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11 Abstract: Unmanned aerial vehicles (UAV) provide an unprecedented capacity to monitor the
12 development and dynamics of tree growth and structure through time. It is generally thought
13 that the pruning of tree crops encourages new growth, has a positive effect on fruiting, makes
14 fruit-picking easier, and may increase yield, as it increases light interception and tree crown
15 surface area. To establish the response of pruning in an orchard of lychee trees, an assessment
16 of changes in tree structure, i.e. tree crown perimeter, width, height, area and Plant Projective
17 Cover (PPC), was undertaken using multi-spectral UAV imagery collected before and after a
18 pruning event. While tree crown perimeter, width and area could be derived directly from the
19 delineated tree crowns, height was estimated from a produced canopy height model and PPC
20 was most accurately predicted based on the NIR band. Pre- and post-pruning results showed
21 significant differences in all measured tree structural parameters, including an average decrease
22 in tree crown perimeter of 1.94 m, tree crown width of 0.57 m, tree crown height of 0.62 m, tree
23 crown area of 3.5 m? and PPC of 14.8%. In order to provide guidance on data collection
24 protocols for orchard management, the impact of flying height variations was also examined,

25 offering some insight into the influence of scale and the scalability of this UAV based approach
26 for larger orchards. The different flying heights (i.e. 30, 50 and 70 m) produced similar

27 measurements of tree crown width and PPC, while tree crown perimeter, area and height
28 measurements decreased with increasing flying height. Overall, these results illustrate that
29 routine collection of multi-spectral UAV imagery can provide a means of assessing pruning
30 effects on changes in tree structure in commercial orchards, and highlight the importance of
31 collecting imagery with consistent flight configurations, as varying flying heights may cause
32 changes to tree structural measurements.
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37 1. Introduction

38 In order to increase the production of any agricultural system, activities such as crop
39  monitoring for assessing growth, stresses, pests, fertiliser, water, nutrient condition and irrigation
40  are all required [1,2]. In addition to this, post-harvesting handling, such as tree pruning, has also
41  been shown to be beneficial for enhancing yields [3]. Pruning includes cutting and trimming of
42 branches, and as such it affects the structural attributes of tree crops. Pruning of fruit trees
43  promotes new growth [4], makes manual fruit-picking easier, and increases light interception,
44 which is important for fruit quality [5,6]. Tree pruning has also been shown to have implications
45  for crop harvest and nutrition, pest and disease control, soil protection and irrigation strategies
46 [7]. Increasing flowering, fruit colour, soluble solids concentrations and flower bud formation,
47  and decreasing titratable acid content are other benefits linked to pruning of fruit trees [3,8-10].
48 However, tree pruning is a costly practice, especially if done using manual labour, which is
49  usually the case for small orchards [11]. Often, tree crown reduction goals are set to optimise
50  pruning[12], but the assessment to determine if these goals have been achieved is generally based
51  on manual measurement or empirical models, which are time-consuming and potentially
52 inconsistent [4]. Hence, there is a need for more efficient and consistent tree crop pruning
53 monitoring strategies that can be applied in a consistent manner at the orchard level.

54 Remote sensing is ideally suited for monitoring tasks and has the benefit of providing multi-
55  temporal information on tree structure, and changes in these, over time [13]. However, as many
56  plantations are relatively small (1-50 ha) [8], the use of high spatial resolution satellite and
57  airborne imagery quickly becomes cost-prohibitive [14]. The rapid development of Unmanned
58  Aerial Vehicles (UAVs) and miniaturised sensors in the last decade is now offering an alternative
59  tomore traditional satellite and airborne based remote sensing [15,16]. This is largely due to the
60  fact that UAVs are light-weight, low-cost, suitable for autonomous data collection, and highly
61  deployable, allowing remotely sensed imagery to be collected at any time for smaller areas (< 1
62  km?), subject to suitable weather conditions [4].

63 The mapping of tree structural parameters such as tree height and crown size provides key
64  indicators for plant growth, biomass, yield, as well as for assessing pruning practices [4,17,18].
65  As high spatial resolution imagery is required for assessing the structure of individual tree
66  crowns, UAV imagery is ideally suited for this task. UAV imagery has been used in many
67  different agricultural settings [14], but only to a limited extent for tree crops. For instance,
68  measurements of plant height is a common UAV application because of the ability to produce
69  photogrammetrically derived Digital Surface Models (DSM) from Structure-from-Motion of
70 overlapping photos with different view angles of the same feature [4,19]. Plant height can be used
71 tomodel biomass, which is crucial information for predicting crop yield [20-22].

72 Most UAV based tree crop mapping applications have focused on olive trees [4,19,23-25].
73 These studies, which all achieved high correlations between field and image derived structural
74  parameters, focused on deriving chlorophyll and leaf area index using a six-band multi-spectral
75  Tetracam [23], and map tree height, crown diameter, volume and area using RGB and multi-
76  spectral imagery [4,19,24,25]. [4] used UAV based RGB imagery to map tree position, projected
77  crown area, height and volume of olive trees before, after and one year after pruning. Tree crown
78  structure was assessed for trees subjected to three different kinds of pruning techniques, i.e.
79  mechanical, adapted and traditional. It was found that trees subjected to more aggressive pruning
80  experienced much more subsequent vegetative development for the three studied pruning
81  techniques.

82 In forestry applications, local maxima identification techniques have been used for
83 identification in delineation of individual tree crowns [26-28], and these techniques have also
84  been used successfully by [18] using UAV image data for assessing of tree height and crown
85  diameter. Recently, segmentation approaches and geographic object-based image analysis
86  (GEOBIA) of high spatial resolution imagery have become the preferred means for delineating
87 individual tree crowns, due to the additional information available in the
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88 classification/delineation process in terms of shape, context, class-related and multi-scale
89  information [29-33]. Because of the suitability of object-based image analysis for information
90  derivation from high spatial resolution imagery [34], several UAV based studies are now starting
91  to incorporate GEOBIA into their image processing workflow [4,17,18,25,35-37]. [24] used an
92  object-based supervised classification using the Classification and Regression Tree (CART)
93 algorithm for delineating olive trees. [25] developed a simple object-based mapping approach
94 based on thresholding olive tree crown DSM values in relation to neighbouring ground for tree
95  crown delineation. The object-based mapping approach developed by [4] was based on that by
96  [25]. This new approach heavily relied on the generated DSM for identifying the tree crown
97  boundaries. However, as photogrammetrically point cloud generated DSMs often do not align
98  perfectly with tree crown edges, as shown in this research, incorrect measurements of crown area
99  and volume may be obtained if these edges are not adjusted based on spectral information. In
100  addition, [4] reported that only 80% (512) of the trees within the orchard were correctly photo-
101 reconstructed on the three image dates, which highlights the need to include spectral information
102 as well in the object-based tree crown delineation process rather than heavily relying on the
103 generated DSM.
104 There is scant literature on the use of UAVs for mapping the influence of pruning on tree
105  crop structural development and change [4]. To expand upon this lack, this research paper
106  explores a novel and innovative approach to assess changes in tree structure, i.e. tree crown
107  perimeter, width, height, area and Plant Projective Cover (PPC), using multi-spectral UAV
108  derived imagery collected before and after pruning. To do this, we focus our study on the analysis
109  of a commercial lychee plantation in eastern Australia. An object-based tree crown delineation
110 approach is introduced, representing an additional novelty that addresses limitations of other
111  UAV based studies [e.g. 4,25]. Given the lack of any systematic evaluation of how UAV based
112 data acquisition configurations, including varying flying heights, affect image derived
113 information extraction of tree structure, a secondary objective was to assess any variations in the
114 results as a function of various flying heights (30 m/4.1 cm pixels, 50 m/6.5 cm pixels and 70 m/8.8
115 cm pixels).

116  2.Study Area

117 The study was undertaken across a private lychee plantation located 25 km southeast of
118  Brisbane, Australia (Figure 1). The lychee trees belong to the Kwai May Pink cultivar and were
119  between 15 to 17 years of age, excluding 10 newly replanted trees. Each tree was planted
120 approximately 4 m apart. The area has an elevation of 150 m above mean sea level and an average
121 monthly mean temperature ranging from 15.1°C to 26.0° C, and an average annual rainfall of 1079

122 mm [38]. The orchard, consisting of 189 lychee trees, is surrounded by eucalypt forest.
123
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125

126 Figure 1. (a) Study area location (yellow dot) approximately 25 km southeast of Brisbane; (b)
127 overview photo of study site; and (c) field photo of the lychee trees and poles used for protective
128 nets to cover the trees.

129 3. Materials and Methods

130 3.1 Field Data

131 Field based measurements of tree height, crown width, crown perimeter and PPC from 89
132 out of the 189 lychee trees were collected on March 4t 2017. Tree height was measured as the
133 distance from the ground to the top of the tree crown, using a retractable measuring staff. Crown
134 perimeter was measured using a tape measure surrounding the widest part of the tree crown.
135 Tree crown width was measured with a tape measure along the widest axis of each tree. For
136  measuring PPC, four representative photos were taken underneath each of the 89 trees looking
137  straight up. The photos were taken close to the ground and approximately half way between the
138 tree trunk and the edge of the tree crown perimeter. These photos were analysed to determine
139 PPC, i.e. the vertically projected fraction of leaves and branches in relation to sky. Measurements
140  of PPC were derived using a program written in IDL® [39] to convert vertical digital photos to
141  measurements of PPC based on the principle described by [40]. The derived PPC values of the
142 four photos for each tree were then averaged to determine a representative PPC measure for each
143 tree crown.

144 3.2 UAV Data and Pre-Processing

145 UAYV multi-spectral (green: 530-570 nm; red: 640-680 nm; red edge: 730-740 nm; and Near
146  Infrared (NIR): 770-810 nm) imagery was collected via a Parrot Sequoia sensor mounted to a 3DR
147  Solo quadcopter for the lychee plantation on February 11t 2017 (pre-pruning) and March 4t 2017
148  (post-pruning). The Tower Beta Android application was used to autonomously collect imagery
149  acquired with 80% sidelap and 85% forward overlap, at heights above ground level of 30, 50 and
150 70 m, producing 360, 278, and 202 photos per band, respectively.

151 The Parrot Sequoia imagery was processed in Pix4D Mapper to produce an orthomosaic, a
152  DSM and a DTM for each of the six flights, i.e. two collection dates at three different heights. The
153 DSM was created based on the generated point cloud and the inverse distance weighted
154  interpolation method in Pix4D Mapper. The DTM was generated using the automatic function in
155  Pix4D Mapper that uses the raster DSM and computes a classification mask of features above
156  ground to generate a raster DTM based on ground features only. A canopy height model (CHM)
157  was produced by subtracting the DTM from the DSM. The three flying heights produced
158  orthomosaics with pixel sizes of approximately 4.1 cm, 6.5 cm and 8.8 cm, respectively.

159 To ensure an accurate georectification of retrieved imagery, 10 AeroPoints (i.e. Global
160  Navigation Satellite System enabled ground control points, 54 cm x 54 cm x 3.5 cm in size,
161  designed specifically for the geo-referencing of UAV imagery) were evenly spaced within the
162 study area and used for geo-referencing of the imagery and for improving the Structure-from-
163 Motion 3D model in Pix4D Mapper (Figure 2). These AeroPoint units are Global Navigation
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164  Satellite System enabled ground control points, 54 cm x 54 cm x 3.5 cm in size, designed
165  specifically for the geo-referencing of UAV imagery. The coordinate location of each AeroPoint
166  was recorded for more than 3 hours, automatically uploaded after the flights using a mobile
167  phone hotspot, and subsequently post-processed using the proprietary Propeller® Post
168  Processed Kinematic network correction based on their nearest base station [41].

169

170

171 Figure 2. (a) Distribution and (b) in-situ field photo of AeroPoints used for geo-referencing of the

172 UAV imagery.

173 Eight radiometric calibration targets were produced using Masonite boards painted with

174 three coats of matt Dulux Wash and Wear paint in white, six scales of grey and in black [42]. The
175  reflectance values of the eight targets were measured with an ASD FieldSpec 3 spectrometer
176  (Figure 3) and confirmed to be near Lambertian. The RMSE of reflectance (scaled from 0-100%)
177  ranged from 0.12% to 0.88%, between 500-850 nm, corresponding to the spectral range of the
178  Parrot Sequoia sensor, based on spectrometer measurements obtained at 13 different angles, i.e.
179  atnadir and at approximately 15°, 30° and 45°off-nadir angles viewed from north, south, east and
180  west. Off-nadir view angles beyond 45° were not assessed, as the Parrot Sequoia sensor has
181  vertical and horizontal field of views of 48.5° and 61.9°, respectively. Hence, the 45°off-nadir
182  angle of the field spectrometer was well within the Parrot Sequoia sensor field of view, while still
183  allowing for wind induced pitch, roll and yaw effects during each flight mission. Based on the
184  relationship between the field derived spectrometer measurements, matched to each of the four
185  spectral Parrot Sequoia bands, and the digital numbers of the eight radiometric calibration targets
186  within the orthorectified multi-spectral imagery, the digital numbers were converted to at-surface
187  reflectance using an empirical line correction in the ENVI 5.3 software [43].

188
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192 Figure 3. (a) Eight radiometric calibration targets and the 3DR Solo quadcopter; (b) green band; (c) red band;
193 (d) red edge band; (e) NIR band; and (f) corresponding reflectance signatures between 500 and 900 nm of
194 the eight targets.

195 3.3 Geographic Object-Based Image Analysis

196 GEOBIA and the eCognition Developer 9.2 software were used to automatically delineate
197  the individual tree crowns based on the CHM and the multi-spectral orthomosaic. An object-
198  based mapping approach was deemed most suitable because of the small pixel size in relation to
199  the tree objects being mapped [34]. A detailed flowchart of the GEOBIA processing steps is
200  presented in Figure 4. Tree crowns were initially identified for those areas in the CHM >1 m. Tree
201  crown objects were then grown outwards based on progressively lower CHM thresholds. The
202 tree crown edges were adjusted based on spectral information. Once the tree crown extent had
203  been mapped, the approximate tree crown centre of each tree was identified based on the CHM
204 by searching for local maxima within the mapped tree extent. To avoid having multiple local
205  maxima within a single tree crown, only the highest CHM value within a radius of 3 m was
206  considered. Subsequently, these tree crown centres were grown outwards as long as the tree
207  crown height decreased and until the length of each tree crown object reached 3 m. A mean filter
208  was used to smooth the CHM for this region-growing step in order to avoid issues due to
209  variations in tree crown height caused by irregular branches increasing tree height within parts
210  of individual tree crowns [18,33].
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211 Next, various class-related context information was used to refine the delineation of
212 individual tree crowns. For example, in some cases single tall branches created local high points
213 in the smoothed CHM, which made the region-growing algorithm grow around the local high
214  points. In those cases, where excluded objects within the mapped tree extent were surrounded
215 by objects classified as a single tree crown, these objects were then classified as part of the single
216  treecrown. Also, edges of trees were expanded to include the full extent of the mapped tree extent
217  without the requirement of having progressively lower CHM values. Unclassified objects
218  appearing in between two neighbouring adjoining tree crows were assigned to a respective tree
219  crown based on the width-length ratio of these individual tree crowns and the values of the
220  filtered canopy extent mask. A tree crown having a smaller length-width ratio than its
221  neighbouring and adjoining tree crown was allowed to grow into the remaining unclassified
222 objects between the two tree crowns as long as the filtered canopy extent mask values of the
223 unclassified objects were decreasing. Using the filtered canopy extent mask assumed that an
224  indent in the canopy extent mask would occur between each adjoining tree crown (Figure 5). A
225  looping function was used to progressively assess the width-length ratio of the neighbouring and
226  adjoining tree crowns to increase the likelihood of objects being assigned to the tree crown they
227  belonged to. These assumptions were not required for the post-pruned trees, as neighbouring
228  tree crowns did not adjoin in most cases.
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Input Image Data Additional Layers Generated
e Orthomosaic (green, red, red edge, NIR) > & DSM — DTM = CHM and CHM Gaussian Blur 5x5 kernel
« DSM  (NIR-Red)/(NIR+Red) = NDVI
* DTM ¢ (Red Edge-Red)/(Red Edge+Red) = NDRE

® (Green+Red+Red Edge+NIR)/4 = Brightness
e (NIR+Red Edge)/2 = NIR_Brightness

¥

Initial Mapping of Tree Crown Extent
1. Multi-Threshold Segmentation to map tree crowns if CHM > 1m
2. Expand Tree Crown objects, using Pixel-Based Object Resizing algorithm, Growing mode, looping as long as CHM > 0.3 m
3. 75 quantile of CHM > 3.2 m to unclassify non-lychee trees
4. Relative area of tree crowns within 25 m < 5% to unclassify single standing trees, not part of the lychee tree orchard

¥

Refining Tree Crown Extent
1. Multiresolution Segmentation of initial tree crown extent, scale parameter = 8, shape = 0.1, compactness = 0.5
2. Classification of Tree Crown Gaps and adjoining Shadows within initial tree crown extent, using brightness, NDVI, CHM < 2
m, and relative border to unclassified objects to exclude shaded areas from tree crown extent
3. Pixel-Based Object Resizing algorithm, Shrinking mode, to refine tree crown edges based on low NIR and NDVI values
4. Tree Crown Gaps surrounded by Tree Crown objects classified as Tree Crown

¥

Identifying Tree Crown Centers

1. Length of object < 6 m = single tree crown not adjoining neighbouring tree crown (Figure 5d)

2. Copy Image Object level to lower level, to restrict tree crowns from growing beyond tree crown extent at above level

3. Produce tree crown extent mask for adjoining tree crowns (Figure 5b) with Tree Crowns = 1 and all other pixels/objects = 0

4. Pixel Filters Sliding Window algorithm to use averaging filter for tree crown extent mask and kernel size of 3.3 m (81 x 81
pixels) to produce layer where values close to 1 = tree crown center, and values of 0.5 or below = tree crown edge (Figure
5c). Threshold of 3.3 m was selected based on tree crown size to ensure the size of the kernel could fit within a tree crown.

5. Tree Crown Center identification:

Step 1:

e Tree Crown CHM > 3.4 m (tallest tree crowns in study area) = AOI

* Merge pixels classified as AOI

o If AOI has relative border to unclassified (i.e. tree crown edge), then reclassify as Tree Crown. This situation occurred due to
the poles for the protective nets

Step 2:

e Tree Crowns > 3.3 m = Tree Crown Center

e If Tree Crown Center had distance to AOI < 3 m, then reclassify to Tree Crown to ensure only one center per tree crown

e Merge pixels classified as Tree Crown Center

o If Tree Crown Center bordered AOI object, then reclassify to Tree Crown as Tree Crown Center already exists

o If Tree Crown Center has relative border to unclassified (i.e. tree crown edge), then reclassify as Tree Crown.

* Reclassify Tree Crown Center to AOI

Step 3:

e Loop Step 2, but reduce Tree Crown CHM threshold by 0.1 m each time (i.e. 3.2 m, 3.1 m, 3.0 m, etc.) until 1.5 m to map
Tree Crown Center of each Tree Crown

v

Mapping Individual Tree Crowns

1. Multiresolution Segmentation of tree crown extent, scale parameter = 8, shape = 0.1, compactness = 0.5

2. Grow Region algorithm to grow Tree Crown Centers into Tree Crown objects (Figure 5d) with progressively lower CHM
height than AOI objects, looping function until Tree Crown object length reached 3 m

3. Tree Crown objects surrounded by Tree Crown Center objects = Tree Crown Center objects to include crown gaps

4. Further region-growing of Tree Crown Centers into Tree Crown objects until tree crown extent edge was reached, but using
length/width ratio in relation to neighbouring Tree Crown Center objects as well as progressively lower values of the filtered
tree crown extent mask to separate adjoining tree crowns where indent in canopy extent mask (Figure 5d and c) occurred

229 5. Reclassify Tree Crown Center objects to Individual Tree Crowns

230 Figure 4. Flowchart of GEOBIA processing routine to map individual tree crowns.
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@ Single Tree Crown

I ts h re tr . S 3 L QTree Crown Centre
232 ndents where tree crowns adjoin @ 1rec o
233 Figure 5. (a) False colour (Green, Red, NIR) image of pre-pruned lychee trees; (b) tree crown

gur &¢ of pre-p Yy

234 extent mapj; (c) tree crown extent map exposed to averaging filter with kernel size of 81 x 81 pixel;
235 and (d) single tree crowns and tree crown centres being grown into tree crowns.
236 The 89 field assessed tree crowns, representing post-pruning condition, were manually

237  delineated from the orthomosaic for validating the automatically delineated tree crown areas at
238  the three different flying heights. The approach suggested by [44] and applied by [25] was used
239  to assess the classification accuracy based on three classes, i.e. correctly mapped, omission error,
240  and commission error in terms of object area.

241 3.4 Tree Crown Parameter Extraction

242 Based on the delineated tree crowns, a measure of their perimeter, area, width and height
243 could automatically be derived in the eCognition Developer software. The image derived
244  parameters were directly related to the corresponding field measurements of perimeter and tree
245 crown width. However, tree crown area was not measured in the field, but was included for the
246  assessment, comparing pre- and post-pruning structure. Although the maximum tree height was
247  measured in the field, the 90t percentile of tree crown height was extracted at the individual tree
248  crown object level to remove potential effects of the poles next to some of the trees, which are
249  used for placing protective nets over the trees (Figure 1). These poles were taller than the trees
250  and hence had to be removed from the image based estimates of height. Using the 90t percentile
251  of tree crown height addressed this problem, and as the tree tops were fairly flat, it did not
252  significantly lower the image derived tree height measurements.
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253 The spectral bands, derived vegetation indices and co-occurrence texture measures were
254 used to assess the correlation with the field photo derived PPC measurements. The spectral bands
255  included the green, red, red edge and NIR bands. Derived vegetation indices included the NDV],
256  the Normalized Difference Red Edge Index (NDRE), the average brightness of all four spectral
257  bands, and the average brightness of the red edge and NIR bands. Texture is the frequency of
258  tonal change in an image. Second-order statistics derived from image spatial grey level co-
259  occurrence matrix (GLCM) texture measures assume that information in an image is contained
260  in the overall or average spatial relationship between pixel values (grey tones) [45-47]. The co-
261  occurrence texture measures were calculated at the individual tree crown object level in the
262  eCognition Developer software and included the Homogeneity, Contrast, Dissimilarity and
263 Standard Deviation co-occurrence texture measures based on all four spectral bands [48]. All of
264  these object variables were extracted for the 89 field assessed trees as a shapefile and combined
265  with the field based measurements. PPC measurements were derived based on the best
266  performing relationship with image extracted parameters for the post-pruned tree crowns. This
267  relationship was used to convert the pre-pruning image into a map of PPC. For the comparison
268  of pre- and post-pruning tree structure, the image derived maps with the optimal results in terms
269  of flying height / pixel size were used, including all 189 mapped trees.

270 4. Results and Discussion

271 The results proved the importance of the tree crown delineation process, as this process
272  enabled the extraction of tree structural parameters used to assess changes before and after
273  pruning at the individual tree crown level. This also enabled an evaluation and comparison of
274  theresults derived from the UAV flights undertaken at three different flying heights.

275 4.1 Tree Crown Delineation

276 Since the derivation of tree structural parameters such as crown perimeter, area and width
277  rely on the accuracy of the tree crown definition, the automated delineation of these using
278  GEOBIA is a key step. As in other studies [4,18,22,25], the CHM was required for identifying
279  individual tree crown centres and determining where the edges of two adjoining tree crowns
280  were. However, in previous studies [25] adjoining tree crowns, forming a hedgerow has proven
281  problematic to delineate. In this study, this problem was solved by using the length-width ratio
282 of the tree crowns and the filtered tree crown extent mask, which were found to be essential for
283  determining which objects, occurring between adjoining trees, belonged to which tree crowns.
284  This was particularly the case for the pre-pruned tree crowns. Post-pruning, most of the tree
285  crowns did not adjoin, and hence fewer assumptions had to be made to determine what objects
286  belonged to each individual tree crown (Figure 6).

287 For tree crown delineations based on the imagery collected for the pre- and post-pruned
288  lychee trees, all 189 lychee trees within the plantation were correctly identified. To achieve this
289  accuracy, it was essential not only to rely on the CHM, but also to adjust tree crown edges based
290  on the optical bands, as the tree crown borders often do not align with the DSM/CHM height
291  information (Figure 7). Hence, while other eCognition Developer based approaches may have
292 been computationally simpler to implement [4], such an approach would not have produced
293 accurate results when applied to this research study. The accuracy assessment of the 89 manually
294  delineated tree crowns investigated here showed that, on average, 98.6% of their area
295  corresponded to that of the automatically delineated tree crowns, with an average error of
296  omission of 1.4% and average error of commission of 2.2% (for the data set collected at 30 m flying
297  height). The error of omission was reduced to 1.2% and 0.7%, while the error of commission
298  increased to 2.4% and 3.1% for the data sets collected at 50 m and 70 m flying height, respectively.
299  These results are well within reported tree crown delineation accuracies achieved using LiDAR
300  data[49]. Theslightly larger error of commission observed as a function of increased flying height
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302
303
304
305

306
307

308
309

310
311
312

was attributed to the larger pixel size and how the corresponding DSMs were calculated,
essentially resulting in the inclusion of an additional edge pixel surrounding the tree crowns with
8.8 cm pixels (70 m flying height) compared to the manually delineated tree crowns (Figure 6).
This is a common characteristic when increasing the pixel size for tree crown delineation [28].

{1 Bananas
{0 Grass
@ Lychee Trees
i Other Features
) Other Vegetation
@ Shadow

. Lychee Trees
{:} Tree Crown Centres
@ Single Tree Crowns

Figure 6. (a) Land-cover map, showing the mapped extent of pruned lychee trees; (b) identification of tree
crown centres and single tree crowns not adjoining neighbouring tree crowns; (c-d) results of the lychee tree
crown delineation (yellow outlines) produced using GEOBIA.
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314 Figure 7. (a) False colour (NIR, Red, Green) orthomosaic; and (b) corresponding CHM of lychee trees post-
315  pruning, including the GEOBIA delineation result (yellow outlines).

316 4.2 Mapping of Tree Structure

317 In addition to tree crown area, perimeter and width could be directly derived based on the
318  delineated tree crowns. Tree crown perimeter measurements decreased slightly with increasing
319 flying height due to the larger pixel size, producing a smoother crown edge delineation that was
320  less affected by irregular branches along the tree crown edges. Flying at 70 m produced the
321  highest R2 value of 0.95 (n = 89) and the lowest RMSE of 3.42 m for mapping tree crown perimeter,
322 as the smoothing of the tree crown delineation caused by the larger pixels corresponded to the
323  way field based measurements of perimeter were obtained. Tree crown perimeter was
324 overestimated in all cases and the RMSE varied from 3.42 m to 4.57 m. Although the larger pixel
325  size of 8.8 cm (70 m flying height) produced a smoother outline of the tree crowns, corresponding
326  to the way the field measurements were derived, an additional edge pixel surrounding the tree
327  crowns with 8.8 cm pixels was still included, causing an overestimation of the perimeter (Figure
328  8). The different flying heights produced similar measurements of tree crown width with R2
329  values of 0.90 - 0.93 (n = 89) and a RMSE of 0.62 - 0.65 m (Figure 8).

330
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Figure 8. Relationships between field and image derived tree crown width, height and perimeter,
and depiction of how the increasing pixel size affected the delineation of the pruned lychee tree

crowns.

With increasing flying height, image derived measurements of tree crown height were
increasingly underestimated. For the three CHMs produced at the three different flying heights,
a less accurate DTM and an overall lowering of the DSM height of tree crowns occurred with
increasing flying height. The highest R? value of 0.78 (with an RMSE of 0.19 m) was produced at
a flying height of 30 m for estimating tree height. At flying heights of 50 and 70 m, the R? value
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346  decreased to 0.61 and 0.59, with an RMSE of 0.25 m and 0.36 m, respectively (Figure 5). The
347  RMSEs are similar to those reported by [19, 25], who also assessed the effects of spatial resolution
348  on DSM generation and tree height quantification using UAV imagery, but for olive trees. In [19],
349  the tested pixel sizes were 5, 20, 25, 30, 35, 40, and 50 cm, and it was found that a significant
350  decrease in R? values and RMSE occurred at pixel sizes larger than 30 cm. However, those pixel
351  values were derived from resampling of UAV imagery collected at the same flying height as
352  opposed to our study where three different flying heights were used. A change of flying height
353 will affect the viewing geometry of the study area and hence the ability to reconstruct objects 3-
354  dimensionally. At lower flying heights, more extreme view angles of ground objects (in our case
355  lychee trees) are achieved, producing a larger parallax effect [50]. The reduced effect of parallax
356  at 70 m flying height may have caused the observed lowering of the DSM tree height. Also the
357  decrease in image spatial resolution with increased flying height may have caused local height
358  points, e.g. from single tree branches, to be missed in the point cloud generation used for the DSM
B59  construction.

360 While different growing conditions, i.e. different lychee tree varieties, climatic conditions,
361  and pruning strategies, may influence the results and hence should be tested in future studies,
362  tree age and height are the main differences likely to be encountered between different orchards
363  in our particular study region. Ten of the lychee trees were younger and hence smaller than the
364  remaining 179 trees at this study site. Assessing only those 10 trees, it can be seen in Table 1 that
365  the RMSE of their height was higher than those in Figure 6, which was based on all 89 field
366  assessed trees. This indicates that the height for shorter and smaller trees were less accurately
367  mapped, and in all cases height was underestimated. This is similar to the findings of [25], where
368  underestimation of tree height occurred for shorter trees. Tree crown width and perimeter on the
369  other hand were mapped with significantly lower RMSE for the 10 younger trees. As these trees
370  were smaller and hence had a smaller perimeter, there was a shorter distance along which the
371  boundary line of the automatic tree crown delineation could appear irregular, due to branches
372 and other tree structural characteristics. This, and the absence of any adjoining tree crowns due
373 to the smaller crowns, also caused the width to be more accurately mapped. This indicates that
374  tree crown height may be less accurately mapped for younger and shorter trees, while tree crown
375  width and perimeter may in fact be mapped with higher accuracies for smaller trees.

376
377 Table 1. Root Mean Square Errors of mapped lychee tree crown height (90 percentile), width and
378 perimeter for the 10 youngest trees assessed against field data, post-pruning.
Flying Height (m) Tree Height (m) Crown Width (m) Crown Perimeter (m)

30 0.3860 0.2280 2.5105

50 0.3934 0.2839 2.6700

70 0.6374 0.2604 2.3672
379
380 The highest R? values for estimating PPC were achieved using the red edge (R2=0.79-0.81, n

381  =89) and NIR (R? = 0.78-0.82, n = 89) bands, with the data collected at 70 m producing a slightly
382  higher positive correlation. The red band showed a poor correlation with PPC (R2 = 0.04 - 0.15, n
383  =89), due to little variation in red reflectance values in response to different PPC measurements.
384  Hence, spectral vegetation indices such as the NDVI and NDRE only produced R? values between
385  0.30 and 0.54. Using the co-occurrence texture measure of standard deviation of the red edge and
386  NIR bands, R? values between 0.57 and 0.70 were achieved (Figure 9). Co-occurrence texture
387  measures have been used successfully in other studies to assess vegetation structure and
388  measurements of PPC [48,51]. At the tree crown level, higher R? values for mapping PPC were
389  obtained in most cases for the imagery collected at 70 m height (8.8 cm pixels). In terms of the co-
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390  occurrence texture measures, this may have been due to noise reduction caused by the larger
391  pixel size, while the 8.8 cm pixel size still preserved useful within-tree crown texture information
392 [52,53].

393 To estimate PPC of the pre-pruned tree crowns, for which no field data were collected, the
394 Dbest-fit equations between the post-pruned field derived PPC and the spectral bands, indices and
395  texture measures were applied to the pre-pruned imagery to assess if these provided a realistic
396  representation of PPC (Figure 10). The NIR band was found most useful for predicting PPC from
397  the pre-pruning image, based on a visual assessment of the tree crowns and their within tree
398  crown gaps. The NDVIshowed little variation in estimated PPC, most likely because of saturation
399  issues [54]. The use of the red edge band significantly overestimated PPC for many of the tree
400  crowns. Using the texture measures for estimating PPC provided unrealistically large PPC
401  variation and in many cases significantly underestimated PPC based on expectation (Figure 10).

0.9
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404 Figure 9. R? values based on the positive relationships between field measured PPC and image derived
405 spectral bands, indices and texture measures produced from imagery collected at 30, 50 and 70 m flying

406 height.
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409 Figure 10. Estimated PPC of the 89 pre-pruned tree crowns for which PPC was measured post-pruning. PPC
410 for the pre-pruned tree crowns was estimated using the best-fit equations based on the post-pruned image
411 and field data.

412 4.3 Pre- and Post-Pruning Tree Structure Comparison

413 The mapping of tree structural parameters before and after pruning enabled an assessment
414  of the impact of the pruning effects. A significant decrease in the average value of the tree
415  structural parameters was observed for the 189 trees within the plantation between pre- and post-
416  pruning. Decreases in the tree crown perimeter (1.94 m; 10.9%), area (3.49 m2; 25.9%), width (0.567
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417  m; 14.7%), 90t percentile tree crown height (0.616 m; 22.3%) and PPC (14.8%) were established
418  (Figure 11). According to [12], the recommended thinning size of a lychee tree is between 15% -
419  25% from its initial size. Hence, the pruning results based on all 189 mapped trees showed good
420  agreement with the recommendation. In most cases (179 out of 189 trees), a decrease was
421 observed in the tree structural measurements for the individual tree crowns. However, some of
422 the smaller and newly planted lychee trees (10 out of 189 trees) were not pruned, and hence the
423  structural measurements stayed the same or slightly increased.

424
PPC Post — [
PPCPre (R py W
Height Post ——JH
Height Pre —{T
Width Post —{THH
Width Pre 1T+
AreaPost ¢ I I e |
Area Pre [ I I |
Perimeter Post ' N N |
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425 Perimeter Width Height (m) / Area (m?) / PPC (%*10)

426 Figure 11. Pre- and post-pruning differences in minimum, Q1, median, Q3 and maximum values for the 189
427 mapped lychee trees for tree crown perimeter, area, width, 90t percentile height, and PPC measured from
428 the UAV imagery collected at 30 m height.

429 4.4 Effects of Flying Height Differences

430 The impact of flying height variations offers insight into the influence of scale and the
431  scalability of this UAV based approach to determine its applicability to larger orchards.
432  Differences in flying height only affected the comparison of pre- and post-pruning tree structure
433 slightly (Figure 12a). Tree crown height differences were highest when the imagery were
434 collected at 30 m height compared to 50 and 70 m height. A flying height of 30 m produced the
435  most accurate height estimates, given that the produced DSM and DTM were less accurate when
436  collected at increasing flying heights. The measurements of area and perimeter decreased with
437  increasing flying height because of the increasing pixel size, which made the automatically
438  derived object perimeter smoother and hence smaller, despite the added tree crown edge pixels
439  for the imagery collected at 70 m height that was discussed above. This also caused the differences
440  in mapped area and perimeter to decrease as a function of flying height, because of the smaller
441  range in values in these parameters at larger pixel sizes. The tree crown width measurements
442 derived at different flying heights were similar, showing a slight decrease as the flying height
443 (and hence the pixel size) increased, which also caused the differences before and after pruning
444 toslightly decrease with increasing flying height (Figure 12a).

445 PPC was generally most accurately estimated based on the imagery collected at 70 m,
446  although the average PPC difference was similar for all three flying heights (Figure 12b).
447  However, at a flying height of 70 m, the average minimum and maximum differences were
448  highest. Normally, at increasing pixel sizes, you would expect less spectral variability, i.e. a
449  smaller range of pixel values within individual tree crown objects, because of spectral averaging
450  of pixels covering a larger area [52]. This was attributed to the larger pixel size, which may have
451  caused mixed pixels along the edges of the delineated tree crowns. These mixed pixels may have
452  included parts of the shaded areas caused by tree shadows on the one side of the trees and parts
453  of the sunlit green grass on the other side of some of the trees.

454

16


http://dx.doi.org/10.20944/preprints201804.0198.v1
http://dx.doi.org/10.3390/rs10060854

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2018 d0i:10.20944/preprints201804.0198.v1

a 4
Jﬂ.J 030 m Flying Height B 50 m Flying Height W 70 m Flying Height
=~ 35
[=% ™~
c E
g2 3
E ©
w E 25
j L
Q oo
c 2
% E_ 1.5
- w
o 2 1
[=11]
5 E 05
0
Height Difference Area Difference  Perimeter Difference Width Difference
455
456
M 50
o 0130 m Flying Height
T 40
E— W 50 m Flying Height
8§ 30
- W70 m Flying Height
s
m
@ 20
S
§
@
10
g
]
]
£ 0
E Average Max Median
E
o -10
o
-9
20
457

458 Figure 12. (a) Pre- and post-pruning differences for the 189 field assessed lychee trees for the 90t percentile
459 tree crown height, area, perimeter, width; and (b) PPC, as a function of flying height.

460

461 There are clear management advantages to flying a UAV at a height of 70 m compared to 30 m, as it is
462 possible to cover a larger area in a single flight or to reduce the flying time for covering a set area.
463 Completing a flight mission more quickly also means that the risk to cloud shadow contamination is
464 reduced. Although doing this resulted in an increase in pixel size from 4.1 cm to 8.8 cm and resulted in a
465 compromise in tree height estimates using the Parrot Sequoia imagery, the mapping results of the vegetation
466 structural parameters were not significantly affected. The acquisition of imagery with an 8.8 cm pixel size
467 compared with 4.1 cm pixels will also reduce the size of the image data set more than fourfold, which will
468 subsequently decrease the image processing time. [25] mapped tree structural parameters of olive trees from
469 UAYV imagery collected at 50 and 100 m above ground level and only observed small reductions in their
470 predicted mapping accuracies, while significantly reducing the time of flight, the image orthomosaic
471  processing and the GEOBIA, with total used time reduced from 47 min to 13 min and from 5 h 15 min to 1
472 h 8 min for their multi-spectral and RGB imagery, respectively. Hence, in terms of verifying the results of a
473 pruning strategy on an orchard, there will likely be more efficiencies in choosing a flying height of 70 m,
474 without loss of fidelity. Developing UAV based mapping and monitoring approaches for assessment of tree
475 crop structure is also important for other types of tree crops, including mango, avocado and macadamia
476 trees, as these parameters can provide information to help growers in the further production and delivery
477 chain. This can ensure growers have enough personnel and equipment for fruit picking, have the right
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478 storage facilities, have a suitable number of cartons for packaging, and can organise the means for transport
479  and delivery [55].

480 5. Conclusions

481 Characterizing the impacts of pruning on tree structural parameters is required to inform
482  and enhance the management of orchards and improve crop productivity. We present an
483  innovative and novel approach that exploits multi-spectral UAV imagery to measure tree
484  structural differences pre- and post-pruning, and apply this to a small commercial lychee
485  plantation. The developed object-based image analysis approach was found to be particularly
486  useful for delineating individual tree crowns and deriving object shape and spectral and textural
487  information for correlation with field based measurements of tree structure. The multi-spectral
488  imagery was found to accurately assess pre- and post-pruning tree crown structure, including
489  tree crown perimeter, area, width, height and PPC. Tree crown perimeter was most accurately
490  mapped at a flying height of 70 m, while tree crown width measurements were similar at all three
491  flying heights. Tree height was most accurately mapped at a 30 m flying height, as larger flying
492  heights affected the accuracy of the derived DSM and DTM. Imagery collected at 70 m height
493 produced slightly higher correlation with field measured PPC for most predictor variables.

494 These results highlight that despite the compromise in accuracy of tree height estimates
495  (0.1936 m RMSE as opposed to 0.3568 m), a flying height of 70 m may be the best choice for
496  assessing pre- and post-pruning tree structural differences to gain efficiency in terms of flight
497  duration, area coverage, and image processing time, without losing a significant amount of
498  information. As an additional benefit, the proposed UAV based approach is likely to reduce costs
499  (compared with manual assessment) and increase consistency compared to traditional field based
500  estimates. Future research should focus on collecting and analysing similar data for other orchard
501  sites and for trees grown under different conditions, e.g. different tree ages, tree varieties, climatic
502  conditions, and pruning strategies, to test if the developed approach can be applied more
503  generally and the results remain consistent with broader application.
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