

1 Using Multi-Spectral UAV Imagery to Extract Tree 2 Crop Structural Properties and Assess Pruning 3 Effects

4 Kasper Johansen ^{1*}, Tri Raharjo ², Matthew F. McCabe ¹

5 ¹ Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Al Jazri
6 Building West, Thuwal, 23955-6900, Kingdom of Saudi Arabia; kasper.johansen@kaust.edu.sa,
7 matthew.mccabe@kaust.edu.sa.

8 ² Ministry of Agrarian and Spatial Planning, National Land Agency, Jalan H. Agus Salim 58, Jakarta
9 Pusat 10350, Indonesia; triraharjo.geo@gmail.com.

10 * Correspondence: kasper.johansen@kaust.edu.sa, +966-12-8028192

11 **Abstract:** Unmanned aerial vehicles (UAV) provide an unprecedented capacity to monitor the
12 development and dynamics of tree growth and structure through time. It is generally thought
13 that the pruning of tree crops encourages new growth, has a positive effect on fruiting, makes
14 fruit-picking easier, and may increase yield, as it increases light interception and tree crown
15 surface area. To establish the response of pruning in an orchard of lychee trees, an assessment
16 of changes in tree structure, i.e. tree crown perimeter, width, height, area and Plant Projective
17 Cover (PPC), was undertaken using multi-spectral UAV imagery collected before and after a
18 pruning event. While tree crown perimeter, width and area could be derived directly from the
19 delineated tree crowns, height was estimated from a produced canopy height model and PPC
20 was most accurately predicted based on the NIR band. Pre- and post-pruning results showed
21 significant differences in all measured tree structural parameters, including an average decrease
22 in tree crown perimeter of 1.94 m, tree crown width of 0.57 m, tree crown height of 0.62 m, tree
23 crown area of 3.5 m², and PPC of 14.8%. In order to provide guidance on data collection
24 protocols for orchard management, the impact of flying height variations was also examined,
25 offering some insight into the influence of scale and the scalability of this UAV based approach
26 for larger orchards. The different flying heights (i.e. 30, 50 and 70 m) produced similar
27 measurements of tree crown width and PPC, while tree crown perimeter, area and height
28 measurements decreased with increasing flying height. Overall, these results illustrate that
29 routine collection of multi-spectral UAV imagery can provide a means of assessing pruning
30 effects on changes in tree structure in commercial orchards, and highlight the importance of
31 collecting imagery with consistent flight configurations, as varying flying heights may cause
32 changes to tree structural measurements.

33 **Keywords:** UAV; multi-spectral; lychee; pruning; tree crop structure; change detection

35

36

37 **1. Introduction**

38 In order to increase the production of any agricultural system, activities such as crop
39 monitoring for assessing growth, stresses, pests, fertiliser, water, nutrient condition and irrigation
40 are all required [1,2]. In addition to this, post-harvesting handling, such as tree pruning, has also
41 been shown to be beneficial for enhancing yields [3]. Pruning includes cutting and trimming of
42 branches, and as such it affects the structural attributes of tree crops. Pruning of fruit trees
43 promotes new growth [4], makes manual fruit-picking easier, and increases light interception,
44 which is important for fruit quality [5,6]. Tree pruning has also been shown to have implications
45 for crop harvest and nutrition, pest and disease control, soil protection and irrigation strategies
46 [7]. Increasing flowering, fruit colour, soluble solids concentrations and flower bud formation,
47 and decreasing titratable acid content are other benefits linked to pruning of fruit trees [3,8-10].

48 However, tree pruning is a costly practice, especially if done using manual labour, which is
49 usually the case for small orchards [11]. Often, tree crown reduction goals are set to optimise
50 pruning [12], but the assessment to determine if these goals have been achieved is generally based
51 on manual measurement or empirical models, which are time-consuming and potentially
52 inconsistent [4]. Hence, there is a need for more efficient and consistent tree crop pruning
53 monitoring strategies that can be applied in a consistent manner at the orchard level.

54 Remote sensing is ideally suited for monitoring tasks and has the benefit of providing multi-
55 temporal information on tree structure, and changes in these, over time [13]. However, as many
56 plantations are relatively small (1-50 ha) [8], the use of high spatial resolution satellite and
57 airborne imagery quickly becomes cost-prohibitive [14]. The rapid development of Unmanned
58 Aerial Vehicles (UAVs) and miniaturised sensors in the last decade is now offering an alternative
59 to more traditional satellite and airborne based remote sensing [15,16]. This is largely due to the
60 fact that UAVs are light-weight, low-cost, suitable for autonomous data collection, and highly
61 deployable, allowing remotely sensed imagery to be collected at any time for smaller areas (< 1
62 km²), subject to suitable weather conditions [4].

63 The mapping of tree structural parameters such as tree height and crown size provides key
64 indicators for plant growth, biomass, yield, as well as for assessing pruning practices [4,17,18].
65 As high spatial resolution imagery is required for assessing the structure of individual tree
66 crowns, UAV imagery is ideally suited for this task. UAV imagery has been used in many
67 different agricultural settings [14], but only to a limited extent for tree crops. For instance,
68 measurements of plant height is a common UAV application because of the ability to produce
69 photogrammetrically derived Digital Surface Models (DSM) from Structure-from-Motion of
70 overlapping photos with different view angles of the same feature [4,19]. Plant height can be used
71 to model biomass, which is crucial information for predicting crop yield [20-22].

72 Most UAV based tree crop mapping applications have focused on olive trees [4,19,23-25].
73 These studies, which all achieved high correlations between field and image derived structural
74 parameters, focused on deriving chlorophyll and leaf area index using a six-band multi-spectral
75 Tetracam [23], and map tree height, crown diameter, volume and area using RGB and multi-
76 spectral imagery [4,19,24,25]. [4] used UAV based RGB imagery to map tree position, projected
77 crown area, height and volume of olive trees before, after and one year after pruning. Tree crown
78 structure was assessed for trees subjected to three different kinds of pruning techniques, i.e.
79 mechanical, adapted and traditional. It was found that trees subjected to more aggressive pruning
80 experienced much more subsequent vegetative development for the three studied pruning
81 techniques.

82 In forestry applications, local maxima identification techniques have been used for
83 identification in delineation of individual tree crowns [26-28], and these techniques have also
84 been used successfully by [18] using UAV image data for assessing of tree height and crown
85 diameter. Recently, segmentation approaches and geographic object-based image analysis
86 (GEOBIA) of high spatial resolution imagery have become the preferred means for delineating
87 individual tree crowns, due to the additional information available in the

88 classification/delineation process in terms of shape, context, class-related and multi-scale
89 information [29-33]. Because of the suitability of object-based image analysis for information
90 derivation from high spatial resolution imagery [34], several UAV based studies are now starting
91 to incorporate GEOBIA into their image processing workflow [4,17,18,25,35-37]. [24] used an
92 object-based supervised classification using the Classification and Regression Tree (CART)
93 algorithm for delineating olive trees. [25] developed a simple object-based mapping approach
94 based on thresholding olive tree crown DSM values in relation to neighbouring ground for tree
95 crown delineation. The object-based mapping approach developed by [4] was based on that by
96 [25]. This new approach heavily relied on the generated DSM for identifying the tree crown
97 boundaries. However, as photogrammetrically point cloud generated DSMs often do not align
98 perfectly with tree crown edges, as shown in this research, incorrect measurements of crown area
99 and volume may be obtained if these edges are not adjusted based on spectral information. In
100 addition, [4] reported that only 80% (512) of the trees within the orchard were correctly photo-
101 reconstructed on the three image dates, which highlights the need to include spectral information
102 as well in the object-based tree crown delineation process rather than heavily relying on the
103 generated DSM.

104 There is scant literature on the use of UAVs for mapping the influence of pruning on tree
105 crop structural development and change [4]. To expand upon this lack, this research paper
106 explores a novel and innovative approach to assess changes in tree structure, i.e. tree crown
107 perimeter, width, height, area and Plant Projective Cover (PPC), using multi-spectral UAV
108 derived imagery collected before and after pruning. To do this, we focus our study on the analysis
109 of a commercial lychee plantation in eastern Australia. An object-based tree crown delineation
110 approach is introduced, representing an additional novelty that addresses limitations of other
111 UAV based studies [e.g. 4,25]. Given the lack of any systematic evaluation of how UAV based
112 data acquisition configurations, including varying flying heights, affect image derived
113 information extraction of tree structure, a secondary objective was to assess any variations in the
114 results as a function of various flying heights (30 m/4.1 cm pixels, 50 m/6.5 cm pixels and 70 m/8.8
115 cm pixels).

116 2. Study Area

117 The study was undertaken across a private lychee plantation located 25 km southeast of
118 Brisbane, Australia (Figure 1). The lychee trees belong to the Kwai May Pink cultivar and were
119 between 15 to 17 years of age, excluding 10 newly replanted trees. Each tree was planted
120 approximately 4 m apart. The area has an elevation of 150 m above mean sea level and an average
121 monthly mean temperature ranging from 15.1°C to 26.0° C, and an average annual rainfall of 1079
122 mm [38]. The orchard, consisting of 189 lychee trees, is surrounded by eucalypt forest.
123

124

125

126 Figure 1. (a) Study area location (yellow dot) approximately 25 km southeast of Brisbane; (b)
127 overview photo of study site; and (c) field photo of the lychee trees and poles used for protective
128 nets to cover the trees.

129 **3. Materials and Methods**

130 *3.1 Field Data*

131 Field based measurements of tree height, crown width, crown perimeter and PPC from 89
132 out of the 189 lychee trees were collected on March 4th 2017. Tree height was measured as the
133 distance from the ground to the top of the tree crown, using a retractable measuring staff. Crown
134 perimeter was measured using a tape measure surrounding the widest part of the tree crown.
135 Tree crown width was measured with a tape measure along the widest axis of each tree. For
136 measuring PPC, four representative photos were taken underneath each of the 89 trees looking
137 straight up. The photos were taken close to the ground and approximately half way between the
138 tree trunk and the edge of the tree crown perimeter. These photos were analysed to determine
139 PPC, i.e. the vertically projected fraction of leaves and branches in relation to sky. Measurements
140 of PPC were derived using a program written in IDL® [39] to convert vertical digital photos to
141 measurements of PPC based on the principle described by [40]. The derived PPC values of the
142 four photos for each tree were then averaged to determine a representative PPC measure for each
143 tree crown.

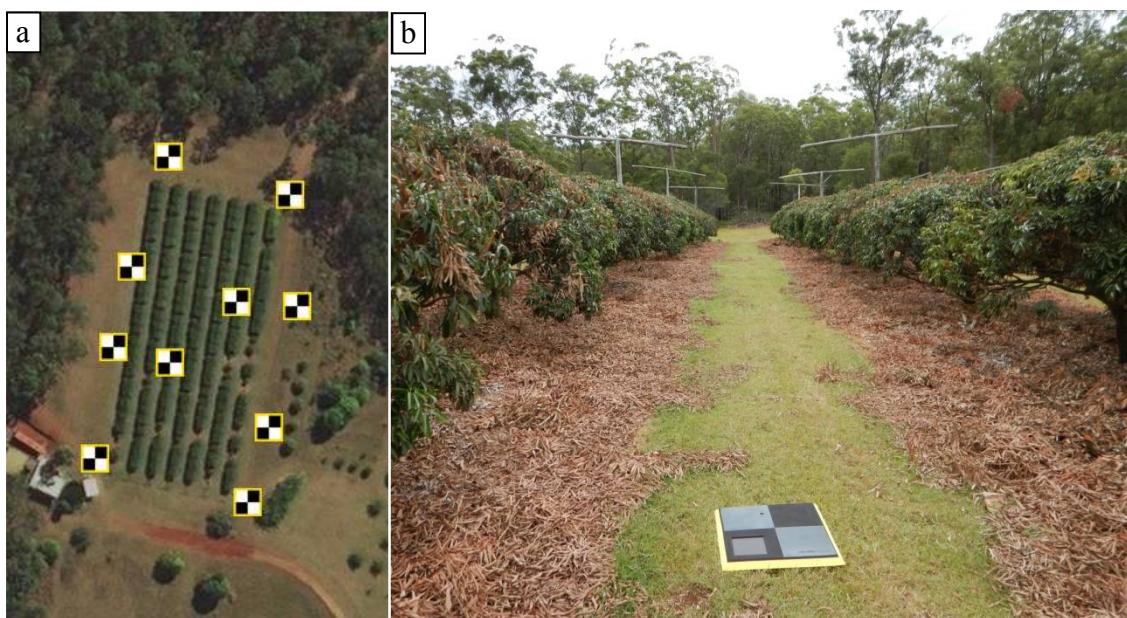
144 *3.2 UAV Data and Pre-Processing*

145 UAV multi-spectral (green: 530-570 nm; red: 640-680 nm; red edge: 730-740 nm; and Near
146 Infrared (NIR): 770-810 nm) imagery was collected via a Parrot Sequoia sensor mounted to a 3DR
147 Solo quadcopter for the lychee plantation on February 11th 2017 (pre-pruning) and March 4th 2017
148 (post-pruning). The Tower Beta Android application was used to autonomously collect imagery
149 acquired with 80% sidelap and 85% forward overlap, at heights above ground level of 30, 50 and
150 70 m, producing 360, 278, and 202 photos per band, respectively.

151 The Parrot Sequoia imagery was processed in Pix4D Mapper to produce an orthomosaic, a
152 DSM and a DTM for each of the six flights, i.e. two collection dates at three different heights. The
153 DSM was created based on the generated point cloud and the inverse distance weighted
154 interpolation method in Pix4D Mapper. The DTM was generated using the automatic function in
155 Pix4D Mapper that uses the raster DSM and computes a classification mask of features above
156 ground to generate a raster DTM based on ground features only. A canopy height model (CHM)
157 was produced by subtracting the DTM from the DSM. The three flying heights produced
158 orthomosaics with pixel sizes of approximately 4.1 cm, 6.5 cm and 8.8 cm, respectively.

159 To ensure an accurate georectification of retrieved imagery, 10 AeroPoints (i.e. Global
160 Navigation Satellite System enabled ground control points, 54 cm x 54 cm x 3.5 cm in size,
161 designed specifically for the geo-referencing of UAV imagery) were evenly spaced within the
162 study area and used for geo-referencing of the imagery and for improving the Structure-from-
163 Motion 3D model in Pix4D Mapper (Figure 2). These AeroPoint units are Global Navigation

164 Satellite System enabled ground control points, 54 cm x 54 cm x 3.5 cm in size, designed
165 specifically for the geo-referencing of UAV imagery. The coordinate location of each AeroPoint
166 was recorded for more than 3 hours, automatically uploaded after the flights using a mobile
167 phone hotspot, and subsequently post-processed using the proprietary Propeller® Post
168 Processed Kinematic network correction based on their nearest base station [41].
169



170

171 Figure 2. (a) Distribution and (b) in-situ field photo of AeroPoints used for geo-referencing of the
172 UAV imagery.

173 Eight radiometric calibration targets were produced using Masonite boards painted with
174 three coats of matt Dulux Wash and Wear paint in white, six scales of grey and in black [42]. The
175 reflectance values of the eight targets were measured with an ASD FieldSpec 3 spectrometer
176 (Figure 3) and confirmed to be near Lambertian. The RMSE of reflectance (scaled from 0-100%)
177 ranged from 0.12% to 0.88%, between 500-850 nm, corresponding to the spectral range of the
178 Parrot Sequoia sensor, based on spectrometer measurements obtained at 13 different angles, i.e.
179 at nadir and at approximately 15°, 30° and 45° off-nadir angles viewed from north, south, east and
180 west. Off-nadir view angles beyond 45° were not assessed, as the Parrot Sequoia sensor has
181 vertical and horizontal field of views of 48.5° and 61.9°, respectively. Hence, the 45° off-nadir
182 angle of the field spectrometer was well within the Parrot Sequoia sensor field of view, while still
183 allowing for wind induced pitch, roll and yaw effects during each flight mission. Based on the
184 relationship between the field derived spectrometer measurements, matched to each of the four
185 spectral Parrot Sequoia bands, and the digital numbers of the eight radiometric calibration targets
186 within the orthorectified multi-spectral imagery, the digital numbers were converted to at-surface
187 reflectance using an empirical line correction in the ENVI 5.3 software [43].
188

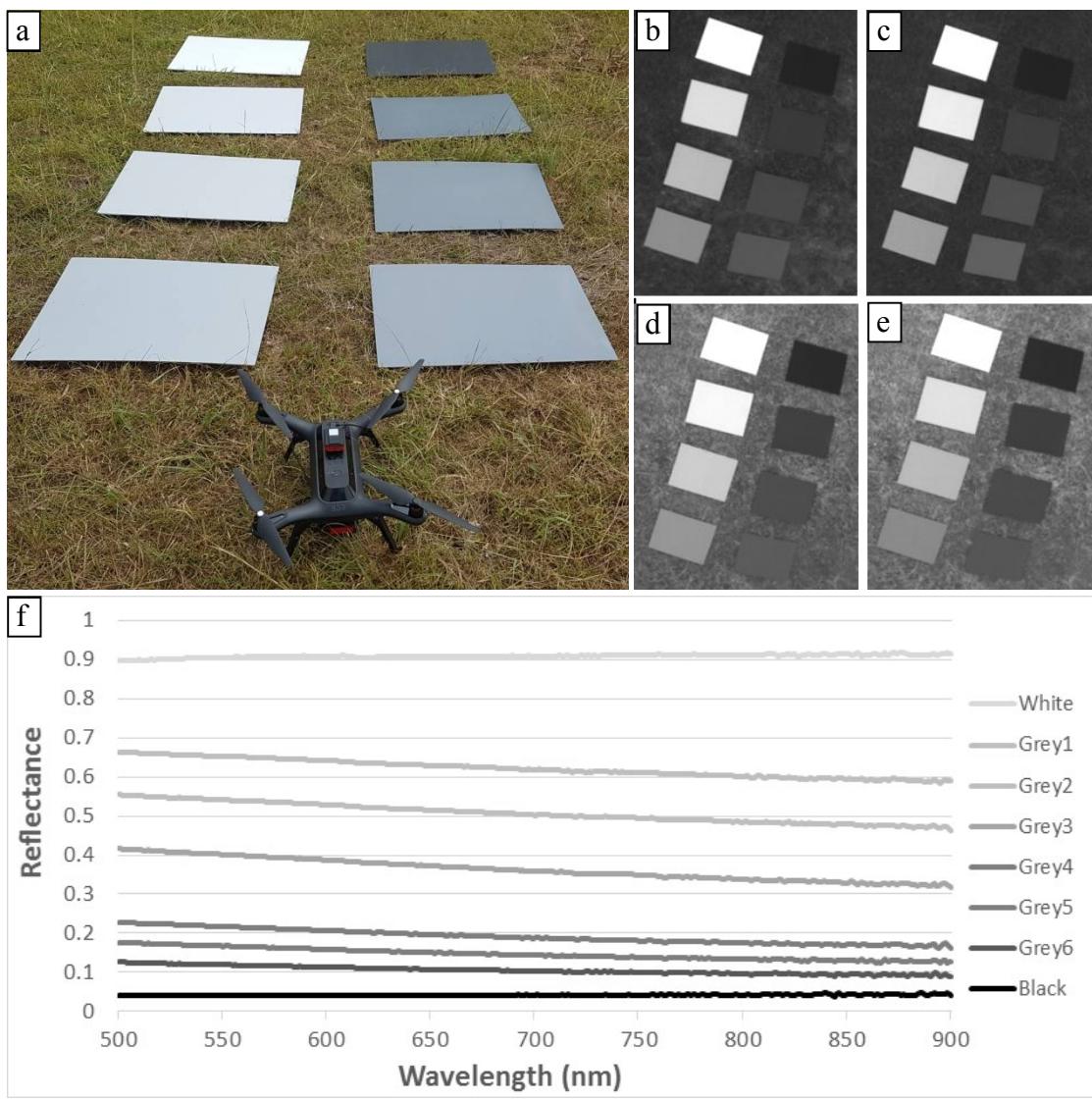
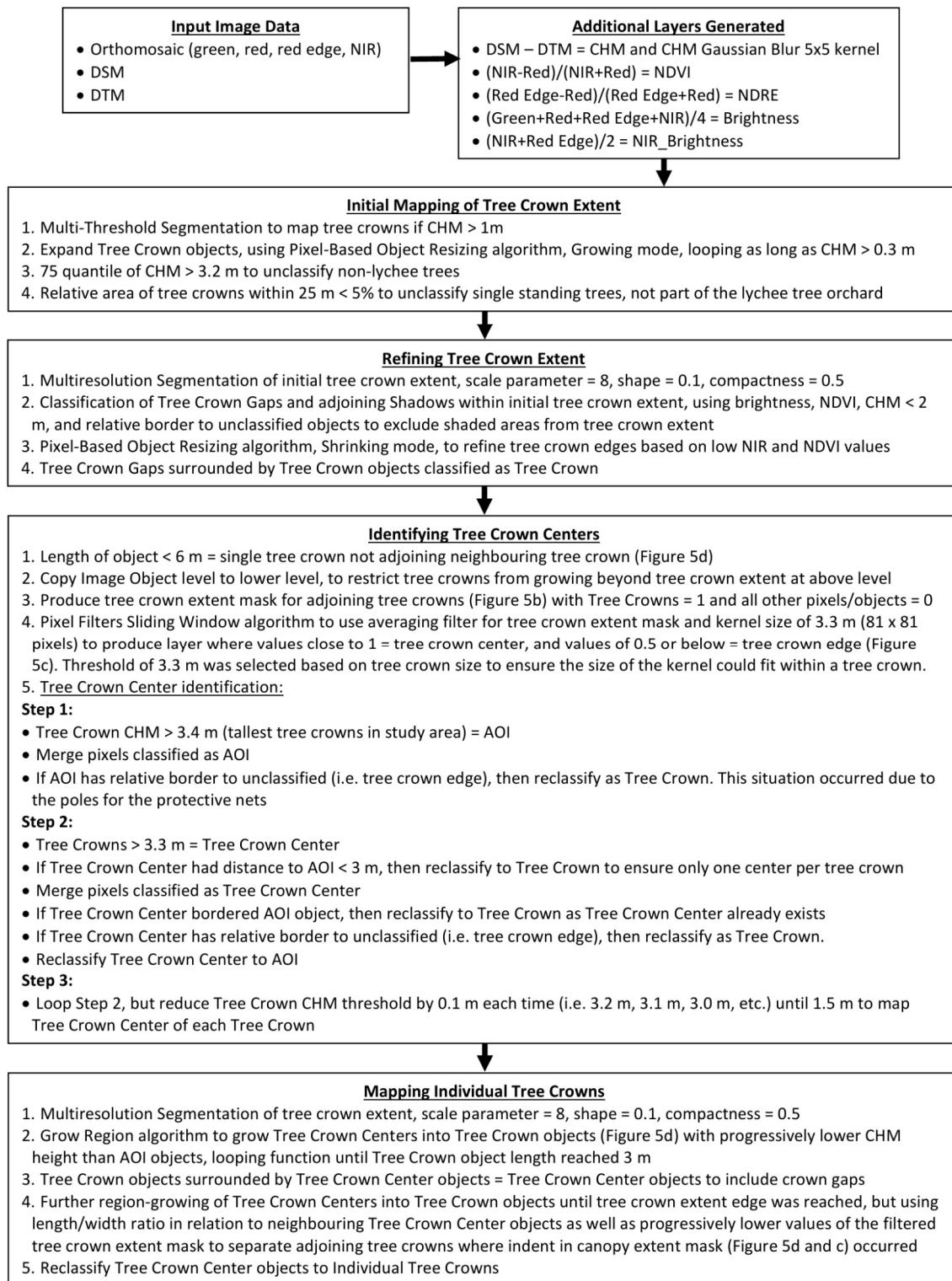


Figure 3. (a) Eight radiometric calibration targets and the 3DR Solo quadcopter; (b) green band; (c) red band; (d) red edge band; (e) NIR band; and (f) corresponding reflectance signatures between 500 and 900 nm of the eight targets.

3.3 Geographic Object-Based Image Analysis

GEOBIA and the eCognition Developer 9.2 software were used to automatically delineate the individual tree crowns based on the CHM and the multi-spectral orthomosaic. An object-based mapping approach was deemed most suitable because of the small pixel size in relation to the tree objects being mapped [34]. A detailed flowchart of the GEOBIA processing steps is presented in Figure 4. Tree crowns were initially identified for those areas in the CHM > 1 m. Tree crown objects were then grown outwards based on progressively lower CHM thresholds. The tree crown edges were adjusted based on spectral information. Once the tree crown extent had been mapped, the approximate tree crown centre of each tree was identified based on the CHM by searching for local maxima within the mapped tree extent. To avoid having multiple local maxima within a single tree crown, only the highest CHM value within a radius of 3 m was considered. Subsequently, these tree crown centres were grown outwards as long as the tree crown height decreased and until the length of each tree crown object reached 3 m. A mean filter was used to smooth the CHM for this region-growing step in order to avoid issues due to variations in tree crown height caused by irregular branches increasing tree height within parts of individual tree crowns [18,33].

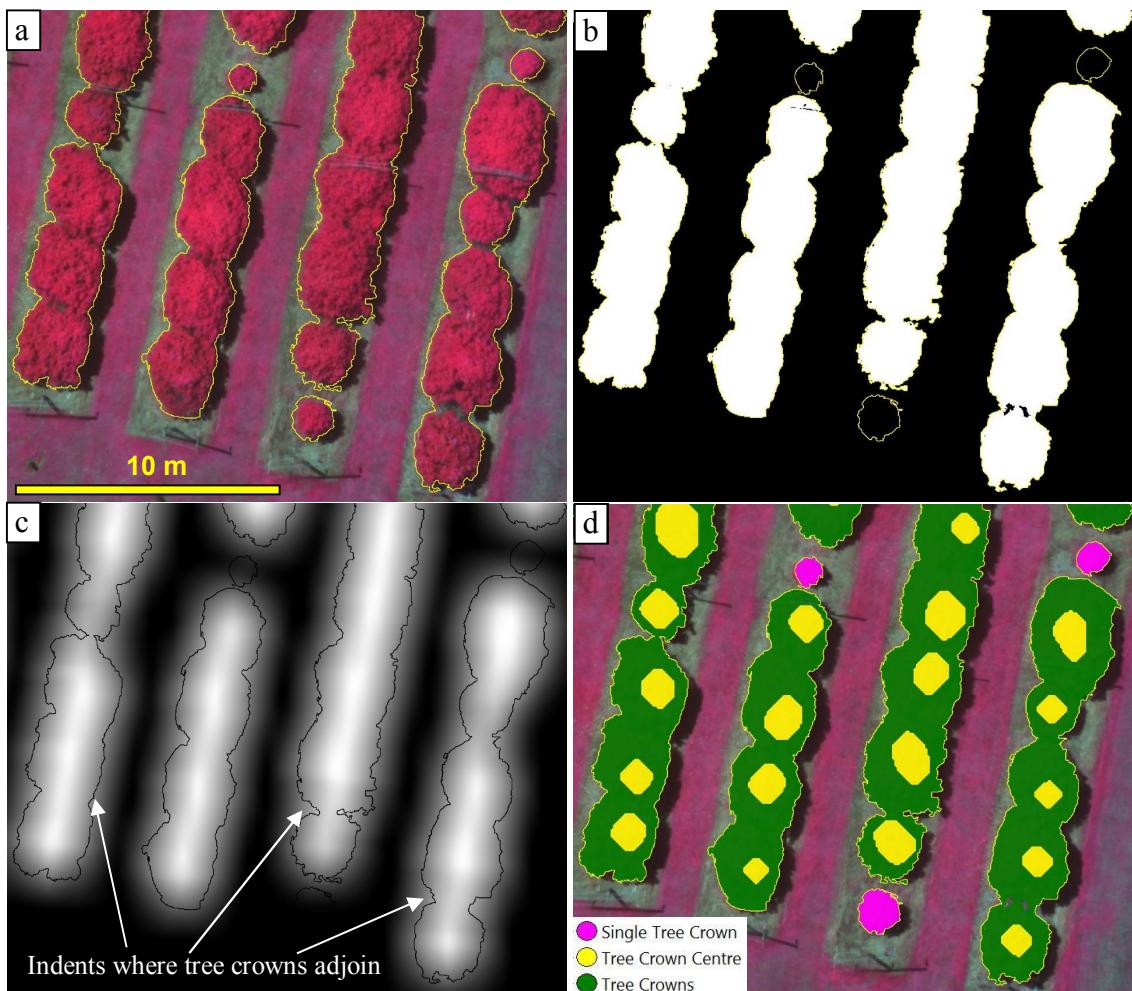
211 Next, various class-related context information was used to refine the delineation of
212 individual tree crowns. For example, in some cases single tall branches created local high points
213 in the smoothed CHM, which made the region-growing algorithm grow around the local high
214 points. In those cases, where excluded objects within the mapped tree extent were surrounded
215 by objects classified as a single tree crown, these objects were then classified as part of the single
216 tree crown. Also, edges of trees were expanded to include the full extent of the mapped tree extent
217 without the requirement of having progressively lower CHM values. Unclassified objects
218 appearing in between two neighbouring adjoining tree crowns were assigned to a respective tree
219 crown based on the width-length ratio of these individual tree crowns and the values of the
220 filtered canopy extent mask. A tree crown having a smaller length-width ratio than its
221 neighbouring and adjoining tree crown was allowed to grow into the remaining unclassified
222 objects between the two tree crowns as long as the filtered canopy extent mask values of the
223 unclassified objects were decreasing. Using the filtered canopy extent mask assumed that an
224 indent in the canopy extent mask would occur between each adjoining tree crown (Figure 5). A
225 looping function was used to progressively assess the width-length ratio of the neighbouring and
226 adjoining tree crowns to increase the likelihood of objects being assigned to the tree crown they
227 belonged to. These assumptions were not required for the post-pruned trees, as neighbouring
228 tree crowns did not adjoin in most cases.



229

230

Figure 4. Flowchart of GEOBIA processing routine to map individual tree crowns.



231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
Figure 5. (a) False colour (Green, Red, NIR) image of pre-pruned lychee trees; (b) tree crown extent map; (c) tree crown extent map exposed to averaging filter with kernel size of 81 x 81 pixel; and (d) single tree crowns and tree crown centres being grown into tree crowns.

The 89 field assessed tree crowns, representing post-pruning condition, were manually delineated from the orthomosaic for validating the automatically delineated tree crown areas at the three different flying heights. The approach suggested by [44] and applied by [25] was used to assess the classification accuracy based on three classes, i.e. correctly mapped, omission error, and commission error in terms of object area.

3.4 Tree Crown Parameter Extraction

Based on the delineated tree crowns, a measure of their perimeter, area, width and height could automatically be derived in the eCognition Developer software. The image derived parameters were directly related to the corresponding field measurements of perimeter and tree crown width. However, tree crown area was not measured in the field, but was included for the assessment, comparing pre- and post-pruning structure. Although the maximum tree height was measured in the field, the 90th percentile of tree crown height was extracted at the individual tree crown object level to remove potential effects of the poles next to some of the trees, which are used for placing protective nets over the trees (Figure 1). These poles were taller than the trees and hence had to be removed from the image based estimates of height. Using the 90th percentile of tree crown height addressed this problem, and as the tree tops were fairly flat, it did not significantly lower the image derived tree height measurements.

253 The spectral bands, derived vegetation indices and co-occurrence texture measures were
254 used to assess the correlation with the field photo derived PPC measurements. The spectral bands
255 included the green, red, red edge and NIR bands. Derived vegetation indices included the NDVI,
256 the Normalized Difference Red Edge Index (NDRE), the average brightness of all four spectral
257 bands, and the average brightness of the red edge and NIR bands. Texture is the frequency of
258 tonal change in an image. Second-order statistics derived from image spatial grey level co-
259 occurrence matrix (GLCM) texture measures assume that information in an image is contained
260 in the overall or average spatial relationship between pixel values (grey tones) [45-47]. The co-
261 occurrence texture measures were calculated at the individual tree crown object level in the
262 eCognition Developer software and included the Homogeneity, Contrast, Dissimilarity and
263 Standard Deviation co-occurrence texture measures based on all four spectral bands [48]. All of
264 these object variables were extracted for the 89 field assessed trees as a shapefile and combined
265 with the field based measurements. PPC measurements were derived based on the best
266 performing relationship with image extracted parameters for the post-pruned tree crowns. This
267 relationship was used to convert the pre-pruning image into a map of PPC. For the comparison
268 of pre- and post-pruning tree structure, the image derived maps with the optimal results in terms
269 of flying height / pixel size were used, including all 189 mapped trees.

270 **4. Results and Discussion**

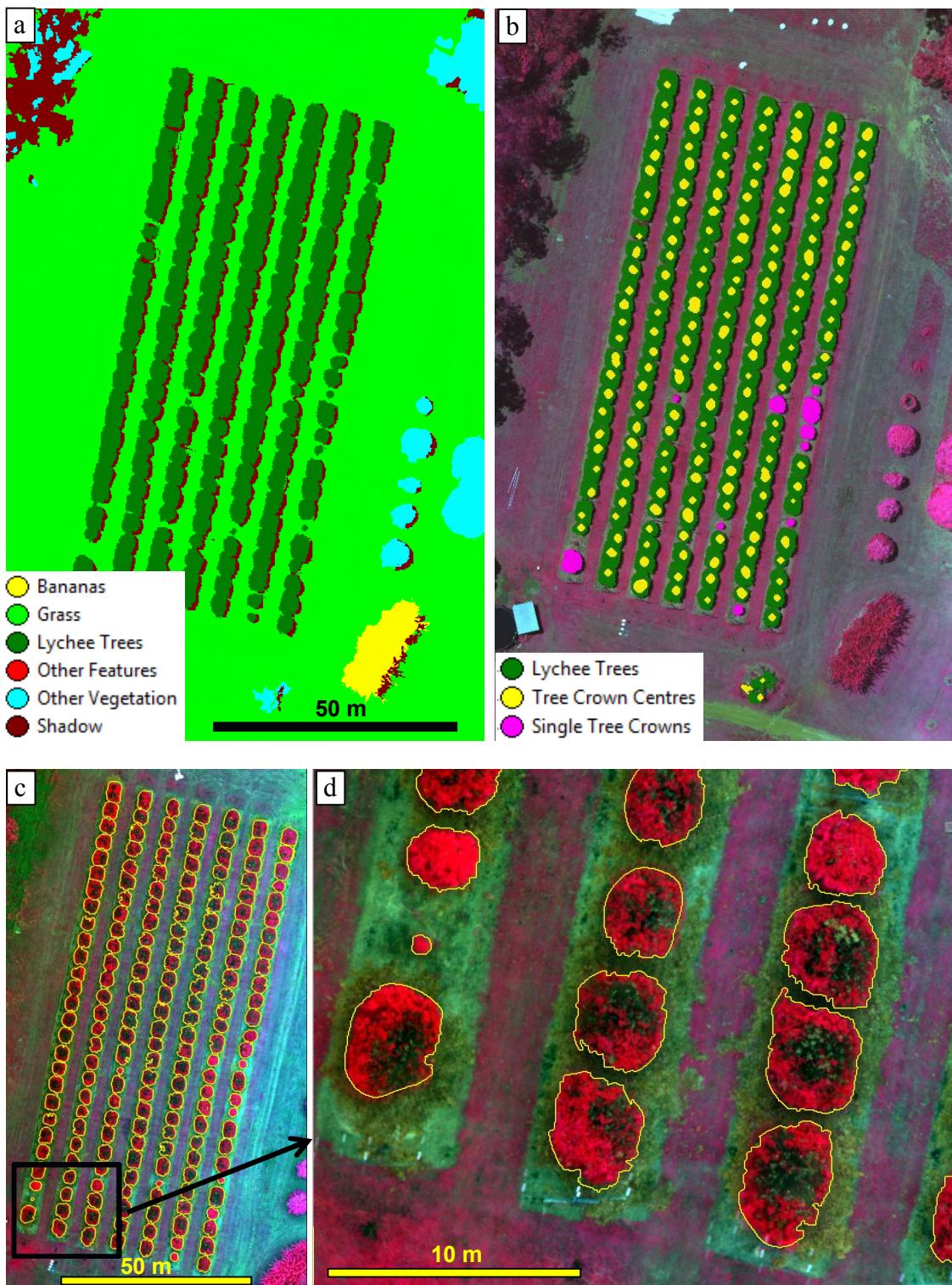
271 The results proved the importance of the tree crown delineation process, as this process
272 enabled the extraction of tree structural parameters used to assess changes before and after
273 pruning at the individual tree crown level. This also enabled an evaluation and comparison of
274 the results derived from the UAV flights undertaken at three different flying heights.

275 *4.1 Tree Crown Delineation*

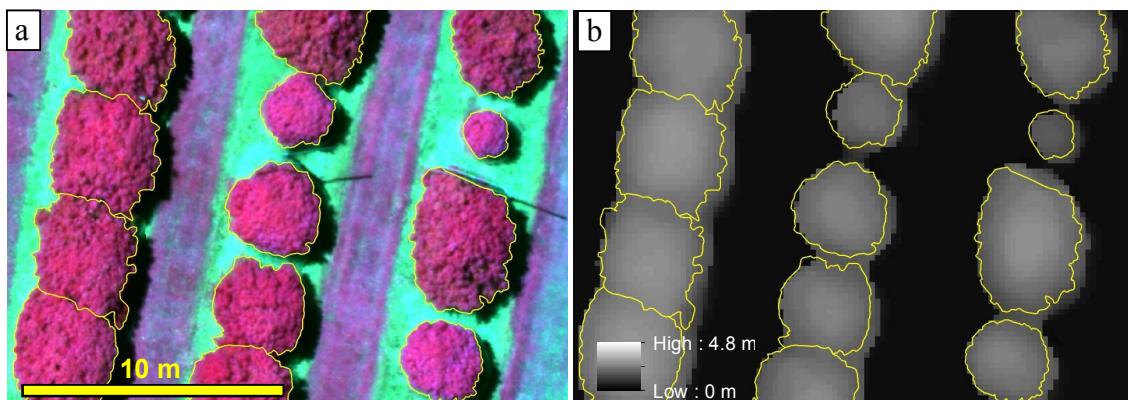
276 Since the derivation of tree structural parameters such as crown perimeter, area and width
277 rely on the accuracy of the tree crown definition, the automated delineation of these using
278 GEOBIA is a key step. As in other studies [4,18,22,25], the CHM was required for identifying
279 individual tree crown centres and determining where the edges of two adjoining tree crowns
280 were. However, in previous studies [25] adjoining tree crowns, forming a hedgerow has proven
281 problematic to delineate. In this study, this problem was solved by using the length-width ratio
282 of the tree crowns and the filtered tree crown extent mask, which were found to be essential for
283 determining which objects, occurring between adjoining trees, belonged to which tree crowns.
284 This was particularly the case for the pre-pruned tree crowns. Post-pruning, most of the tree
285 crowns did not adjoin, and hence fewer assumptions had to be made to determine what objects
286 belonged to each individual tree crown (Figure 6).

287 For tree crown delineations based on the imagery collected for the pre- and post-pruned
288 lychee trees, all 189 lychee trees within the plantation were correctly identified. To achieve this
289 accuracy, it was essential not only to rely on the CHM, but also to adjust tree crown edges based
290 on the optical bands, as the tree crown borders often do not align with the DSM/CHM height
291 information (Figure 7). Hence, while other eCognition Developer based approaches may have
292 been computationally simpler to implement [4], such an approach would not have produced
293 accurate results when applied to this research study. The accuracy assessment of the 89 manually
294 delineated tree crowns investigated here showed that, on average, 98.6% of their area
295 corresponded to that of the automatically delineated tree crowns, with an average error of
296 omission of 1.4% and average error of commission of 2.2% (for the data set collected at 30 m flying
297 height). The error of omission was reduced to 1.2% and 0.7%, while the error of commission
298 increased to 2.4% and 3.1% for the data sets collected at 50 m and 70 m flying height, respectively.
299 These results are well within reported tree crown delineation accuracies achieved using LiDAR
300 data [49]. The slightly larger error of commission observed as a function of increased flying height

301 was attributed to the larger pixel size and how the corresponding DSMs were calculated,
 302 essentially resulting in the inclusion of an additional edge pixel surrounding the tree crowns with
 303 8.8 cm pixels (70 m flying height) compared to the manually delineated tree crowns (Figure 6).
 304 This is a common characteristic when increasing the pixel size for tree crown delineation [28].
 305



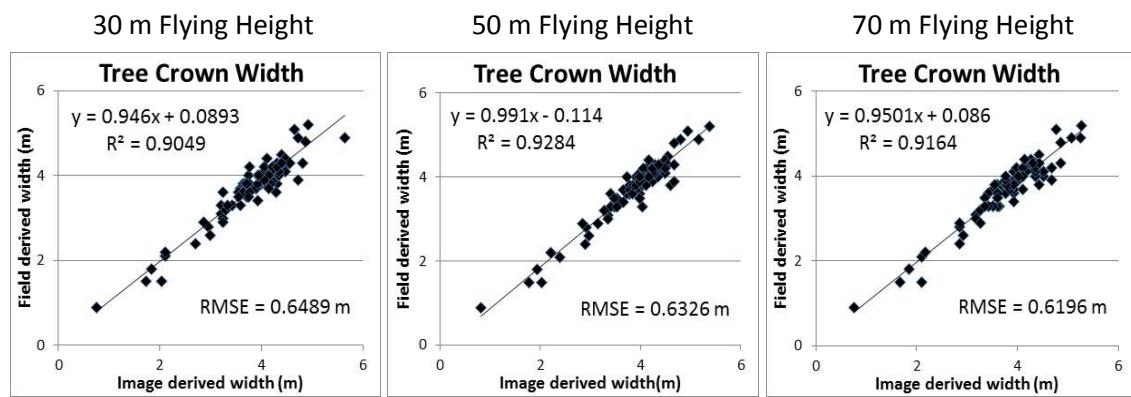
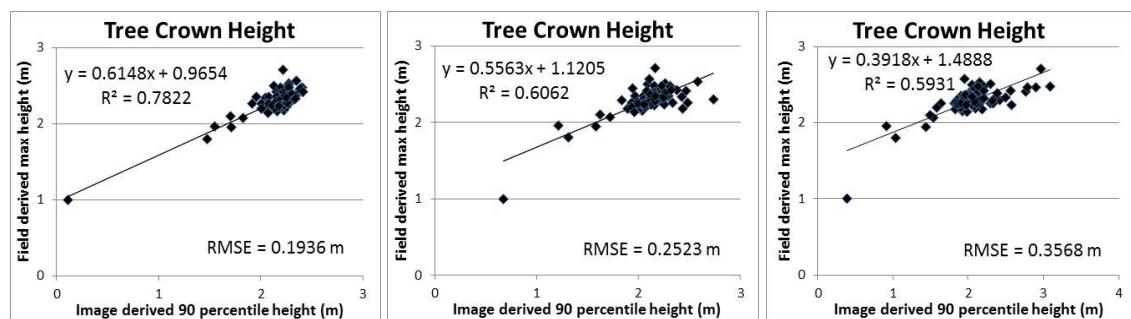
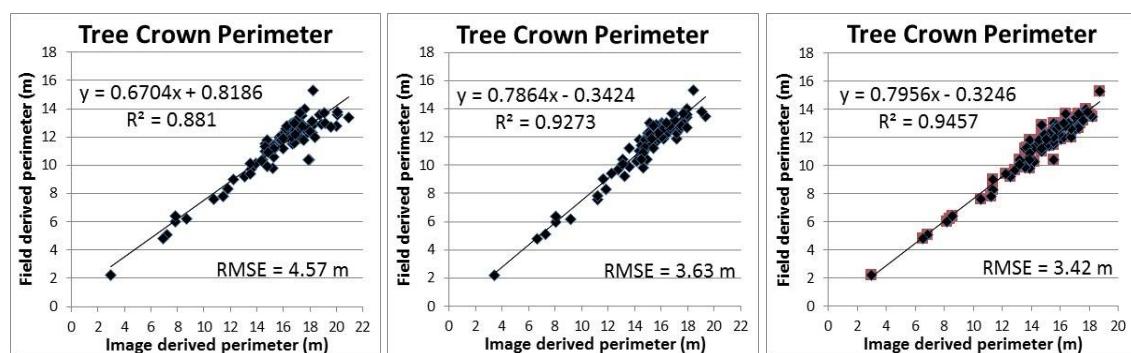
308
 309 Figure 6. (a) Land-cover map, showing the mapped extent of pruned lychee trees; (b) identification of tree
 310 crowns centres and single tree crowns not adjoining neighbouring tree crowns; (c-d) results of the lychee tree
 311 crown delineation (yellow outlines) produced using GEOBIA.
 312



313
314 Figure 7. (a) False colour (NIR, Red, Green) orthomosaic; and (b) corresponding CHM of lychee trees post-
315 pruning, including the GEOBIA delineation result (yellow outlines).

316 *4.2 Mapping of Tree Structure*

317 In addition to tree crown area, perimeter and width could be directly derived based on the
318 delineated tree crowns. Tree crown perimeter measurements decreased slightly with increasing
319 flying height due to the larger pixel size, producing a smoother crown edge delineation that was
320 less affected by irregular branches along the tree crown edges. Flying at 70 m produced the
321 highest R^2 value of 0.95 ($n = 89$) and the lowest RMSE of 3.42 m for mapping tree crown perimeter,
322 as the smoothing of the tree crown delineation caused by the larger pixels corresponded to the
323 way field based measurements of perimeter were obtained. Tree crown perimeter was
324 overestimated in all cases and the RMSE varied from 3.42 m to 4.57 m. Although the larger pixel
325 size of 8.8 cm (70 m flying height) produced a smoother outline of the tree crowns, corresponding
326 to the way the field measurements were derived, an additional edge pixel surrounding the tree
327 crowns with 8.8 cm pixels was still included, causing an overestimation of the perimeter (Figure
328 8). The different flying heights produced similar measurements of tree crown width with R^2
329 values of 0.90 - 0.93 ($n = 89$) and a RMSE of 0.62 - 0.65 m (Figure 8).
330

331
332333
334335
336

337

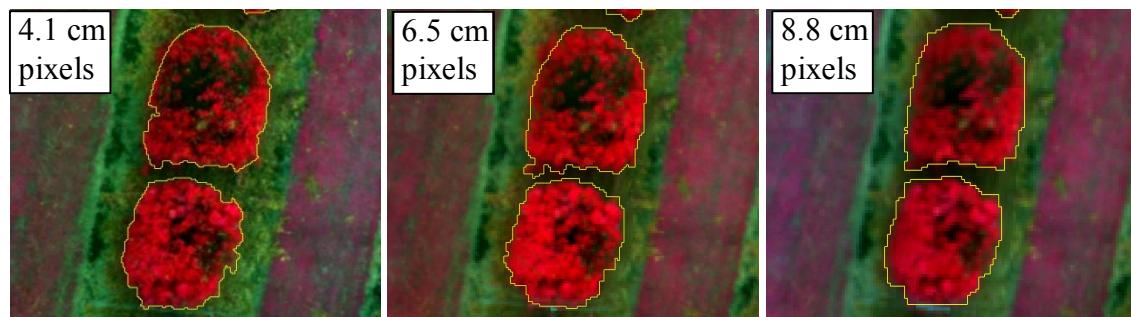
338
339
340

Figure 8. Relationships between field and image derived tree crown width, height and perimeter, and depiction of how the increasing pixel size affected the delineation of the pruned lychee tree crowns.

341
342
343
344
345

With increasing flying height, image derived measurements of tree crown height were increasingly underestimated. For the three CHMs produced at the three different flying heights, a less accurate DTM and an overall lowering of the DSM height of tree crowns occurred with increasing flying height. The highest R^2 value of 0.78 (with an RMSE of 0.19 m) was produced at a flying height of 30 m for estimating tree height. At flying heights of 50 and 70 m, the R^2 value

346 decreased to 0.61 and 0.59, with an RMSE of 0.25 m and 0.36 m, respectively (Figure 5). The
 347 RMSEs are similar to those reported by [19, 25], who also assessed the effects of spatial resolution
 348 on DSM generation and tree height quantification using UAV imagery, but for olive trees. In [19],
 349 the tested pixel sizes were 5, 20, 25, 30, 35, 40, and 50 cm, and it was found that a significant
 350 decrease in R^2 values and RMSE occurred at pixel sizes larger than 30 cm. However, those pixel
 351 values were derived from resampling of UAV imagery collected at the same flying height as
 352 opposed to our study where three different flying heights were used. A change of flying height
 353 will affect the viewing geometry of the study area and hence the ability to reconstruct objects 3-
 354 dimensionally. At lower flying heights, more extreme view angles of ground objects (in our case
 355 lychee trees) are achieved, producing a larger parallax effect [50]. The reduced effect of parallax
 356 at 70 m flying height may have caused the observed lowering of the DSM tree height. Also the
 357 decrease in image spatial resolution with increased flying height may have caused local height
 358 points, e.g. from single tree branches, to be missed in the point cloud generation used for the DSM
 359 construction.

360 While different growing conditions, i.e. different lychee tree varieties, climatic conditions,
 361 and pruning strategies, may influence the results and hence should be tested in future studies,
 362 tree age and height are the main differences likely to be encountered between different orchards
 363 in our particular study region. Ten of the lychee trees were younger and hence smaller than the
 364 remaining 179 trees at this study site. Assessing only those 10 trees, it can be seen in Table 1 that
 365 the RMSE of their height was higher than those in Figure 6, which was based on all 89 field
 366 assessed trees. This indicates that the height for shorter and smaller trees were less accurately
 367 mapped, and in all cases height was underestimated. This is similar to the findings of [25], where
 368 underestimation of tree height occurred for shorter trees. Tree crown width and perimeter on the
 369 other hand were mapped with significantly lower RMSE for the 10 younger trees. As these trees
 370 were smaller and hence had a smaller perimeter, there was a shorter distance along which the
 371 boundary line of the automatic tree crown delineation could appear irregular, due to branches
 372 and other tree structural characteristics. This, and the absence of any adjoining tree crowns due
 373 to the smaller crowns, also caused the width to be more accurately mapped. This indicates that
 374 tree crown height may be less accurately mapped for younger and shorter trees, while tree crown
 375 width and perimeter may in fact be mapped with higher accuracies for smaller trees.
 376

377 Table 1. Root Mean Square Errors of mapped lychee tree crown height (90 percentile), width and
 378 perimeter for the 10 youngest trees assessed against field data, post-pruning.

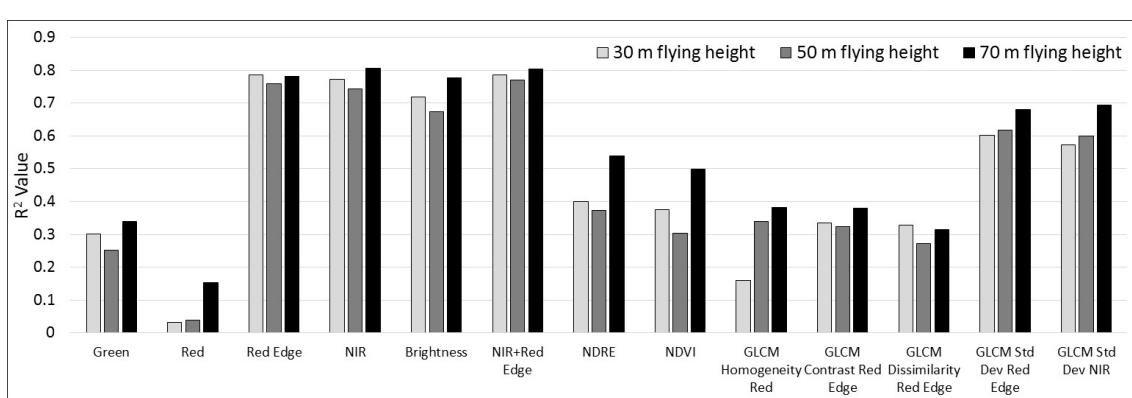
Flying Height (m)	Tree Height (m)	Crown Width (m)	Crown Perimeter (m)
30	0.3860	0.2280	2.5105
50	0.3934	0.2839	2.6700
70	0.6374	0.2604	2.3672

379

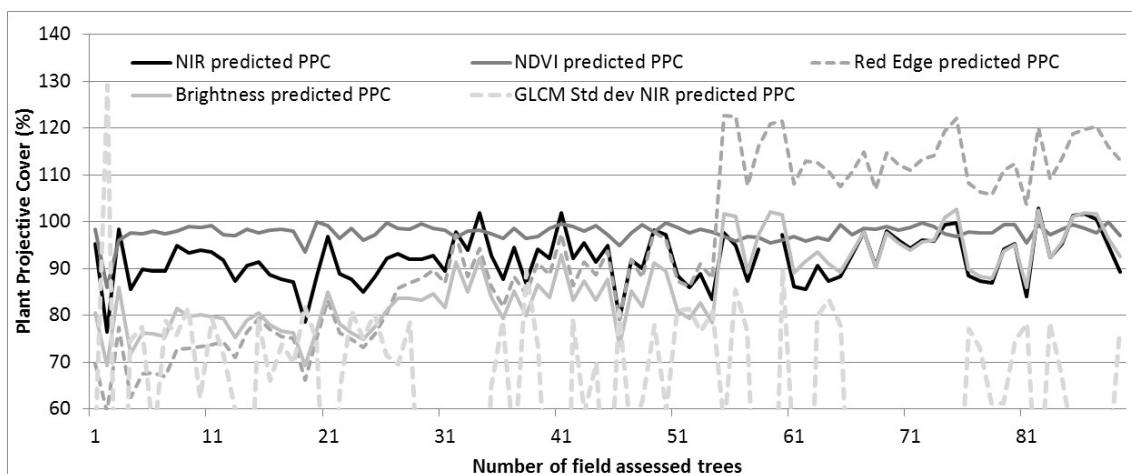
380 The highest R^2 values for estimating PPC were achieved using the red edge ($R^2 = 0.79-0.81$, n
 381 = 89) and NIR ($R^2 = 0.78-0.82$, $n = 89$) bands, with the data collected at 70 m producing a slightly
 382 higher positive correlation. The red band showed a poor correlation with PPC ($R^2 = 0.04 - 0.15$, n
 383 = 89), due to little variation in red reflectance values in response to different PPC measurements.
 384 Hence, spectral vegetation indices such as the NDVI and NDRE only produced R^2 values between
 385 0.30 and 0.54. Using the co-occurrence texture measure of standard deviation of the red edge and
 386 NIR bands, R^2 values between 0.57 and 0.70 were achieved (Figure 9). Co-occurrence texture
 387 measures have been used successfully in other studies to assess vegetation structure and
 388 measurements of PPC [48,51]. At the tree crown level, higher R^2 values for mapping PPC were
 389 obtained in most cases for the imagery collected at 70 m height (8.8 cm pixels). In terms of the co-

390 occurrence texture measures, this may have been due to noise reduction caused by the larger
 391 pixel size, while the 8.8 cm pixel size still preserved useful within-tree crown texture information
 392 [52,53].

393 To estimate PPC of the pre-pruned tree crowns, for which no field data were collected, the
 394 best-fit equations between the post-pruned field derived PPC and the spectral bands, indices and
 395 texture measures were applied to the pre-pruned imagery to assess if these provided a realistic
 396 representation of PPC (Figure 10). The NIR band was found most useful for predicting PPC from
 397 the pre-pruning image, based on a visual assessment of the tree crowns and their within tree
 398 crown gaps. The NDVI showed little variation in estimated PPC, most likely because of saturation
 399 issues [54]. The use of the red edge band significantly overestimated PPC for many of the tree
 400 crowns. Using the texture measures for estimating PPC provided unrealistically large PPC
 401 variation and in many cases significantly underestimated PPC based on expectation (Figure 10).
 402



403
 404 Figure 9. R^2 values based on the positive relationships between field measured PPC and image derived
 405 spectral bands, indices and texture measures produced from imagery collected at 30, 50 and 70 m flying
 406 height.
 407



408
 409 Figure 10. Estimated PPC of the 89 pre-pruned tree crowns for which PPC was measured post-pruning. PPC
 410 for the pre-pruned tree crowns was estimated using the best-fit equations based on the post-pruned image
 411 and field data.

412 4.3 Pre- and Post-Pruning Tree Structure Comparison

413 The mapping of tree structural parameters before and after pruning enabled an assessment
 414 of the impact of the pruning effects. A significant decrease in the average value of the tree
 415 structural parameters was observed for the 189 trees within the plantation between pre- and post-
 416 pruning. Decreases in the tree crown perimeter (1.94 m; 10.9%), area (3.49 m²; 25.9%), width (0.567

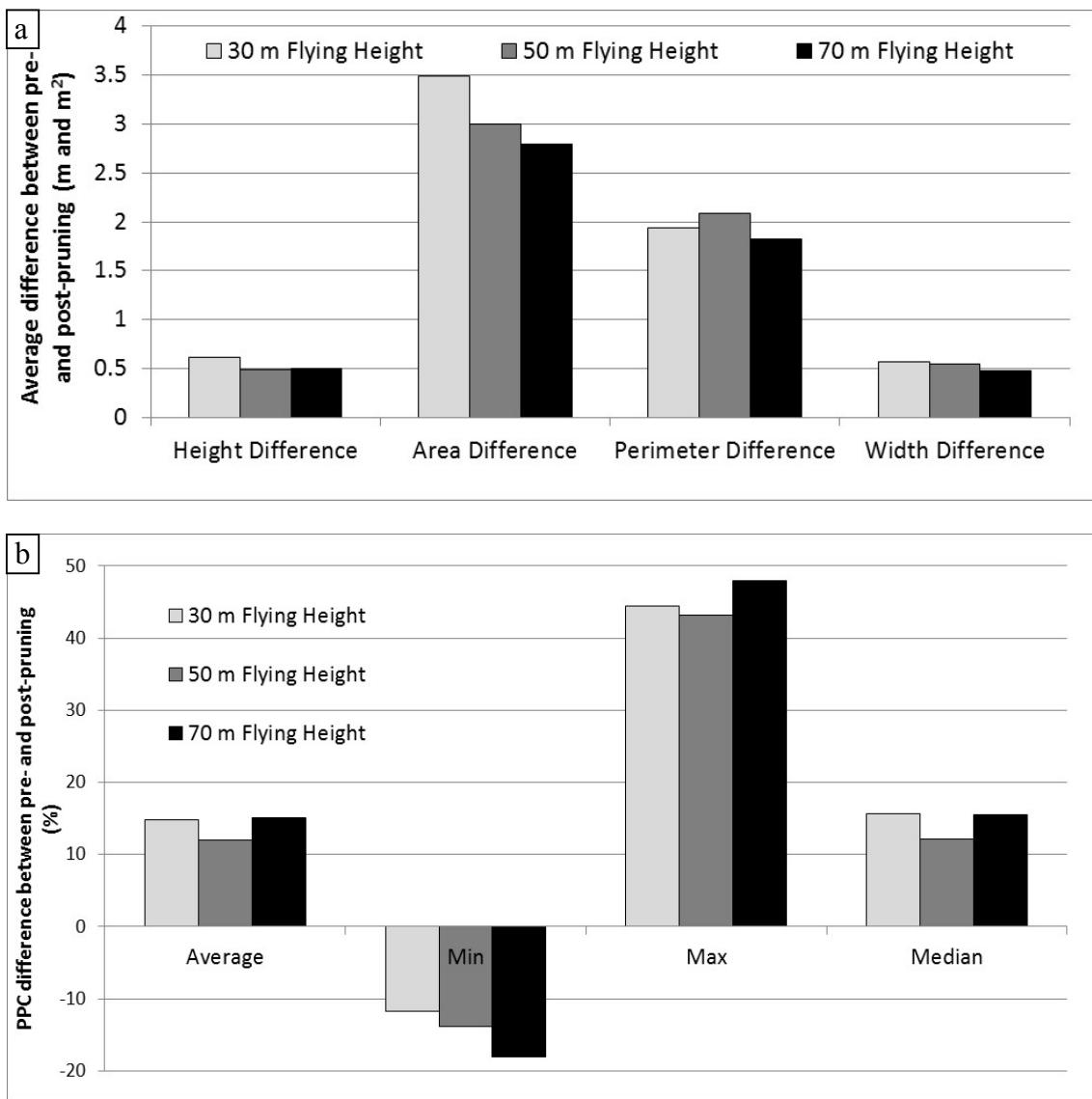
417 m; 14.7%), 90th percentile tree crown height (0.616 m; 22.3%) and PPC (14.8%) were established
 418 (Figure 11). According to [12], the recommended thinning size of a lychee tree is between 15% -
 419 25% from its initial size. Hence, the pruning results based on all 189 mapped trees showed good
 420 agreement with the recommendation. In most cases (179 out of 189 trees), a decrease was
 421 observed in the tree structural measurements for the individual tree crowns. However, some of
 422 the smaller and newly planted lychee trees (10 out of 189 trees) were not pruned, and hence the
 423 structural measurements stayed the same or slightly increased.
 424

425
 426 Figure 11. Pre- and post-pruning differences in minimum, Q1, median, Q3 and maximum values for the 189
 427 mapped lychee trees for tree crown perimeter, area, width, 90th percentile height, and PPC measured from
 428 the UAV imagery collected at 30 m height.

429 4.4 Effects of Flying Height Differences

430 The impact of flying height variations offers insight into the influence of scale and the
 431 scalability of this UAV based approach to determine its applicability to larger orchards.
 432 Differences in flying height only affected the comparison of pre- and post-pruning tree structure
 433 slightly (Figure 12a). Tree crown height differences were highest when the imagery were
 434 collected at 30 m height compared to 50 and 70 m height. A flying height of 30 m produced the
 435 most accurate height estimates, given that the produced DSM and DTM were less accurate when
 436 collected at increasing flying heights. The measurements of area and perimeter decreased with
 437 increasing flying height because of the increasing pixel size, which made the automatically
 438 derived object perimeter smoother and hence smaller, despite the added tree crown edge pixels
 439 for the imagery collected at 70 m height that was discussed above. This also caused the differences
 440 in mapped area and perimeter to decrease as a function of flying height, because of the smaller
 441 range in values in these parameters at larger pixel sizes. The tree crown width measurements
 442 derived at different flying heights were similar, showing a slight decrease as the flying height
 443 (and hence the pixel size) increased, which also caused the differences before and after pruning
 444 to slightly decrease with increasing flying height (Figure 12a).

445 PPC was generally most accurately estimated based on the imagery collected at 70 m,
 446 although the average PPC difference was similar for all three flying heights (Figure 12b).
 447 However, at a flying height of 70 m, the average minimum and maximum differences were
 448 highest. Normally, at increasing pixel sizes, you would expect less spectral variability, i.e. a
 449 smaller range of pixel values within individual tree crown objects, because of spectral averaging
 450 of pixels covering a larger area [52]. This was attributed to the larger pixel size, which may have
 451 caused mixed pixels along the edges of the delineated tree crowns. These mixed pixels may have
 452 included parts of the shaded areas caused by tree shadows on the one side of the trees and parts
 453 of the sunlit green grass on the other side of some of the trees.
 454



455
456
457
458 Figure 12. (a) Pre- and post-pruning differences for the 189 field assessed lychee trees for the 90th percentile
459 tree crown height, area, perimeter, width; and (b) PPC, as a function of flying height.
460

461 There are clear management advantages to flying a UAV at a height of 70 m compared to 30 m, as it is
462 possible to cover a larger area in a single flight or to reduce the flying time for covering a set area.
463 Completing a flight mission more quickly also means that the risk to cloud shadow contamination is
464 reduced. Although doing this resulted in an increase in pixel size from 4.1 cm to 8.8 cm and resulted in a
465 compromise in tree height estimates using the Parrot Sequoia imagery, the mapping results of the vegetation
466 structural parameters were not significantly affected. The acquisition of imagery with an 8.8 cm pixel size
467 compared with 4.1 cm pixels will also reduce the size of the image data set more than fourfold, which will
468 subsequently decrease the image processing time. [25] mapped tree structural parameters of olive trees from
469 UAV imagery collected at 50 and 100 m above ground level and only observed small reductions in their
470 predicted mapping accuracies, while significantly reducing the time of flight, the image orthomosaic
471 processing and the GEOBIA, with total used time reduced from 47 min to 13 min and from 5 h 15 min to 1
472 h 8 min for their multi-spectral and RGB imagery, respectively. Hence, in terms of verifying the results of a
473 pruning strategy on an orchard, there will likely be more efficiencies in choosing a flying height of 70 m,
474 without loss of fidelity. Developing UAV based mapping and monitoring approaches for assessment of tree
475 crop structure is also important for other types of tree crops, including mango, avocado and macadamia
476 trees, as these parameters can provide information to help growers in the further production and delivery
477 chain. This can ensure growers have enough personnel and equipment for fruit picking, have the right

478 storage facilities, have a suitable number of cartons for packaging, and can organise the means for transport
479 and delivery [55].

480 5. Conclusions

481 Characterizing the impacts of pruning on tree structural parameters is required to inform
482 and enhance the management of orchards and improve crop productivity. We present an
483 innovative and novel approach that exploits multi-spectral UAV imagery to measure tree
484 structural differences pre- and post-pruning, and apply this to a small commercial lychee
485 plantation. The developed object-based image analysis approach was found to be particularly
486 useful for delineating individual tree crowns and deriving object shape and spectral and textural
487 information for correlation with field based measurements of tree structure. The multi-spectral
488 imagery was found to accurately assess pre- and post-pruning tree crown structure, including
489 tree crown perimeter, area, width, height and PPC. Tree crown perimeter was most accurately
490 mapped at a flying height of 70 m, while tree crown width measurements were similar at all three
491 flying heights. Tree height was most accurately mapped at a 30 m flying height, as larger flying
492 heights affected the accuracy of the derived DSM and DTM. Imagery collected at 70 m height
493 produced slightly higher correlation with field measured PPC for most predictor variables.

494 These results highlight that despite the compromise in accuracy of tree height estimates
495 (0.1936 m RMSE as opposed to 0.3568 m), a flying height of 70 m may be the best choice for
496 assessing pre- and post-pruning tree structural differences to gain efficiency in terms of flight
497 duration, area coverage, and image processing time, without losing a significant amount of
498 information. As an additional benefit, the proposed UAV based approach is likely to reduce costs
499 (compared with manual assessment) and increase consistency compared to traditional field based
500 estimates. Future research should focus on collecting and analysing similar data for other orchard
501 sites and for trees grown under different conditions, e.g. different tree ages, tree varieties, climatic
502 conditions, and pruning strategies, to test if the developed approach can be applied more
503 generally and the results remain consistent with broader application.

504

505 **Acknowledgements:** This work was supported by the SPIRIT BAPPENAS-World Bank under Loan
506 Agreement (IBRD No. 8010-IND). Thanks to Paul Thorne, the lychee grower and owner of the lychee
507 plantation, for help in the field and for allowing us access to the study site. We would like to acknowledge
508 the Remote Sensing Research Centre in the School of Earth and Environmental Sciences at the University of
509 Queensland, Brisbane, Australia for use of software facilities. Matthew McCabe was supported by the King
510 Abdullah University of Science and Technology.

511 **Author Contributions:** Dr Johansen and Mr. Raharjo conceived and designed and performed the
512 experiments; Dr Johansen, Mr. Raharjo and Prof McCabe analyzed the data and wrote the paper.

513 **Conflicts of Interests:** The authors declare no conflict of interest.

514

515 References

- 516 1. Atzberger, C. Advances in remote sensing of agriculture: context description, existing operational
517 monitoring systems and major information needs. *Remote Sens.* 2013, 949-981.
- 518 2. Me, C.Y., Balasundram, S.K., Hanif, A.H.M. Detecting and monitoring plant nutrient stress using remote
519 sensing approaches: a review. *Asian Journal of Plant Sciences.* 2017, 16: 1-8.
- 520 3. Ikinci, A. Influence of pre- and postharvest summer pruning on the growth, yield, fruit quality, and
521 carbohydrate content of early season peach cultivars. *The Scientific World Journal.* 2014, Article ID 104865, 8.

522

523

524

525 4. Jimenez-Brenes, F.M., Lopez-Granados, F., de Castro, A.I., Torres-Sanchez, J., Serrano, N., Pena, J.M.
526 Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV based
527 3D modelling. *Plant Methods*, 2017, 13, 55.

528

529 5. Rosell, J., Sanz, R. A review of methods and applications of the geometric characterization of tree crops
530 in agricultural activities. *Computers and electronics in agriculture*, 2012, 81, 124-141.

531

532 6. Sinoquet, H., Stephan, J., Sonohat, G., Lauri, P.É., Monney, P. Simple equations to estimate light
533 interception by isolated trees from canopy structure features: Assessment with three-dimensional
534 digitized apple trees. *New Phytologist*, 2007, 175, 94-106.

535

536 7. Connor, D.J., Gomez del Campo, M., Rousseaux, M.C., Searles, P.S. Structure management and
537 productivity of hedgerow olive orchards: a review. *Scientia Horticulturae*, 2014, 169, 71-93.

538

539 8. Menzel, C. Lychee production in Australia. In *Lychee production in the Asia-Pacific region*, 1st ed.;
540 Papademetriou, M.K., Dent, F.J., Eds.; RAP Publication 2002/04. Food and Agriculture Organization of the
541 United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand, March 2002.

542

543 9. Day, K.R., DeJong, T.M., Hewitt, A.A. Postharvest summer pruning of "Firebrite" nectarine trees.
544 *HortScience*, 1989, 24, 238-240.

545

546 10. Miller, S.S. Regrowth, flowering and fruit quality of "delicious" apple trees as influenced by pruning
547 treatments. *Journal of the American Society for Horticultural Science*, 1982, 107, 975-978.

548

549 11. Ferguson, L., Glozer, K., Crisosto, C., Rosa, U.A., Castro-Garcia, S., Fichtner, E.J., Guinard, J.X., Le,
550 S.M., Krueger, W.H., Miles, J.A., Burns, J.K. Improving canopy contact olive harvester efficiency with
551 mechanical pruning. *Acta Horticulturae*, 2012, 965, 83-87.

552

553 12. Campbell, T.P., Diczbalis, Y. *Pruning to meet your lychee goals: a report for the Rural Industries Research and*
554 *Development Corporation*. Rural Industries Research and Development Corporation: Barton, A.C.T,
555 Australia, 2001.

556

557 13. Lu, D., Mausel, P., Brondizio, E., Moran, E., 2004. Change detection techniques. *International Journal of*
558 *Remote Sensing*, 2004, 25(12), 2365-2407.

559

560 14. Zhang, C., Kovacs, J. The application of small Unmanned Aerial Systems for precision agriculture: A
561 review. *Precision Agriculture*, 2012, 13(6), 693-712.

562

563 15. Bagheri, N. Development of a high-resolution aerial remote-sensing system for precision
564 agriculture. *International Journal of Remote Sensing*, 2017, 38(8-10), 2053-2065.

565

566 16. McCabe, M.F., Rodell, M., Alsdorf, D.E., Miralles, D.G., Uijlenhoet, R., Wagner, W., Lucieer, A.,
567 Houborg, R., Verhoest, N.E.C., Franz, T.E., Shi, J., Gao, H., and Wood, E.F. The future of earth observation
568 in hydrology. *Hydrology and Earth System Sciences*, 2017, 21, 3879-3914.

569

570 17. Kang, J., Wang, L., Chen, F., Nui, Z. Identifying tree crown areas in undulating eucalyptus plantations
571 using JSEG multi-scale segmentation and unmanned aerial vehicle near-infrared imagery. *International*
572 *Journal of Remote Sensing*, 2017, 38(8-10), 2296-2312.

573

574 18. Panagiotidis, D., Abdollahnejad, A., Surový, P., Chiteculo, V. Determining tree height and crown
575 diameter from high-resolution UAV imagery. *International Journal of Remote Sensing*, 2017, 38(8-10), 2392-
576 2410.

577

578 19. Zarco-Tejada, P.J., Diaz-Varela, R., Angileri, V., Loudjani, E. Tree height quantification using very high
579 resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-
580 reconstruction methods. *European Journal of Agronomy*, 2014, 55, 89-99.

581

582 20. Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp, M.L., Bareth, G. Combining
583 UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for
584 biomass monitoring in barley. *Geoinformation*, 2015, 38, 79-87.

585

586 21. Oerke, E.-C., Gerhards, R., Menz, G., Sikora, R.A. *Precision crop protection – the challenge and use of*
587 *heterogeneity*. Springer: Dordrecht, Netherlands, 2010.

588

589 22. Matese, A., Di Gennaro, S.F., Berton, A. Assessment of a canopy height model (CHM) in a vineyard
590 using UAV-based multispectral imaging. *International Journal of Remote Sensing*, 2017, 38(8-10), 2150-2160.

591

592 23. Berni, J.A.J., Zarco-Tejada, P.J., Suarez, L., Fereres, E. Thermal and narrowband multispectral remote
593 sensing for vegetation monitoring from an unmanned aerial vehicle. *IEEE Transactions on Geoscience and*
594 *Remote Sensing*, 2009, 47(3), 722-738.

595

596 24. Diaz-Varela, R.A., de la Rosa, R., Leon, L., Zarco-Tejada, P.J. High-resolution airborne UAV imagery to
597 assess olive tree crown parameters using 3D photo reconstruction: application in breeding trials. *Remote*
598 *Sensing*, 2015, 7(4), 4213-4232.

599

600 25. Torres-Sanchez, J., Lopez-Granados, F., Serrano, N., Arquero, O., Pena, J.M. High-throughput 3-D
601 monitoring of agricultural-tree plantations with Unmanned Aerial Vehicle (UAV) technology. *PLOS ONE*,
602 2015, DOI: 10.1371/journal.pone.0130479.

603

604 26. Koch, B., Heyder, U., Weinacker, H. Detection of individual tree crowns in airborne Lidar data.
605 *Photogrammetric Engineering and Remote Sensing*, 2006, 72(4), 357-363

606

607 27. Leckie, D., Gougeon, F., Hill, D., Quinn, R., Armstrong, L., Shreenan, R. Combined high-density lidar
608 and multispectral imagery for individual tree crown analysis. *Canadian Journal of Remote Sensing*, 2003,
609 29(5), 633-649.

610

611 28. Pouliot, D.A., King, D.J., Bell, F.W., Pitt, D.G. Automated tree crown detection and delineation in high-
612 resolution digital camera imagery of coniferous forest regeneration. *Remote Sensing of Environment*, 2002,
613 82(2-3), 322-334.

614

615 29. Bunting, P., Lucas, R. The delineation of tree crowns in Australian mixed species forests using
616 hyperspectral Compact Airborne Spectrographic Imager (CASI) data. *Remote Sensing of Environment*, 2006,
617 101(2), 230-248.

618

619 30. Johansen, K., Bartolo, R., Phinn, S. Special Feature – Geographic object-based image analysis. *Journal of*
620 *Spatial Science*, 2010, 55(1), 3-7.

621

622 31. Johansen, K., Sohlbach, M., Sullivan, B., Stringer, S., Peasley, D., Phinn, S. Mapping banana plants from
623 high spatial resolution orthophotos to facilitate eradication of Banana Bunchy Top Virus. *Remote Sensing*,
624 2014, 6(9), 8261-8286.

625

626 32. Kamal, M., Phinn, S., Johansen, K. Object-based approach for multi-scale mangrove composition
627 mapping using multi-resolution image datasets. *Remote Sensing*, 2015, 7(4), 4753-4783.

628

629 33. Kee, Y., Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and
630 delineation from passive remote sensing. *International Journal of Remote Sensing*, 2011, 32(17), 4725-4747.

631
632 34. Blaschke, T. Object Based Image Analysis for Remote Sensing. *ISPRS Journal of Photogrammetry and*
633 *Remote Sensing*, 2010, 65, 2–16.

634
635 35. Laliberte, A.S., Herrick, J.E., Rango, A., Winters, C. Acquisition, orthorectification, and object-based
636 classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. *Photogrammetric*
637 *Engineering and Remote Sensing*, 2010, 76(6), 611–672.

638
639 36. Ma, L., Cheng, L., Li, M., Liu, Y., Ma, X. Training set size, scale, and features in Geographic Object-
640 Based Image Analysis of very high resolution unmanned aerial vehicle imagery. *ISPRS Journal of*
641 *Photogrammetry and Remote Sensing*, 2015, 102, 14–27.

642
643 37. Torres-Sanchez, J., Lopez-Granados, F., Pena, J.M. An automatic object-based method for optimal
644 thresholding in UAV images: Application for vegetation detection in herbaceous crops. *Computers and*
645 *Electronics in Agriculture*, 2015, 114, 43–52.

646
647 38. Bureau of Meteorology, *Climate statistics for Australian locations*. URL:
648 www.bom.gov.au/climate/averages/tables/cw_040854.shtml, (accessed on 19 March 2018).

649
650 39. Scarth, P. *A methodology for scaling biophysical models*. Ph.D. thesis. The University of Queensland,
651 Brisbane, Australia, 2003.

652
653 40. van Gardingen, P.R., Jackson, G.E., Hernandez-Daumas, S., Russel, G., Sharp, L. Leaf area index
654 estimates obtained for clumped canopies using hemispherical photography. *Agricultural and Forest*
655 *Meteorology*, 1999, 94, pp. 243–257.

656
657 41. Propeller. *AeroPoints*. URL: <https://www.propelleraero.com/aeropoints/>, (last accessed 19 March 2018).

658
659 42. Wang, C., Myint, S.W. A simplified empirical line method of radiometric calibration for small
660 Unmanned Aircraft Systems-based remote sensing. *IEEE Journal of Selected Topics in Applied Earth*
661 *Observations and Remote Sensing*, 2015, 8(5), 1876–1885.

662
663 43. Ahmed, O.S., Shemrock, A., Chabot, D., Dillon, C., Williams, G., Wasson, R., Franklin, S.E. Hierarchical
664 land cover and vegetation classification using multispectral data acquired from an unmanned aerial
665 vehicle. *International Journal of Remote Sensing*, 2017, 38(8–10), 2037–2052.

666
667 44. Zhan, Q., Molenaar, M., Tempfli, K., Shi, W. Quality assessment for geo-spatial objectis derived from
668 remotely sensed data. *International Journal of Remote Sensing*, 2005, 26(14): 2953–2974.

669
670 45. Franklin, S.E., Maudie, A.J., Lavigne, M.B. Using spatial co-occurrence texture to increase forest
671 structure and species composition classification accuracy. *Photogrammetric Engineering and Remote Sensing*,
672 2001, 67, 849–855.

673
674 46. Haralick, R.M., Shanmugan, K., Dinstein, I. Textural features for image classification. *IEEE Transactions*
675 *on Systems, Man, and Cybernetics*, 1973, 3(6), 610–621.

676
677 47. Clausi, D.A. An analysis of co-occurrence texture statistics as a function of grey level quantization.
678 *Canadian Journal of Remote Sensing*, 2002, 28(1), 45–62.

679
680 48. Johansen, K., Coops, N.C., Gergel, S.E., Stange, Y. Application of high spatial resolution satellite
681 imagery for riparian and forest ecosystem classification. *Remote Sensing of Environment*, 2007, 110(1), 29–44.

682

683 49. Kaartinen, H., Hyypa, J., Yu, X., Vastaranta, M., Hyypa, H., Kukko, A., Holopainen, M., Heipke, C.,
684 Hirschmugl, M., Morsdorf, F., Naesset, E., Pitkanen, J., Popescu, S., Solberg, S., Wolf, B.M., Wu, J.-C. An
685 international comparison of individual tree detection and extraction using airborne laser scanning. *Remote*
686 *Sensing*, 2012, 4, 950-974.

687

688 50. Lillesand, T., Kiefer, R.W., Chipman, J. *Remote sensing and image interpretation*, 7th Ed., Wiley, Hoboken,
689 USA, 2015.

690

691 51. Johansen, K., Phinn, S. Mapping structural parameters and species composition of riparian vegetation
692 using IKONOS and Landsat ETM+ data in Australian tropical savannahs. *Photogrammetric Engineering and*
693 *Remote Sensing*, 2006, 72(1), 71-80.

694

695 52. Puissant, A., Hirsch, J., Weber, C. The utility of texture analysis to improve per-pixel classification for
696 high to very high spatial resolution imagery. *International Journal of Remote Sensing*, 2005, 26(4), 733-745.

697

698 53. Woodcock, C.E., Strahler, A.H. The factor of scale in remote sensing. *Remote Sensing of Environment*,
699 1987, 21(3), 311-332.

700

701 54. Gu, Y., Wulie, B.K., Howard, D.M., Phuyal, K.P., Ji, L. NDVI saturation adjustment: A new approach
702 for improving cropland performance estimates in the Greater Platte River Basin, USA. *Ecological Indicators*,
703 2013, 30, 1-6.

704

705 55. Robson, A., Rahman, M.M., Muir, J. Using WorldView satellite imagery to map yield in avocado
706 (*Persea Americana*): A case study in Bundaberg, Australia. *Remote Sensing*, 2017, 9(12), 1223.