) T =Iw*4k/2, (Rs1+Rs3)®*((Rs1+Rs3)®)T =[w*4k/2,
(Rs4+Rs6) K*((Rsa+Rse) K))T= [w*4k/2, (Rgs+Rs7)K*((Res+Rs7)K)T=Iw*4k/2  (13)

where lwis the identity matrix of order 8k.

Now let us comparise the distribution of amino acids and stop-codons in
the symbolic matrix in Fig. 19 with the distribution of non-zero entries in
numeric matrices Rso+Rs2, Rsi+Rs3, Rss+Rss and Rss+Rs7 (Fig. 20). The
comparison shows that the phenomenon of pairwise distributions of amino acids
and stop-codons in adjacent rows 0-1, 2-3, 4-5 and 6-7 of the genetic matrix in
Fig. 19 is connected with the set of 4 complementary unitary matrices Rso+Rsz,
Rs1+Rs3, Rss+Rss and Rss+Rs7. More precisely, these 4 matrices define the
symmetric separations of the set of 64 triplets and the set of 20 amino acids and
stop-codons into the following subsets:

e the set of non-zero entries in the matrix Rso+Rs2 corresponds to the set of
10 amino acids Pro, His, Gln, Leu, Arg, Ala, Asp, Glu, Val, Gly, which are
encoded by the set of 16 triplets - CCC, CAC, CCG, CAG, CTC, CGC, CTG,
CGG, GCC, GAC, GCG, GAG, GTC, GGC, GTG and GGG;

e the set of non-zero entries in the matrix Rs1+Rs3 corresponds to the same
set of 10 amino acids Pro, His, Gln, Leu, Arg, Ala, Asp, Glu, Val, Gly, which
are encoded by another set of 16 triplets - CCA, CAA, CCT, CAT, CTA, CGA,
CTT, CGT, GCA, GAA, GCT, GAT, GTA, GGA, GTT, GGT;

e the set of non-zero entries in the matrix Rs4+Rss corresponds to the
following set of amino acids and stop-codons: Thr, Asn, Lys, Ile, Met, Ser,
Tyr, Phe, Leu, Cys, Trp and 2 stop-codons, which are encoded by the set of
16 triplets — ACC, AAC, ACG, AAG, ATC, AGC, ATG, AGG, TCC, TAC, TCG,
TAG, TTC, TGC, TTG and TGG;

e the set of non-zero entries in the matrix Rss+Rs7 corresponds to the same
set of amino acids and stop-codons: Thr, Asn, Lys, lle, Met, Ser, Tyr, Phe,
Leu, Cys, Trp and 2 stop-codons, which are encoded by another set of 16
triplets - ACA, AAA, ACG, AAG, ATC, AGC, ATG, AGG, TCA, TAA, TCT, TAT,
TTA, TGA, TTT and TGT.

The 32 triplets in both matrices Rso+Rs2 and Rs1+Rs3 begin with letters C
or G and define the content of two quadrants along the main diagonal of the
symbolic matrix in Figs. 2, 19. Other 32 triplets in both matrices Rss+Rss and
Rss+Rs7 begin with letters Aand T and define the content of two quadrants along
the secondary diagonal of the same matrix. It was mentioned above that in all
dialects of the genetic code without exception all stop-codons have their first
letters A or T; practically all initiative codons also begin with the letters A or T
(so they are connected with unitary matrices 2-05*(Rss+Rss) and 2-0-5*(Rgs+Rs7)).
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Beside this, practically all triplets with changed coding meaning in different
dialects are also triplets with the first letters A or T in them and they are
connected with the same unitary matrices.

One can note that our study belongs to the field of applications of
algebraic methods and notions of quantum mechanics for modeling molecular-
genetic structures where works of many authors exist, for example, the following
[Dragovich, Dragovich, 2007; Dragovich, Khrennikov, Misic, 2017; Fimmel,
Danielli, Striingmann, 2013; Fimmel, Striingmann, 2016; Igamberdiev, 1993; i,
2015, 2017; Hu, Petoukhov, 2017; Hu, Petoukhov, Petukhova, 2017; Matsuno,
1999, 2003, 2015; Matsuno, Paton, 2000; Moon Ho Lee et al, 2017; Pellionis,
2008; Pellionisz et al, 2012; Penrose, 1996; Perez, 2010, 2013, 2017; Petoukhov,
2008, 2010a,b, 2011, 2012, 2015a,b,c,d,c, 2016, 2017a,b; Petoukhov, He, 2009;
Petoukhov, Petukhova, 2017a,b; Petoukhov, Svirin, 2012; Petoukhov et al, 2017;
Rapoport, 2016a,b,c; Rumer, 1968; Simeonov, 2013; Stambuk, 1999].

Some concluding remarks

The article describes author's results about connections of genetic
matrices with unitary matrices, the logical operation of the modulo-2 addition
and complete orthogonal systems of functions. These genetic matrices represent
genetic alphabets jointly with known features of the degeneracy of the genetic
code. These results are interesting by the following main reasons.

Firstly, they give new approaches to model some genetic structures and
phenomena on the basis of mathematical formalisms of quantum mechanics and
quantum informatics where unitary operators have a key meaning.
Correspondingly - from this standpoint - a hidden logic organization of the
genetic system should be considered in the light of notions of quantum logic. Our
results show that, from this modeling standpoint, the genetic system is a whole
hierarchical system of interconnected unitary matrices of different orders woven
together and formed tensor families of unitary matrices. Some of these unitary
genetic matrices coincide with well-known quantum gates of quantum
informatics; all other unitary genetic matrices can be also considered as special
quantum gates for hidden quantum-information calculations in the genetic
system. Complementary relations exist among some unitary genetic matrices.

We suppose that unitary genetic operators (unitary matrices) are the
basis for calculations in genetics by some analogy with calculations in quantum
informatics. In the frame of our model approach we put forward the working
hypothesis that DNA- and RNA-sequences of n-plets (of doublets, triplets, etc.)
serve to define unitary operators for quantum calculations in genetics by analogy
with quantum-logical calculations in quatum computing. From this standpoint,
DNA- and RNA-sequences are instruments to define systems of interconnected
unitary operators for quantum calculations by means of the quantum logic (in
particular, this is reflected in the special mosaic organisation of genetic matrices
in Figs. 4 and 5). The presented materials about connections of genetic systems
with quantum informatics (see additionally [Petoukhov, 2017a]) can lead to new
studies of analogies between quantum physics and matrix representations of the
genetic code. Here one should note that the Hungarian scientist Gyorgy Darvas
was the first who - in his study of quantum electrodynamics - paid attention on
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connections of the genetic numeric matrices with Pauli’s matrices [Darvas,
Petoukhov, 2017]. It is additional interesting that cyclic shifts of positions in
doublets and triplets transform the mosaic matrices in Figs. 4 and 5 into new
mosaic matrices [Petoukhov, 2008; Petoukhov, He, 2009], which are connected
with new systems of unitary genetic matrices.

Secondly, described unitary genetic matrices contain complete orthogonal
systems of functions in their rows or columns. But it is known the following:
“after Fourier it was found that for some problems, harmonic sinusoids rather than
other systems of orthogonal functions, for example, the Legendre polynomials, are
better suited. In fact, any particular problem needs its own system of orthogonal
functions. This was most clearly manifested in the course of the development of
quantum mechanics” [Soroko, 1973]. Correspondingly one can think that the
genetic systems have their own orthogonal systems of functions, which should
be used in physiology for appropriate spectral decompositions to study
genetically inherited processes and structures (including genetic sequences,
information processes in neuronal systems, cardio-vascular processes, etc.).

Thirdly, described fractal features of the mentioned tensor families of
unitary genetic matrices give additional materials to the wide topic of inherited
fractal-like structures in biological bodies, including symmetries in long texts of
single stranded DNA [Petoukhov, 2017a] and facts about connections of fractals
with cancer [Baish, Jain, 2000; Bizzarri et al, 2011; Dokukin et al, 2015; Lennon
et al, 2015; Perez, 2017]. Fractal patterns are related with the theory of dynamic
chaos, which has many applications in sciences and technology (see, for example,
[Dmitriev, 2002; Potapov, 2015]). A specifity of fractal patterns in tensor families
of unitary genetic matrices can be used for a further development of the theory
of dynamic chaos and its applications. The bridge between knowledges about
fractals in information techniologies and in bio-information systems can lead to a
mutual enrichment of both these fields.

The author hopes that the further usage in genetics the concepts and
formalisms of quantum informatics, which was undertaken in this article in the
connection with unitary genetic matrices, will lead to the development of
substantial quantum-information genetics. This will promote the inclusion of
genetics and all biology in the field of profound mathematical natural science.
Consideration of biological phenomena, including the phenomena of inheritance
of the intellectual abilities of biological bodies, from the standpoint of the theory
of quantum computers, gives many valuable opportunities for their
comprehension and also for development of artificial intelligence systems
[Petoukhov, 2016a,b; Petoukhov, Petukhova, 2017a; Petoukhov et al., 2017] (the
work [Biamonte et al, 2017] contains a review about quantum computing and
the problems of artificial intelligence). For example, an adult human organism
has around 10 trillion (1014) human cells and each of cells containts an identical
complect of DNA, whose genetic information is used for physiological functioning
organism as the holistic system of cells. How such huge number of cells can
reliably functioning as a cooperative whole? Quantum informatics and
associations with quantum computers can help to model and understand such
holistic biological systems with their ability of computing complex tasks and
transfering genetic information from one generation to another. Quantum-
information approaches allow modeling complex biological systems without
using data and hypotheses about interactions between adjacent molecules or
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between separate biological cells each with other; all of such separate elements
are parts of a holistic organism as a quantum-information essence. The
fundamental question about quantum computing was firstly touched upon in the
book [Manin, 1980].
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