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Abstract: Unmanned aerial vehicles (UAV) provide an unprecedented capacity to monitor the 11 
development and dynamics of tree growth and structure through time. It is generally thought 12 
that the pruning of tree crops encourages new growth, has a positive effect on fruiting, makes 13 
fruit-picking easier, and may increase yield, as it increases light interception and tree crown 14 
surface area. To establish the response of pruning in an orchard of lychee trees, an assessment 15 
of changes in tree structure, i.e. tree crown perimeter, width, height, area and Plant Projective 16 
Cover (PPC), was undertaken using multi-spectral UAV imagery collected before and after a 17 
pruning event. While tree crown perimeter, width and area could be derived directly from the 18 
delineated tree crowns, height was estimated from a produced canopy height model and PPC 19 
was most accurately predicted based on the NIR band. Pre- and post-pruning results showed 20 
significant differences in all measured tree structural parameters, including an average decrease 21 
in tree crown perimeter of 1.94 m, tree crown width of 0.57 m, tree crown height of 0.62 m, tree 22 
crown area of 3.5 m2, and PPC of 14.8%. In order to provide guidance on data collection 23 
protocols for orchard management, the impact of flying height variations was also examined, 24 
offering some insight into the influence of scale and the scalability of this UAV based approach 25 
for larger orchards. The different flying heights (i.e. 30, 50 and 70 m) produced similar 26 
measurements of tree crown width and PPC, while tree crown perimeter, area and height 27 
measurements decreased with increasing flying height. Overall, these results illustrate that 28 
routine collection of multi-spectral UAV imagery can provide a means of assessing pruning 29 
effects on changes in tree structure in commercial orchards, and highlight the importance of 30 
collecting imagery with consistent flight configurations, as varying flying heights may cause 31 
changes to tree structural measurements. 32 
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1. Introduction 37 

In order to increase the production of any agricultural system, activities such as crop 38 
monitoring for assessing growth, stresses, pests, fertiliser, water, nutrient condition and irrigation 39 
are all required [1,2]. In addition to this, post-harvesting handling, such as tree pruning, has also 40 
been shown to be beneficial for enhancing yields [3]. Pruning includes cutting and trimming of 41 
branches, and as such it affects the structural attributes of tree crops. Pruning of fruit trees 42 
promotes new growth [4], makes manual fruit-picking easier, and increases light interception, 43 
which is important for fruit quality [5,6]. Tree pruning has also been shown to have implications 44 
for crop harvest and nutrition, pest and disease control, soil protection and irrigation strategies 45 
[7]. Increasing flowering, fruit colour, soluble solids concentrations and flower bud formation, 46 
and decreasing titratable acid content are other benefits linked to pruning of fruit trees [3,8-10].  47 

However, tree pruning is a costly practice, especially if done using manual labour, which is 48 
usually the case for small orchards [11]. Often, tree crown reduction goals are set to optimise 49 
pruning [12], but the assessment to determine if these goals have been achieved is generally based 50 
on manual measurement or empirical models, which are time-consuming and potentially 51 
inconsistent [4]. Hence, there is a need for more efficient and consistent tree crop pruning 52 
monitoring strategies that can be applied in a consistent manner at the orchard level. 53 

Remote sensing is ideally suited for monitoring tasks and has the benefit of providing multi-54 
temporal information on tree structure, and changes in these, over time [13]. However, as many 55 
plantations are relatively small (1-50 ha) [8], the use of high spatial resolution satellite and 56 
airborne imagery quickly becomes cost-prohibitive [14]. The rapid development of Unmanned 57 
Aerial Vehicles (UAVs) and miniaturised sensors in the last decade is now offering an alternative 58 
to more traditional satellite and airborne based remote sensing [15,16]. This is largely due to the 59 
fact that UAVs are light-weight, low-cost, suitable for autonomous data collection, and highly 60 
deployable, allowing remotely sensed imagery to be collected at any time for smaller areas (< 1 61 
km2), subject to suitable weather conditions [4].  62 

The mapping of tree structural parameters such as tree height and crown size provides key 63 
indicators for plant growth, biomass, yield, as well as for assessing pruning practices [4,17,18]. 64 
As high spatial resolution imagery is required for assessing the structure of individual tree 65 
crowns, UAV imagery is ideally suited for this task. UAV imagery has been used in many 66 
different agricultural settings [14], but only to a limited extent for tree crops. For instance, 67 
measurements of plant height is a common UAV application because of the ability to produce 68 
photogrammetrically derived Digital Surface Models (DSM) from Structure-from-Motion of 69 
overlapping photos with different view angles of the same feature [4,19]. Plant height can be used 70 
to model biomass, which is crucial information for predicting crop yield [20-22].  71 

Most UAV based tree crop mapping applications have focused on olive trees [4,19,23-25]. 72 
These studies, which all achieved high correlations between field and image derived structural 73 
parameters, focused on deriving chlorophyll and leaf area index using a six-band multi-spectral 74 
Tetracam [23], and map tree height, crown diameter, volume and area using RGB and multi-75 
spectral imagery [4,19,24,25]. [4] used UAV based RGB imagery to map tree position, projected 76 
crown area, height and volume of olive trees before, after and one year after pruning. Tree crown 77 
structure was assessed for trees subjected to three different kinds of pruning techniques, i.e. 78 
mechanical, adapted and traditional. It was found that trees subjected to more aggressive pruning 79 
experienced much more subsequent vegetative development for the three studied pruning 80 
techniques. 81 

In forestry applications, local maxima identification techniques have been used for 82 
identification in delineation of individual tree crowns [26-28], and these techniques have also 83 
been used successfully by [18] using UAV image data for assessing of tree height and crown 84 
diameter. Recently, segmentation approaches and geographic object-based image analysis 85 
(GEOBIA) of high spatial resolution imagery have become the preferred means for delineating 86 
individual tree crowns, due to the additional information available in the 87 
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classification/delineation process in terms of shape, context, class-related and multi-scale 88 
information [29-33]. Because of the suitability of object-based image analysis for information 89 
derivation from high spatial resolution imagery [34], several UAV based studies are now starting 90 
to incorporate GEOBIA into their image processing workflow [4,17,18,25,35-37]. [24] used an 91 
object-based supervised classification using the Classification and Regression Tree (CART) 92 
algorithm for delineating olive trees. [25] developed a simple object-based mapping approach 93 
based on thresholding olive tree crown DSM values in relation to neighbouring ground for tree 94 
crown delineation. The object-based mapping approach developed by [4] was based on that by 95 
[25]. This new approach heavily relied on the generated DSM for identifying the tree crown 96 
boundaries. However, as photogrammetrically point cloud generated DSMs often do not align 97 
perfectly with tree crown edges, as shown in this research, incorrect measurements of crown area 98 
and volume may be obtained if these edges are not adjusted based on spectral information. In 99 
addition, [4] reported that only 80% (512) of the trees within the orchard were correctly photo-100 
reconstructed on the three image dates, which highlights the need to include spectral information 101 
as well in the object-based tree crown delineation process rather than heavily relying on the 102 
generated DSM. 103 

There is scant literature on the use of UAVs for mapping the influence of pruning on tree 104 
crop structural development and change [4]. To expand upon this lack, this research paper 105 
explores a novel and innovative approach to assess changes in tree structure, i.e. tree crown 106 
perimeter, width, height, area and Plant Projective Cover (PPC), using multi-spectral UAV 107 
derived imagery collected before and after pruning. To do this, we focus our study on the analysis 108 
of a commercial lychee plantation in eastern Australia. An object-based tree crown delineation 109 
approach is introduced, representing an additional novelty that addresses limitations of other 110 
UAV based studies [e.g. 4,25]. Given the lack of any systematic evaluation of how UAV based 111 
data acquisition configurations, including varying flying heights, affect image derived 112 
information extraction of tree structure, a secondary objective was to assess any variations in the 113 
results as a function of various flying heights (30 m/4.1 cm pixels, 50 m/6.5 cm pixels and 70 m/8.8 114 
cm pixels).  115 

2. Study Area 116 

The study was undertaken across a private lychee plantation located 25 km southeast of 117 
Brisbane, Australia (Figure 1). The lychee trees belong to the Kwai May Pink cultivar and were 118 
between 15 to 17 years of age, excluding 10 newly replanted trees. Each tree was planted 119 
approximately 4 m apart. The area has an elevation of 150 m above mean sea level and an average 120 
monthly mean temperature ranging from 15.1°C to 26.0° C, and an average annual rainfall of 1079 121 
mm [38]. The orchard, consisting of 189 lychee trees, is surrounded by eucalypt forest. 122 

 123 
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 125 
Figure 1. (a) Study area location (yellow dot) approximately 25 km southeast of Brisbane; (b) 126 
overview photo of study site; and (c) field photo of the lychee trees and poles used for protective 127 
nets to cover the trees. 128 

3. Materials and Methods 129 

3.1 Field Data 130 
Field based measurements of tree height, crown width, crown perimeter and PPC from 89 131 

out of the 189 lychee trees were collected on March 4th 2017. Tree height was measured as the 132 
distance from the ground to the top of the tree crown, using a retractable measuring staff. Crown 133 
perimeter was measured using a tape measure surrounding the widest part of the tree crown. 134 
Tree crown width was measured with a tape measure along the widest axis of each tree. For 135 
measuring PPC, four representative photos were taken underneath each of the 89 trees looking 136 
straight up. The photos were taken close to the ground and approximately half way between the 137 
tree trunk and the edge of the tree crown perimeter. These photos were analysed to determine 138 
PPC, i.e. the vertically projected fraction of leaves and branches in relation to sky. Measurements 139 
of PPC were derived using a program written in IDL® [39] to convert vertical digital photos to 140 
measurements of PPC based on the principle described by [40]. The derived PPC values of the 141 
four photos for each tree were then averaged to determine a representative PPC measure for each 142 
tree crown. 143 

3.2 UAV Data and Pre-Processing 144 
UAV multi-spectral (green: 530-570 nm; red: 640-680 nm; red edge: 730-740 nm; and Near 145 

Infrared (NIR): 770-810 nm) imagery was collected via a Parrot Sequoia sensor mounted to a 3DR 146 
Solo quadcopter for the lychee plantation on February 11th 2017 (pre-pruning) and March 4th 2017 147 
(post-pruning). The Tower Beta Android application was used to autonomously collect imagery 148 
acquired with 80% sidelap and 85% forward overlap, at heights above ground level of 30, 50 and 149 
70 m, producing 360, 278, and 202 photos per band, respectively. 150 

The Parrot Sequoia imagery was processed in Pix4D Mapper to produce an orthomosaic, a 151 
DSM and a DTM for each of the six flights, i.e. two collection dates at three different heights. The 152 
DSM was created based on the generated point cloud and the inverse distance weighted 153 
interpolation method in Pix4D Mapper. The DTM was generated using the automatic function in 154 
Pix4D Mapper that uses the raster DSM and computes a classification mask of features above 155 
ground to generate a raster DTM based on ground features only. A canopy height model (CHM) 156 
was produced by subtracting the DTM from the DSM. The three flying heights produced 157 
orthomosaics with pixel sizes of approximately 4.1 cm, 6.5 cm and 8.8 cm, respectively.  158 

To ensure an accurate georectification of retrieved imagery, 10 AeroPoints (i.e. Global 159 
Navigation Satellite System enabled ground control points, 54 cm x 54 cm x 3.5 cm in size, 160 
designed specifically for the geo-referencing of UAV imagery) were evenly spaced within the 161 
study area and used for geo-referencing of the imagery and for improving the Structure-from-162 
Motion 3D model in Pix4D Mapper (Figure 2). These AeroPoint  units are Global Navigation 163 

c 
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Satellite System enabled ground control points, 54 cm x 54 cm x 3.5 cm in size, designed 164 
specifically for the geo-referencing of UAV imagery. The coordinate location of each AeroPoint 165 
was recorded for more than 3 hours, automatically uploaded after the flights using a mobile 166 
phone hotspot, and subsequently post-processed using the proprietary Propeller® Post 167 
Processed Kinematic network correction based on their nearest base station [41]. 168 

 169 

 170 
Figure 2. (a) Distribution and (b) in-situ field photo of AeroPoints used for geo-referencing of the 171 
UAV imagery. 172 

Eight radiometric calibration targets were produced using Masonite boards painted with 173 
three coats of matt Dulux Wash and Wear paint in white, six scales of grey and in black [42]. The 174 
reflectance values of the eight targets were measured with an ASD FieldSpec 3 spectrometer 175 
(Figure 3) and confirmed to be near Lambertian. The RMSE of reflectance (scaled from 0-100%) 176 
ranged from 0.12% to 0.88%, between 500-850 nm, corresponding to the spectral range of the 177 
Parrot Sequoia sensor, based on spectrometer measurements obtained at 13 different angles, i.e. 178 
at nadir and at approximately 15°, 30° and 45°off-nadir angles viewed from north, south, east and 179 
west. Off-nadir view angles beyond 45° were not assessed, as the Parrot Sequoia sensor has 180 
vertical and horizontal field of views of 48.5° and 61.9°, respectively. Hence, the 45°off-nadir 181 
angle of the field spectrometer was well within the Parrot Sequoia sensor field of view, while still 182 
allowing for wind induced pitch, roll and yaw effects during each flight mission. Based on the 183 
relationship between the field derived spectrometer measurements, matched to each of the four 184 
spectral Parrot Sequoia bands, and the digital numbers of the eight radiometric calibration targets 185 
within the orthorectified multi-spectral imagery, the digital numbers were converted to at-surface 186 
reflectance using an empirical line correction in the ENVI 5.3 software [43]. 187 
 188 
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  189 
 190 

 191 
Figure 3. (a) Eight radiometric calibration targets and the 3DR Solo quadcopter; (b) green band; (c) red band; 192 
(d) red edge band; (e) NIR band; and (f) corresponding reflectance signatures between 500 and 900 nm of 193 
the eight targets. 194 

3.3 Geographic Object-Based Image Analysis 195 
GEOBIA and the eCognition Developer 9.2 software were used to automatically delineate 196 

the individual tree crowns based on the CHM and the multi-spectral orthomosaic. An object-197 
based mapping approach was deemed most suitable because of the small pixel size in relation to 198 
the tree objects being mapped [34]. A detailed flowchart of the GEOBIA processing steps is 199 
presented in Figure 4. Tree crowns were initially identified for those areas in the CHM > 1 m. Tree 200 
crown objects were then grown outwards based on progressively lower CHM thresholds. The 201 
tree crown edges were adjusted based on spectral information. Once the tree crown extent had 202 
been mapped, the approximate tree crown centre of each tree was identified based on the CHM 203 
by searching for local maxima within the mapped tree extent. To avoid having multiple local 204 
maxima within a single tree crown, only the highest CHM value within a radius of 3 m was 205 
considered. Subsequently, these tree crown centres were grown outwards as long as the tree 206 
crown height decreased and until the length of each tree crown object reached 3 m. A mean filter 207 
was used to smooth the CHM for this region-growing step in order to avoid issues due to 208 
variations in tree crown height caused by irregular branches increasing tree height within parts 209 
of individual tree crowns [18,33].  210 

a c 

d e 

b 

f 
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Next, various class-related context information was used to refine the delineation of 211 
individual tree crowns. For example, in some cases single tall branches created local high points 212 
in the smoothed CHM, which made the region-growing algorithm grow around the local high 213 
points. In those cases, where excluded objects within the mapped tree extent were surrounded 214 
by objects classified as a single tree crown, these objects were then classified as part of the single 215 
tree crown. Also, edges of trees were expanded to include the full extent of the mapped tree extent 216 
without the requirement of having progressively lower CHM values. Unclassified objects 217 
appearing in between two neighbouring adjoining tree crows were assigned to a respective tree 218 
crown based on the width-length ratio of these individual tree crowns and the values of the 219 
filtered canopy extent mask. A tree crown having a smaller length-width ratio than its 220 
neighbouring and adjoining tree crown was allowed to grow into the remaining unclassified 221 
objects between the two tree crowns as long as the filtered canopy extent mask values of the 222 
unclassified objects were decreasing. Using the filtered canopy extent mask assumed that an 223 
indent in the canopy extent mask would occur between each adjoining tree crown (Figure 5). A 224 
looping function was used to progressively assess the width-length ratio of the neighbouring and 225 
adjoining tree crowns to increase the likelihood of objects being assigned to the tree crown they 226 
belonged to. These assumptions were not required for the post-pruned trees, as neighbouring 227 
tree crowns did not adjoin in most cases.  228 
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 229 
Figure 4. Flowchart of GEOBIA processing routine to map individual tree crowns. 230 
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 231 

  232 
Figure 5. (a) False colour (Green, Red, NIR) image of pre-pruned lychee trees; (b) tree crown 233 
extent map; (c) tree crown extent map exposed to averaging filter with kernel size of 81 x 81 pixel; 234 
and (d) single tree crowns and tree crown centres being grown into tree crowns. 235 

The 89 field assessed tree crowns, representing post-pruning condition, were manually 236 
delineated from the orthomosaic for validating the automatically delineated tree crown areas at 237 
the three different flying heights. The approach suggested by [44] and applied by [25] was used 238 
to assess the classification accuracy based on three classes, i.e. correctly mapped, omission error, 239 
and commission error in terms of object area. 240 

3.4 Tree Crown Parameter Extraction 241 
Based on the delineated tree crowns, a measure of their perimeter, area, width and height 242 

could automatically be derived in the eCognition Developer software. The image derived 243 
parameters were directly related to the corresponding field measurements of perimeter and tree 244 
crown width. However, tree crown area was not measured in the field, but was included for the 245 
assessment, comparing pre- and post-pruning structure. Although the maximum tree height was 246 
measured in the field, the 90th percentile of tree crown height was extracted at the individual tree 247 
crown object level to remove potential effects of the poles next to some of the trees, which are 248 
used for placing protective nets over the trees (Figure 1). These poles were taller than the trees 249 
and hence had to be removed from the image based estimates of height. Using the 90th percentile 250 
of tree crown height addressed this problem, and as the tree tops were fairly flat, it did not 251 
significantly lower the image derived tree height measurements. 252 

10 m 

Indents where tree crowns adjoin 

a b 

c d 
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The spectral bands, derived vegetation indices and co-occurrence texture measures were 253 
used to assess the correlation with the field photo derived PPC measurements. The spectral bands 254 
included the green, red, red edge and NIR bands. Derived vegetation indices included the NDVI, 255 
the Normalized Difference Red Edge Index (NDRE), the average brightness of all four spectral 256 
bands, and the average brightness of the red edge and NIR bands. Texture is the frequency of 257 
tonal change in an image. Second-order statistics derived from image spatial grey level co-258 
occurrence matrix (GLCM) texture measures assume that information in an image is contained 259 
in the overall or average spatial relationship between pixel values (grey tones) [45-47]. The co-260 
occurrence texture measures were calculated at the individual tree crown object level in the 261 
eCognition Developer software and included the Homogeneity, Contrast, Dissimilarity and 262 
Standard Deviation co-occurrence texture measures based on all four spectral bands [48]. All of 263 
these object variables were extracted for the 89 field assessed trees as a shapefile and combined 264 
with the field based measurements. PPC measurements were derived based on the best 265 
performing relationship with image extracted parameters for the post-pruned tree crowns. This 266 
relationship was used to convert the pre-pruning image into a map of PPC. For the comparison 267 
of pre- and post-pruning tree structure, the image derived maps with the optimal results in terms 268 
of flying height / pixel size were used, including all 189 mapped trees. 269 

4. Results and Discussion 270 
The results proved the importance of the tree crown delineation process, as this process 271 

enabled the extraction of tree structural parameters used to assess changes before and after 272 
pruning at the individual tree crown level. This also enabled an evaluation and comparison of 273 
the results derived from the UAV flights undertaken at three different flying heights. 274 

4.1 Tree Crown Delineation 275 
Since the derivation of tree structural parameters such as crown perimeter, area and width 276 

rely on the accuracy of the tree crown definition, the automated delineation of these using 277 
GEOBIA is a key step. As in other studies [4,18,22,25], the CHM was required for identifying 278 
individual tree crown centres and determining where the edges of two adjoining tree crowns 279 
were. However, in previous studies [25] adjoining tree crowns, forming a hedgerow has proven 280 
problematic to delineate. In this study, this problem was solved by using the length-width ratio 281 
of the tree crowns and the filtered tree crown extent mask, which were found to be essential for 282 
determining which objects, occurring between adjoining trees, belonged to which tree crowns. 283 
This was particularly the case for the pre-pruned tree crowns. Post-pruning, most of the tree 284 
crowns did not adjoin, and hence fewer assumptions had to be made to determine what objects 285 
belonged to each individual tree crown (Figure 6).  286 

For tree crown delineations based on the imagery collected for the pre- and post-pruned 287 
lychee trees, all 189 lychee trees within the plantation were correctly identified. To achieve this 288 
accuracy, it was essential not only to rely on the CHM, but also to adjust tree crown edges based 289 
on the optical bands, as the tree crown borders often do not align with the DSM/CHM height 290 
information (Figure 7). Hence, while other eCognition Developer based approaches may have 291 
been computationally simpler to implement [4], such an approach would not have produced 292 
accurate results when applied to this research study. The accuracy assessment of the 89 manually 293 
delineated tree crowns investigated here showed that, on average, 98.6% of their area 294 
corresponded to that of the automatically delineated tree crowns, with an average error of 295 
omission of 1.4% and average error of commission of 2.2% (for the data set collected at 30 m flying 296 
height). The error of omission was reduced to 1.2% and 0.7%, while the error of commission 297 
increased to 2.4% and 3.1% for the data sets collected at 50 m and 70 m flying height, respectively. 298 
These results are well within reported tree crown delineation accuracies achieved using LiDAR 299 
data [49]. The slightly larger error of commission observed as a function of increased flying height 300 
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was attributed to the larger pixel size and how the corresponding DSMs were calculated, 301 
essentially resulting in the inclusion of an additional edge pixel surrounding the tree crowns with 302 
8.8 cm pixels (70 m flying height) compared to the manually delineated tree crowns (Figure 6). 303 
This is a common characteristic when increasing the pixel size for tree crown delineation [28]. 304 
 305 

   306 
 307 

  308 
Figure 6. (a) Land-cover map, showing the mapped extent of pruned lychee trees; (b) identification of tree 309 
crown centres and single tree crowns not adjoining neighbouring tree crowns; (c-d) results of the lychee tree 310 
crown delineation (yellow outlines) produced using GEOBIA. 311 
 312 

50 m 

50 m 10 m 

a b 

c d 
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  313 
Figure 7. (a) False colour (NIR, Red, Green) orthomosaic; and (b) corresponding CHM of lychee trees post-314 
pruning, including the GEOBIA delineation result (yellow outlines). 315 

4.2 Mapping of Tree Structure 316 
In addition to tree crown area, perimeter and width could be directly derived based on the 317 

delineated tree crowns. Tree crown perimeter measurements decreased slightly with increasing 318 
flying height due to the larger pixel size, producing a smoother crown edge delineation that was 319 
less affected by irregular branches along the tree crown edges. Flying at 70 m produced the 320 
highest R2 value of 0.95 (n = 89) and the lowest RMSE of 3.42 m for mapping tree crown perimeter, 321 
as the smoothing of the tree crown delineation caused by the larger pixels corresponded to the 322 
way field based measurements of perimeter were obtained. Tree crown perimeter was 323 
overestimated in all cases and the RMSE varied from 3.42 m to 4.57 m. Although the larger pixel 324 
size of 8.8 cm (70 m flying height) produced a smoother outline of the tree crowns, corresponding 325 
to the way the field measurements were derived, an additional edge pixel surrounding the tree 326 
crowns with 8.8 cm pixels was still included, causing an overestimation of the perimeter (Figure 327 
8). The different flying heights produced similar measurements of tree crown width with R2 328 
values of 0.90 - 0.93 (n = 89) and a RMSE of 0.62 - 0.65 m (Figure 8). 329 
  330 

10 m  
High : 4.8 m
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   331 
 332 

   333 
 334 

   335 
 336 

   337 
Figure 8. Relationships between field and image derived tree crown width, height and perimeter, 338 
and depiction of how the increasing pixel size affected the delineation of the pruned lychee tree 339 
crowns. 340 

With increasing flying height, image derived measurements of tree crown height were 341 
increasingly underestimated. For the three CHMs produced at the three different flying heights, 342 
a less accurate DTM and an overall lowering of the DSM height of tree crowns occurred with 343 
increasing flying height. The highest R2 value of 0.78 (with an RMSE of 0.19 m) was produced at 344 
a flying height of 30 m for estimating tree height. At flying heights of 50 and 70 m, the R2 value 345 
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decreased to 0.61 and 0.59, with an RMSE of 0.25 m and 0.36 m, respectively (Figure 5). The 346 
RMSEs are similar to those reported by [19, 25], who also assessed the effects of spatial resolution 347 
on DSM generation and tree height quantification using UAV imagery, but for olive trees. In [19], 348 
the tested pixel sizes were 5, 20, 25, 30, 35, 40, and 50 cm, and it was found that a significant 349 
decrease in R2 values and RMSE occurred at pixel sizes larger than 30 cm. However, those pixel 350 
values were derived from resampling of UAV imagery collected at the same flying height as 351 
opposed to our study where three different flying heights were used. A change of flying height 352 
will affect the viewing geometry of the study area and hence the ability to reconstruct objects 3-353 
dimensionally. At lower flying heights, more extreme view angles of ground objects (in our case 354 
lychee trees) are achieved, producing a larger parallax effect [50]. The reduced effect of parallax 355 
at 70 m flying height may have caused the observed lowering of the DSM tree height. Also the 356 
decrease in image spatial resolution with increased flying height may have caused local height 357 
points, e.g. from single tree branches, to be missed in the point cloud generation used for the DSM 358 
construction. 359 

While different growing conditions, i.e. different lychee tree varieties, climatic conditions, 360 
and pruning strategies, may influence the results and hence should be tested in future studies, 361 
tree age and height are the main differences likely to be encountered between different orchards 362 
in our particular study region. Ten of the lychee trees were younger and hence smaller than the 363 
remaining 179 trees at this study site. Assessing only those 10 trees, it can be seen in Table 1 that 364 
the RMSE of their height was higher than those in Figure 6, which was based on all 89 field 365 
assessed trees. This indicates that the height for shorter and smaller trees were less accurately 366 
mapped, and in all cases height was underestimated. This is similar to the findings of [25], where 367 
underestimation of tree height occurred for shorter trees. Tree crown width and perimeter on the 368 
other hand were mapped with significantly lower RMSE for the 10 younger trees. As these trees 369 
were smaller and hence had a smaller perimeter, there was a shorter distance along which the 370 
boundary line of the automatic tree crown delineation could appear irregular, due to branches 371 
and other tree structural characteristics. This, and the absence of any adjoining tree crowns due 372 
to the smaller crowns, also caused the width to be more accurately mapped. This indicates that 373 
tree crown height may be less accurately mapped for younger and shorter trees, while tree crown 374 
width and perimeter may in fact be mapped with higher accuracies for smaller trees. 375 
 376 

Table 1. Root Mean Square Errors of mapped lychee tree crown height (90 percentile), width and 377 
perimeter for the 10 youngest trees assessed against field data, post-pruning. 378 

Flying Height (m) Tree Height (m) Crown Width (m) Crown Perimeter (m) 
30 0.3860 0.2280 2.5105 
50 0.3934 0.2839 2.6700 
70 0.6374 0.2604 2.3672 

 379 

The highest R2 values for estimating PPC were achieved using the red edge (R2 = 0.79-0.81, n 380 
= 89) and NIR (R2 = 0.78-0.82, n = 89) bands, with the data collected at 70 m producing a slightly 381 
higher positive correlation. The red band showed a poor correlation with PPC (R2 = 0.04 - 0.15, n 382 
= 89), due to little variation in red reflectance values in response to different PPC measurements. 383 
Hence, spectral vegetation indices such as the NDVI and NDRE only produced R2 values between 384 
0.30 and 0.54. Using the co-occurrence texture measure of standard deviation of the red edge and 385 
NIR bands, R2 values between 0.57 and 0.70 were achieved (Figure 9). Co-occurrence texture 386 
measures have been used successfully in other studies to assess vegetation structure and 387 
measurements of PPC [48,51]. At the tree crown level, higher R2 values for mapping PPC were 388 
obtained in most cases for the imagery collected at 70 m height (8.8 cm pixels). In terms of the co-389 
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occurrence texture measures, this may have been due to noise reduction caused by the larger 390 
pixel size, while the 8.8 cm pixel size still preserved useful within-tree crown texture information 391 
[52,53].  392 

To estimate PPC of the pre-pruned tree crowns, for which no field data were collected, the 393 
best-fit equations between the post-pruned field derived PPC and the spectral bands, indices and 394 
texture measures were applied to the pre-pruned imagery to assess if these provided a realistic 395 
representation of PPC (Figure 10). The NIR band was found most useful for predicting PPC from 396 
the pre-pruning image, based on a visual assessment of the tree crowns and their within tree 397 
crown gaps. The NDVI showed little variation in estimated PPC, most likely because of saturation 398 
issues [54]. The use of the red edge band significantly overestimated PPC for many of the tree 399 
crowns. Using the texture measures for estimating PPC provided unrealistically large PPC 400 
variation and in many cases significantly underestimated PPC based on expectation (Figure 10). 401 
 402 

 403 
Figure 9. R2 values based on the positive relationships between field measured PPC and image derived 404 
spectral bands, indices and texture measures produced from imagery collected at 30, 50 and 70 m flying 405 
height.  406 
 407 

 408 
Figure 10. Estimated PPC of the 89 pre-pruned tree crowns for which PPC was measured post-pruning. PPC 409 
for the pre-pruned tree crowns was estimated using the best-fit equations based on the post-pruned image 410 
and field data. 411 

4.3 Pre- and Post-Pruning Tree Structure Comparison 412 
The mapping of tree structural parameters before and after pruning enabled an assessment 413 

of the impact of the pruning effects. A significant decrease in the average value of the tree 414 
structural parameters was observed for the 189 trees within the plantation between pre- and post-415 
pruning. Decreases in the tree crown perimeter (1.94 m; 10.9%), area (3.49 m2; 25.9%), width (0.567 416 
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m; 14.7%), 90th percentile tree crown height (0.616 m; 22.3%) and PPC (14.8%) were established 417 
(Figure 11). According to [12], the recommended thinning size of a lychee tree is between 15% - 418 
25% from its initial size. Hence, the pruning results based on all 189 mapped trees showed good 419 
agreement with the recommendation. In most cases (179 out of 189 trees), a decrease was 420 
observed in the tree structural measurements for the individual tree crowns. However, some of 421 
the smaller and newly planted lychee trees (10 out of 189 trees) were not pruned, and hence the 422 
structural measurements stayed the same or slightly increased.  423 
 424 

 425 
Figure 11. Pre- and post-pruning differences in minimum, Q1, median, Q3 and maximum values for the 189 426 
mapped lychee trees for tree crown perimeter, area, width, 90th percentile height, and PPC measured from 427 
the UAV imagery collected at 30 m height. 428 

4.4 Effects of Flying Height Differences 429 
The impact of flying height variations offers insight into the influence of scale and the 430 

scalability of this UAV based approach to determine its applicability to larger orchards. 431 
Differences in flying height only affected the comparison of pre- and post-pruning tree structure 432 
slightly (Figure 12a). Tree crown height differences were highest when the imagery were 433 
collected at 30 m height compared to 50 and 70 m height. A flying height of 30 m produced the 434 
most accurate height estimates, given that the produced DSM and DTM were less accurate when 435 
collected at increasing flying heights. The measurements of area and perimeter decreased with 436 
increasing flying height because of the increasing pixel size, which made the automatically 437 
derived object perimeter smoother and hence smaller, despite the added tree crown edge pixels 438 
for the imagery collected at 70 m height that was discussed above. This also caused the differences 439 
in mapped area and perimeter to decrease as a function of flying height, because of the smaller 440 
range in values in these parameters at larger pixel sizes. The tree crown width measurements 441 
derived at different flying heights were similar, showing a slight decrease as the flying height 442 
(and hence the pixel size) increased, which also caused the differences before and after pruning 443 
to slightly decrease with increasing flying height (Figure 12a). 444 

PPC was generally most accurately estimated based on the imagery collected at 70 m, 445 
although the average PPC difference was similar for all three flying heights (Figure 12b). 446 
However, at a flying height of 70 m, the average minimum and maximum differences were 447 
highest. Normally, at increasing pixel sizes, you would expect less spectral variability, i.e. a 448 
smaller range of pixel values within individual tree crown objects, because of spectral averaging 449 
of pixels covering a larger area [52]. This was attributed to the larger pixel size, which may have 450 
caused mixed pixels along the edges of the delineated tree crowns. These mixed pixels may have 451 
included parts of the shaded areas caused by tree shadows on the one side of the trees and parts 452 
of the sunlit green grass on the other side of some of the trees. 453 
 454 
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 455 
 456 

  457 
Figure 12. (a) Pre- and post-pruning differences for the 189 field assessed lychee trees for the 90th percentile 458 
tree crown height, area, perimeter, width; and (b) PPC, as a function of flying height.  459 
 460 
There are clear management advantages to flying a UAV at a height of 70 m compared to 30 m, as it is 461 
possible to cover a larger area in a single flight or to reduce the flying time for covering a set area. 462 
Completing a flight mission more quickly also means that the risk to cloud shadow contamination is 463 
reduced. Although doing this resulted in an increase in pixel size from 4.1 cm to 8.8 cm and resulted in a 464 
compromise in tree height estimates using the Parrot Sequoia imagery, the mapping results of the vegetation 465 
structural parameters were not significantly affected. The acquisition of imagery with an 8.8 cm pixel size 466 
compared with 4.1 cm pixels will also reduce the size of the image data set more than fourfold, which will 467 
subsequently decrease the image processing time. [25] mapped tree structural parameters of olive trees from 468 
UAV imagery collected at 50 and 100 m above ground level and only observed small reductions in their 469 
predicted mapping accuracies, while significantly reducing the time of flight, the image orthomosaic 470 
processing and the GEOBIA, with total used time reduced from 47 min to 13 min and from 5 h 15 min to 1 471 
h 8 min for their multi-spectral and RGB imagery, respectively. Hence, in terms of verifying the results of a 472 
pruning strategy on an orchard, there will likely be more efficiencies in choosing a flying height of 70 m, 473 
without loss of fidelity. Developing UAV based mapping and monitoring approaches for assessment of tree 474 
crop structure is also important for other types of tree crops, including mango, avocado and macadamia 475 
trees, as these parameters can provide information to help growers in the further production and delivery 476 
chain. This can ensure growers have enough personnel and equipment for fruit picking, have the right 477 

a 

b 
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storage facilities, have a suitable number of cartons for packaging, and can organise the means for transport 478 
and delivery [55].  479 

5. Conclusions 480 
Characterizing the impacts of pruning on tree structural parameters is required to inform 481 

and enhance the management of orchards and improve crop productivity. We present an 482 
innovative and novel approach that exploits multi-spectral UAV imagery to measure tree 483 
structural differences pre- and post-pruning, and apply this to a small commercial lychee 484 
plantation. The developed object-based image analysis approach was found to be particularly 485 
useful for delineating individual tree crowns and deriving object shape and spectral and textural 486 
information for correlation with field based measurements of tree structure. The multi-spectral 487 
imagery was found to accurately assess pre- and post-pruning tree crown structure, including 488 
tree crown perimeter, area, width, height and PPC. Tree crown perimeter was most accurately 489 
mapped at a flying height of 70 m, while tree crown width measurements were similar at all three 490 
flying heights. Tree height was most accurately mapped at a 30 m flying height, as larger flying 491 
heights affected the accuracy of the derived DSM and DTM. Imagery collected at 70 m height 492 
produced slightly higher correlation with field measured PPC for most predictor variables.  493 

These results highlight that despite the compromise in accuracy of tree height estimates 494 
(0.1936 m RMSE as opposed to 0.3568 m), a flying height of 70 m may be the best choice for 495 
assessing pre- and post-pruning tree structural differences to gain efficiency in terms of flight 496 
duration, area coverage, and image processing time, without losing a significant amount of 497 
information. As an additional benefit, the proposed UAV based approach is likely to reduce costs 498 
(compared with manual assessment) and increase consistency compared to traditional field based 499 
estimates. Future research should focus on collecting and analysing similar data for other orchard 500 
sites and for trees grown under different conditions, e.g. different tree ages, tree varieties, climatic 501 
conditions, and pruning strategies, to test if the developed approach can be applied more 502 
generally and the results remain consistent with broader application. 503 
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