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Abstract: Mathematical models of cognition measure individual differences in cognitive processes,
such as processing speed, working memory capacity, and executive functions, that may underlie
general intelligence. As such, cognitive models allow identifying associations between specific
cognitive processes and tracking the effect of experimental interventions aimed at the enhancement
of intelligence on mediating process parameters. Moreover, cognitive models provide an explicit
theoretical formalization of theories regarding specific cognitive process that may help overcoming
ambiguities in the interpretation of fuzzy verbal theories. In this paper, we give an overview of
the advantages of cognitive modeling in intelligence research and present models in the domains
of processing speed, working memory, and selective attention that may be of particular interest for
intelligence research. Moreover, we provide guidelines for the application of cognitive models in
intelligence research, including data collection, the evaluation of model fit, and statistical analyses.
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One of the greatest challenges in intelligence research is the identification of cognitive processes
underlying cognitive abilities and the measurement of process parameters giving rise to individual
differences in intelligence [1]. The currently most discussed process parameters are the speed of
information processing [e.g., 2,3], the capacity of short-term memory [e.g., 4,5] or working memory
[e.g., 6-8], and the efficiency of executive functions [e.g., 5,9]. Individual differences in these cognitive
processes are usually measured by behavioral indicators such as response times and accuracies in
tasks engaging one specific cognitive process. The behavioral performance in these tasks is then used
to quantify the relationship of these cognitive processes to performance in intelligence tests.

This approach presumes that a specific task provides a process-pure measure of a single cognitive
process - an assumption that is often violated as most cognitive tasks do not measure one specific
cognitive process, but rather a combination of several cognitive processes. For example, tasks
measuring the efficiency of inhibitory processes such as the Stroop or Flanker task usually use
reaction times as performance measures [10,11]. These reaction times arguably reflect not only the
efficiency of inhibitory processes, but also basic information-processing speed. Another example are
complex cognitive tasks such as complex span tasks measuring working memory capacity that do
not only require the storage of information in the face of processing, but may also rely on attentional
control processes and speed of information processing [12,13]. In sum, typical measures for a specific
cognitive process thus require additional cognitive processes beyond the cognitive process aimed to
be measured.

Two approaches are typically pursued to overcome this problem. First, variance decomposition
methods may be used to isolate the variance of one latent cognitive process parameter from
the influence of other variables [e.g., 4,6]. This method is feasible as long as there are "pure"
measurements of the confounding cognitive processes available that can be controlled for. However,
this approach may be resource- and time-consuming, as participants have to complete large test
batteries including both measures of interest and of possible confounds.
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A second approach to this measurement problem is to design experimental tasks that contain
a baseline condition requiring the engagement of all confounding processes and an experimental
condition that is equal to the baseline condition except for the insertion of one additional processing
requirement of interest. Subtracting performance in the baseline condition from performance from
the experimental condition is supposed to isolate the efficiency or speed of the added process
[14]. However, it is questionable if the resulting difference scores only contain variance that can
be attributed to the inserted process or if the insertion of additional processing demands may affect
or interact with other task demands that are also reflected in the difference scores [15,16]. Moreover,
the low between-subject variability and low reliability of difference scores in typical cognitive tasks
renders the isolation of individual differences in experimental effects by means of difference scores
virtually impossible [17,18].

In the present paper, we aim to demonstrate how mathematical models of cognition can be
used to partially overcome these measurement problems by directly quantifying specific cognitive
processes. Moreover, we will provide practical guidelines and recommendations for the use of
cognitive models in intelligence research.

1. Advantages of cognitive modeling in intelligence research

Although often not explicitly in mind, each measurement of a cognitive process and more
generally any property of a person is based on a model. Most often we use statistical models, such
as classical test theory or latent variable models for this measurement procedure [19]. These models
typically assume that the measured and observed behavior is the compound of some true or latent
property of a person and of an error of measurement [20-22]. Across repeated measurements of the
same property, this results in a distribution of observations of which the average or expected value
given a person (i.e., the arithmetic mean) is conceptualized as the best estimate of the frue person
property, while deviations from this value (i.e., the standard deviation) correspond to the amount of
error or uncertainty in the measurement.

Even though statistical models have proven to be very useful in the context of measurement,
such models bear serious conceptual problems [19,23] and the selection of an adequate statistical
model for measurement is anything but trivial. Apart from these general philosophical and
epistemological problems of measurement with statistical models such as the ontological status of
true-scores or latent variables and the adoption of a realist or constructionist perspective on science
and measurement [19], all of these models have another serious shortcoming: Statistical models do
not specify any psychological or cognitive processes underlying the true part of the measurement, but
rather focus on separating true properties of a person from the error of measurement.

To overcome this problem, it has been recommended to use other statistical models such
as ex-Gaussian- or Wald- distributions for reaction times [24-26], and Binomial-distributions for
accuracies or mental test scores [27,28]. Although these distributions correspond more closely to
the empirical shape of the distributions of observed variables, the parameters of these distributions
do not consistently resemble indicators of distinct cognitive processes [see 29]. In sum, statistical
models may be useful to quantify the amount of variance in a measurement attributable to the true
personality trait (i.e., the reliability), however they do not allow any theoretically founded statements
about the cognitive processes underlying the observed behavior or the latent personality trait.

Conversely, cognitive models may provide a mathematically-guided quantification of specific
cognitive processes [30]. Specifically, cognitive models translate explicit verbal theories of cognitive
processes in specific tasks into mathematical formulations of these theories. In this, the behavioral
measures within a task are described as the result of different interacting processes or parameters of
the model. The detailed interplay and interaction of these processes is specified within the formal
architecture of the model and represents the assumptions the model makes with respect to a specific
cognitive process. Thus, a cognitive model represents a formalized theory of a cognitive process that
objectively states which parameters of the cognitive process affect differences in observed behavior
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across conditions or individuals. The adequacy and validity of this formalization can be evaluated by
parameter recovery studies and by testing the selective effects of theoretically-guided experimental
manipulations on model parameters [31].

Taken together, cognitive models provide several advantages over statistical models: 1) They
provide falsifiable descriptions of the cognitive process underlying behavioral responses in a specific
task; 2) Model parameters can be interpreted in an objective and formally described manner; and 3)
Model parameters can be used to quantify individual differences in specific cognitive processes based
on the underlying model architecture.

2. Selecting cognitive models suitable for intelligence research

The field of cognitive modeling typically distinguishes between explanatory cognitive models
or process models and cognitive measurement models [32]. Explanatory cognitive models! aim to
provide formal explanations for variations across experimental conditions in specific paradigms in
terms of cognitive processes. These models formally describe the architecture of a cognitive process
and focus on the interplay of different mechanisms that lead to specific experimental results. In
contrast, cognitive measurement models typically decompose the observed behavior of a person into
meaningful parameters of a latent cognitive process. Thus, instead of explaining differences across
individuals or experimental conditions, cognitive measurement models are highly flexible tools that
reflect these differences in variations of their estimated parameters [for a comparison of these two
model types, see 33]. Several cognitive measurement models rely on a more elaborated explanatory
cognitive model. However, there are many cognitive measurement models that have been developed
independently of any explanatory cognitive model [e.g., 34].

With respect to their application, explanatory models, such as the SOB-CS [35], the
Slot-Averaging model [33], or the Interference model of visual working memory [32], resemble highly
elaborated model architectures that specify detailed formal models for a cognitive process. These
models are often very complex and require high computing power to calculate predictions for a
given set of parameters. In contrast, measurement models, such as signal-detection theory [34], the
two-high threshold model for recognition [36], or the drift-diffusion model [37], are mostly simplified
descriptions of a cognitive process that can be generalized to a broad set of paradigms and observed
variables. Beyond that, measurement models are easy to use and parameters of measurement
models can either be readily calculated from observed variables or estimated with adequate fitting
procedures.

In intelligence research, the use of cognitive measurement models is far more widespread than
the use of explanatory cognitive models. Although explanatory cognitive models provide a powerful
tool for comparing different theories with respect to their predictions for experimental paradigms
and manipulations [see 38], their complexity and especially the lack of estimable parameters renders
their application in intelligence research difficult. Still, results from explanatory cognitive models
may provide the theoretical foundation for deciding for or against a specific cognitive measurement
model.

Furthermore, there have been efforts to formulate explanatory models of intelligence test
performance such as the Carpenter et al. [39] model for performance in the Raven matrices. In this
model, Carpenter et al. [39] described different cognitive processes that are used while solving the
Raven matrices. Some of these processes such as incremental encoding processes and rule induction
for each matrix were used by all participants, while other processes such as the induction of abstract
relations of the dynamic management of different goals in memory were specific to participants

Although the term process models and explanatory models can mostly be used interchangeably, for comprehension
and consistency we will use explanatory cognitive models when referring to computational models that describe the
architecture of a cognitive process in detail and thereby aim to explain the results of specific manipulations in experimental
paradigms.
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with above-average performance. Although this model provides a strong theoretical explanation
for individual differences in Raven performance, its application remains limited.

Cognitive measurement models may instead provide person- and condition-specific parameters
for distinct cognitive processes. These person-specific parameters can be easily used as measures
of individual differences in specific aspects of a cognitive processes, which can then be related to
performance in intelligence tests. For instance, parameters of the drift-diffusion model, that will be
introduced later, have been associated with performance in intelligence test or memory tasks [16,40—
42]. In this, parameters from cognitive measurement models may thus provide insights on which
cognitive processes are actually linked to intelligence.

While all cognitive measurement models are deliberate simplifications of the cognitive processes
within a task and rely on often critically discussed assumptions, there is actually no alternative to
the use of a measurement model, may it be statistical or cognitive. While most researches do not
explicitly decide for a specific measurement model, by calculating the mean performance for a person
in a task (as often done) they implicitly adopt a statistical measurement model that makes no explicit
statements about the underlying cognitive processes of the measurement. It may even be argued
that not explicitly deciding for a specific measurement model is practically similar to implicitly using
the most simple cognitive model at hand: A model assuming that the observed variable directly
represents the cognitive processes of interest. As already mentioned earlier, this assumption is almost
always false. Therefore, we would argue that using explicit measurement models is always superior
to equating observed variables with the cognitive process of interest.

To convey an idea of the benefits of the application of cognitive modeling in intelligence research,
we will discuss three examples of cognitive models in the following sections. We selected different
models describing cognitive processes of particular interest to intelligence research, such as decision
making, working memory, and cognitive control, and demonstrate how they may be used to quantify
individual differences in the respective cognitive processes. Following these examples, we then
provide guidelines for choosing the appropriate model for a particular research question.

2.1. The drift diffusion model of binary decision making

The drift diffusion model (DDM) describes performance in two-alternative forced choice
decisions tasks. The model assumes that evidence is accumulated in a random walk process until
one of two decision thresholds is reached, the decision process is terminated, and a motor response
(usually a key press) is initiated [see Figure 1 for an illustration; 37]. This evidence accumulation
process can be described by a Wiener diffusion process that consists of a systematic component,
the drift rate v, and normally distributed random noise with a mean of 0 and a variance of s? (this
so-called diffusion constant s is usually fixed to a standardized value such as 0.1 or 1 for reasons of
identifiability). The drift rate can be considered as a performance measure that directly quantifies
the velocity of information uptake. In addition, the DDM quantifies the distance between decision
thresholds as a measure of speed-accuracy trade-offs and decision cautiousness in the boundary
separation as the parameter 4, the starting point of evidence accumulation as the parameter z, and
the time of non-decisional processes such as encoding and response preparation and execution as the
parameter ., or tg. Beyond these basic parameters, intra-individual variability parameters have been
added to the DDM (i.e. sty, sv, and sz) to account for inter-trial variability within a person [37,43].

The validity of DDM parameters has been demonstrated both by parameter recovery studies
[44] and by experimental validation studies [45-47]. Moreover, model parameters have been showing
satisfying reliabilities estimated with test-retest correlations given sufficiently large trial numbers [48]
and at least drift rates have been shown to exhibit trait-like properties [49]. Hence, it is not surprising
that the DDM is the most frequently used cognitive model in intelligence research. By mathematically
identifying parameters quantifying the speed of information uptake (v), the decision cautiousness
(a), and encoding and movement times (t.;), it renders complicated experimental setups that have
been used to dissociate these elements of the decision process with little success unnecessary [50].
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Figure 1. Graphical illustration of the DDM. The decision process starts at the starting point z, and
information is accumulated until the boundary a is reached. The systematic part of the accumulation
process, the drift rate v, is illustrated with the black arrow. The non-decision time ¢j is not included in
this figure.

Several studies have reported positive associations between cognitive abilities and drift rates [e.g.,
16,40,42,51-53], whereas the other model parameters have been shown to be largely unrelated to fluid
intelligence [16,42,53]. The application of the DDM to data sets is made fairly easy by user-friendly
software programs such as DMAT [54], EZ [55,56], and fast-dm [57].

The DDM is part of a larger family of evidence accumulation models that provide a general
description of decision processes. Another member of this model family is the linear ballistic
accumulator model [LBA; 58], which presumes that a number of independent accumulators race
towards a common response threshold. Hence, where the DDM can only be applied to data from
two-choice reaction times tasks, the LBA can be applied to data from both two- and multiple-choice
reaction time tasks. Another member of this model family is the leaky, competing accumulator model
[LCA; 59], which entails a number of stochastic accumulators that compete against each other via
mutual inhibition to reach a decision threshold. Both models have not been applied in intelligence
research yet, probably because they do not provide a single performance measure such as the drift
rate of the DDM, as one drift parameter for each of the accumulators is estimated in LBA and LCA
models, resulting in several drift rates.

2.2. The time-based resource-sharing model of working memory

The time-based resource sharing (TBRS) model of working memory started out as a verbal
theory explaining the performance in complex span tasks measuring working memory capacity
[60,61], but has been extended to verbal and visual WM in general [62-64]. The TBRS model claims
that processing and the maintenance of stored information rely on the same attentional resource in
working memory. Because of this attentional bottleneck, only one of these two processes can be
performed at a given time. In detail, the model assumes that information stored in working memory
decays over time, unless this decay is counteracted by an attentional refreshing process or verbal
rehearsal. Moreover, additional processing demands as imposed in complex span tasks shift attention
towards these secondary processing tasks, resulting in the decay of items stored in working memory
(see Fig. 2 for an illustration). Altogether, working memory as conceptualized in the TBRS model
continuously shares attentional resources between maintenance and processing in order to counteract
decay of memory items and efficiently process information.

Over the past years there have been formalizations of the TBRS model as an explanatory model
[38] and as a simplified measurement model [65]. Such models may be of great interest for the field of
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Figure 2. Visualization of the TBRS as implemented in the TBRS2 model by Gauvrit and Mathy
[65]. At the top, the current task is displayed. A colored box represents a to be encoded memory
item, a black box represents a distractor task, and a white box represents free time. Below, the focus
of attention is shown. During free time, participants engage in refreshing of the already encoded
memory item; during distractor tasks or encoding of other items, the already encoded memory items
decay over time.

intelligence research, not only because intelligence is strongly related to working memory [8,66,67],
but because the field is still in debate which specific cognitive processes within working memory -
storage or executive processing - underlie its strong relationship with intelligence [4,6]. While the
explanatory TBRS* model by Oberauer and Lewandowsky [38] is fairly complex and foremost an
in-depth test for the experimental predictions of the TBRS theory, the TBRS2 implementation by
Gauvrit and Mathy [65] provides a simplified version of the TBRS model and allows to estimate
parameters that are directly linked to specific processes within the TBRS model. Such a model may
provide person specific estimates of different processes in working memory, such as the encoding
strength when an item is presented (i.e. the baseline ) or the speed of attentional refreshing
(i.e. the refreshing rate r). These parameters may provide further information on which specific
processes within working memory give rise to the strong relationship between working memory and
intelligence.

As the mathematical implementations of the TBRS model have been developed only recently,
there have not been any independent, systematic validation studies for the parameters of the model.
Moreover, the psychometric properties of the model estimates (i.e., their reliability and validity) have
not yet been assessed. Additionally, there still is a controversial debate in cognitive psychology
whether decay actually is the core process limiting working memory capacity [68]. Although there
are competing explanatory models of working memory questioning the role of decay as a limiting
factor for working memory capacity [32,38], these models have not yet been translated into simple
measurement models that allow estimating person-specific parameters of cognitive processes within
working rnemory.2 Until then, the TBRS2 model may provide a first step for including cognitive
measurement models of working memory in intelligence research.

2.3. The shrinking spotlight model of selective attention

The shrinking spotlight model of selective attention describes processing in the Eriksen flanker
task, in which participants have to respond according to the orientation of a centrally presented target

2 Oberauer and Lewandowsky [69] are working on an alternative measurement model that is more closely connected to

interference models of working memory [32,35]
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Figure 3. Illustration of the Shrinking Spotlight model for selective attention. The attentional focus
narrows to the central arrow over time (left part). This results in a stronger weight of the critical
information (i.e. the central stimulus) in the drift-rate of an associated diffusion process (right part).

arrow while ignoring irrelevant arrows flanking the target stimulus [10,70]. The shrinking spotlight
model is an extension of the drift diffusion model of sequential processing: It assumes that both
target and flanker arrows provide perceptual evidence p for a particular response weighted by the
amount of attention a allocated to each of these stimuli. The drift rate consists of the sum of weighted
perceptual evidence across all stimuli at a given time. Over time, attention is assumed to zoom in
on the central arrow, reflecting a narrowing of the focus of selective attention on the target stimulus.
Thus, the target stimulus is weighted more strongly in comparison to the flanker stimuli and therefore
affects the drift rate more strongly over time (see Fig. 3). The initial width of attentional distribution
is estimated in the attentional spotlight parameter sd,, which reflects the standard deviation of a
Gaussian distribution centered on the target stimulus, whereas the rate of attentional distribution
reduction is estimated in the parameter r;. In addition, the model also allows estimating the encoding
and movement times in the t,, parameter, and the distance of symmetrical response thresholds from
the starting point of evidence accumulation in the parameters A and B = —A.

The model has been shown to be able to account for data from a standard flanker task and
experimental manipulations of task properties have been shown to specifically affect single model
parameters [70]. Moreover, parameter recovery studies have shown that model parameters can be
accurately recovered with as few as only 50 experimental trials [71]. However, simulation results
have also shown that the model is not able to recover the attentional spotlight and the shrinking
rate parameter accurately, because a wide initial spotlight with a high shrinking rate makes the
same predictions as a narrow initial spotlight with a low shrinking rate [71]. Therefore, it has
been recommended to calculate a composite measure of the duration of interference as the ratio of
the two parameters, sd,/d,, to account for the trade-off during model estimation. Although there
have not yet been any systematic analyses on the psychometric properties of parameter estimates,
correlations of 42 < r > .80 between model parameters across different cue conditions of the
Attention Network Test suggest at least moderate to good reliabilities, especially for the interference
ratio with correlations of about r ~ .80 [72]. So far, the shrinking spotlight model has not yet been
applied in intelligence research, but it would be promising to relate individual differences in the
susceptibility to interference (as reflected in the interference parameter) to individual differences in
intelligence test performance and working memory capacity to further explore the role of selective
attention in cognitive abilities.

An alternative account of performance in the Eriksen flanker task is given by the dual-stage two
phase model [73]. This model proposes two distinct processing stages: In the first processing stage,
evidence accumulation is affected both by evidence accumulation towards the response associated
with the target stimulus and by evidence accumulation towards the response associated with the
flanker stimuli. At the same time, an attention-driven parallel evidence accumulation process
selects a single stimulus for further processing. If this stimulus selection process terminates before
response selection is finished, response selection enters a second stage with the drift rate being solely
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determined by the selected stimulus. As of yet, model comparison studies have not yet decided
which of the two models provides the best account of selective attention phenomena [70,71,73,74].
Both models can be fit to data and subsequently be compared using the R package flankr [75].

2.4. Guidelines for model selection

When deciding which cognitive model to use for a specific research question, there are some
conceptual and practical issues to be considered in order to select the appropriate model: First,
cognitive processes of interest for the current research question have to be identified. Second, an
appropriate model providing a description of these cognitive processes has to be chosen. During this
step, theoretical reasons for choosing one model over its alternatives should be considered. Third,
experimental tasks congruent with the assumptions of the selected model should be selected to allow
the valid estimation of model parameters. For an illustration of these decision steps see the upper
part of Figure 4 (p. 9).

In general, discussing these issues during project planing aims to strengthen two important
points for the conclusions from the modeling results. On the one hand, researchers should clarify
which specific cognitive processes they are interested in and select a cognitive model accordingly. On
the other hand, researchers should maximize the fit between the measurement or operationalization
of a specific cognitive process (i.e. the task used) and the selected cognitive model.

For example, a group of researchers might be interested which cognitive processes in simple
decision tasks are related to intelligence. Such tasks may require participants to decide whether a
number is odd or even, or whether a letter is a vowel or consonant. They decide to use the drift
diffusion model to quantify the different cognitive processes associated with binary decision making.
However, one of these tasks has an additional switching demand, requiring participants to switch
between the number and the letter decision [for an example, see 76]. Because this task is a binary
decision task, the drift-diffusion model may still provide suitable estimates for the cognitive processes
in such a task [77,78]. However, this task arguably requires more than one decision: On the one hand
the decision which task is to be carried out, and on the other hand the decision corresponding to
the task. Thus, this task does not fully fit the conceptualization of the drift-diffusion model as there
may not be a single decision process but two. Therefore researchers should either think about using
a different task that has a better fit to the basic assumptions of the drift-diffusion model or search for
an alternative model that better fits the task they want to use.

This example reiterates the importance of an explicit and critical decision for a specific cognitive
measurement model with respect to the measurement and operationalization that has already been
pointed out before. As the developers of cognitive models often suggest a specific task suitable for
parameter estimation [e.g. 65], the initial model publication is usually a good starting point for finding
prototypical tasks that match the model assumptions. For popular cognitive models such as the
diffusion model there are review articles summarizing studies in which the diffusion model was
successfully applied to data from several different tasks [79]. Although some of these prototypical
tasks may not provide the most suitable measures for a specific research question, they nevertheless
constitute a meaningful starting point.

3. Guidelines for model application

After identifying an appropriate model based on theoretical considerations as outlined in the
previous section, we strongly recommend to further plan the application of mathematical models
ahead of data collection to ensure the interpretability and trustworthiness of the estimated model
parameters. Specifically, three basic steps should be pursued when applying a cognitive model to a
specific research question (see lower part of Figure 4, p. 9):

1. Researchers should plan their data collection to meet requirements for reliable and stable

parameter estimates.
2. Model fit should be carefully evaluated after fitting the model to the empirical data.
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Figure 4. Flowchart illustrating the different planning and decision steps when using cognitive
models in intelligence research.
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3. Model parameters should be adequately related to other individual differences variables of
interest such as intelligence test performances.

In the following section, we will provide step-by-step instructions using examples from the
application of diffusion models in intelligence research, which may serve as guidelines when using
any kind of cognitive model in individual differences research.

3.1. Design and data collection

3.1.1. Reliability and stability of estimated model parameters

The reliable estimation of model parameters from empirical data usually requires more data
points than would be needed if only applying a statistical model to the data. For illustration,
compare the description of reaction time distributions in decision tasks by a Gaussian distribution
to the description by a diffusion model. When describing performance in a binary choice task by
a Gaussian distribution, 20-30 trials are usually sufficient to provide reliable estimates of means and
standard errors of the distribution [80]. When describing performance by a diffusion model, however,
many more trials are needed because model parameters are not calculated analytically, but are found
by fitting them to empirical response time distributions in an iterative process. Hence, a small
number of trials will result in an inadequate representation of the full response time distribution and
will therefore impair the estimation of model parameters describing distributional elements beyond
measures of central tendency [81].

For the basic DDM (with the four parameters drift rate, boundary separation, starting point, and
non-decision time), simulation studies have shown that 100 trials are sufficient to produce relatively
reliable estimates of drift rates and that no further increases in parameter reliabilities are gained by
increasing trial numbers beyond 500 trials [81]. For other measurement models less prominently used
in individual differences research, such systematic simulation studies have not yet been conducted.
Therefore, we urge researchers interested in applying less frequently used models to run a simulation
study before starting data collection to determine how many experimental trials are needed for
reliable parameter estimates.

3.1.2. Trait, situation, and task characteristics of model parameters

In addition, it is important to consider to what degree individual differences in model parameters
reflect individuals” personality traits or abilities, and to to what degree they reflect task-specific
characteristics, state-specific characteristics, and unsystematic measurement error. Imagine applying
a model of verbal working memory to complex span data: Model parameters such as the individual
rate of verbal refreshing or the ability to resist interference from distracting stimuli would reflect both
individuals’ general abilities in verbal refreshing and inhibition of interference as well as their abilities
to maintain memory stimuli in this specific task. Depending on the research question, researchers may
be more interested in the general ability to maintain information in working memory as reflected in
those parameters across different working memory tasks, or they may be interested in the specific
ability to maintain information in working memory in precisely this task.

Usually, intelligence research questions are more likely to concern abilities generalized across
specific operationalizations and situations than abilities in specific operationalizations or situations.
However, model parameters estimated in a specific task are always going to contain both trait-,
state- and task-specific amounts of variance [82,83]. For example, a latent state-trait analysis of
DDM parameters in elementary cognitive tasks revealed that only about 45 percent of the variance in
task-specific drift rates was accounted for by the common trait, and that only about 30 to 35 percent of
the variance in task-specific boundary separation and non-decision time parameters were accounted
for by their respective common traits [49]. Therefore, if a research question using cognitive models in
intelligence research concerns performance in certain cognitive processes that is generalizable across
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specific operations, it may be worthwhile to design a test battery consisting of three or more tasks
to which the cognitive model can be applied. Averaged or latent performance in process parameters
across tasks will then allow a more precise estimate of individuals” performance in model parameters
that is independent of specific task or situation characteristics.

3.2. Evaluation of model fit

3.2.1. Relative model fit: Which model provides the best account for the data?

After finishing data collection, but before relating model parameters to intelligence tests or other
covariates, it is necessary to evaluate how well a chosen model describes the empirical data and to
possibly adjust model specifications to increase model fit. When a model is fitted to empirical data,
it has to be decided how many and which model parameters will be estimated and which model
parameters will be fixed, because they are not expected to be affected by task characteristics or not of
interest for the current research question. Moreover, if experimental tasks contain several conditions,
it may be necessary to decide which (if any) parameters are allowed to vary between conditions. It
may even be desirable to split data from different conditions into separate data sets for separate model
estimations to be able to subsequently model these separately estimated model parameters as latent
variables. For this purpose, it may be helpful to reflect on the relationship between model complexity
and the stability of parameter estimates: The more parameters of a model are estimated, the more
likely it is to provide an accurate account of the data. However, if too many model parameters are
estimated relative to the number of experimental trials, the stability of parameter estimates will be
impaired [81,84].

Therefore, we suggest fitting several models to the empirical data containing different
combinations of estimated or fixed parameters that are consistent with the current research question,
unless there are strong theoretical reasons to decide on a specific model instantiation a priori. These
models can then be compared based on parsimonious fit indices such as the Akaike Information
Criterion [AIC; 85] or the Bayesian Information Criterion [BIC; 86], which take into account both
model fit and model parsimony, to identify the model making the best trade-off between model fit
and model complexity. As mentioned before, this model comparison step may not be necessary when
a priori deciding for a specific instantiation of the model.

However, this model comparison approach only addresses one element of model fit evaluation,
relative model fit. By identifying the best-fitting specification of model out of a number of alternative
specifications, it is possible to identify the model providing the best description of the empirical data.
However, this does not guarantee that the best-fitting model provides a good description of the data.

3.2.2. Absolute model fit: How well does the selected model describe the data?

Therefore, in the next step the absolute model fit has to be evaluated to decide if the model can be
accepted for all data sets. Absolute model fit is typically ascertained by either (a) statistical tests of
model fit, (b) goodness-of-fit (GOF) indices, or (c) graphical inspections of model fit.

Statistical tests of model fit quantify the discrepancy between the empirical data and model
predictions by means of a test statistic that is then tested for significance. However, this null
hypothesis-testing of model fit contains several problems, as the power of statistical tests is closely
tied to the amount of data available. When only few trials are available, statistical tests may not be
capable of rejecting the null hypothesis due to a lack of power, whereas when the trial number is
large, statistical tests tend to become overly sensitive and detect even irrelevant deviations between
the empirical data and model predictions [87]. To overcome some of the problems associated with
null hypothesis testing, it has been suggested to simulate a large number of data sets based on the
estimated model parameters, fit the model to each of the simulated data sets, and derive the 95 percent
or 90 percent quantile of the resulting distribution of p-values as a critical value for the statistical tests
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of the originally estimated models [88,89]. However, models will still be accepted with an unknown
error probability.

Goodness-of-fit indices are much more common in individual differences research, where they
are used to evaluate the model fit of structural equation models [90], than in cognitive modeling.
GOF indices standardize test statistics and take into account both model complexity and the number
of data points. Typically, GOF indices have a fixed value range from 0 to 1 with certain cut-off values
that indicate acceptable or good model fit. GOF indices are less frequently used in cognitive modeling,
probably because several GOF indices used in structural equation modeling require the comparison
of the actual model to a minimally plausible baseline model, which cannot be easily specified for
most cognitive models. However, it has been recently suggested to adapt the root mean square error
of approximation for the evaluation of cognitive models than can be fitted with a x2-distribution,
such as the diffusion model [87].

Finally, a third and widespread approach to the evaluation of absolute model fit is to graphically
compare the empirical data to model predictions. To graphically inspect model fit, empirical data
can be plotted against or overlaid by model predictions separately for each participant or aggregated
over participants. This process can be rather time-consuming in larger samples if each participant is
inspected individually. Moreover, it is important to be aware of the fact that graphical evaluations
of model fit are inherently subjective and may therefore lead to spurious conclusions [91]. Having
two independent raters evaluate model fit and discuss their conclusions may therefore increase the
objectivity of the evaluation process.

If individual data sets can be identified that do not provide a satisfying model fit, raw data
should be inspected for coding errors or outliers that may need to be removed (e.g., extremely fast
reaction times with decision behavior close to guessing in a decision task). If model fit remains
unacceptable, individual data sets may then need to be removed from further analyses, as it cannot
be ascertained that the model parameters characterize the cognitive processes in the task accurately.

3.3. Relating model parameters to intelligence test performance

Finally, after reliable estimates for the best fitting model have been obtained, the model
parameters should be related to measures of intelligence. While this seems straightforward, there
is actually one major methodological concern. Specifically, researchers usually obtain one or more
person-specific estimates for each model parameter of interest across different tasks or experimental
conditions, just like they do when using aggregated performance measures such as accuracies or
mean reaction times. Then the relationship of these model parameters with intelligence test scores
is estimated by means of correlations or structural equation modeling. However, this approach
represents a sequential analysis plan that treats the estimated parameters as manifest variables
when quantifying the relationship between parameters of the cognitive model and the intelligence
measures.

Treating estimated model parameters as manifest variables ignores the uncertainty that these
parameters inherit from estimation and leads to an underestimation of standard errors in the second
analysis step [92]. In fact, this is the case both for behavioral aggregates, such as mean reaction
times or proportion correct, and for model parameters that are estimated from behavioral data or
calculated from aggregate performance measures. Although this does not necessarily affect the
estimated size of the relation between parameters obtained from cognitive models and intelligence
measures, a sequential analysis plan always leads to an overestimation of the statistical significance
of the estimated relationships [93].
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A solution to this problem is hierarchical modeling [94,95]°. In hierarchical modeling
approaches, parameters of a cognitive model can be estimated not only for all participants but
across various tasks simultaneously. Additionally, relationships with third variables can be estimated
in the same step. On the one hand, such models avoid underestimating the standard errors of
the relationship between model parameters and third variables such as intelligence measures by
simultaneously estimating the model parameters and their relationship to intelligence [for an example
of hierarchical models of the worst performance rule, see 93]. On the other hand, by assuming that
the distribution of model parameters across individuals follows a higher order distribution* (so called
hyper-priors), hierarchical models do not estimate parameters for each individual independently, but
instead estimate model parameter for each individual informed by the parameter estimates from all
other individuals. Not only does this render the parameter estimation more robust, but it also allows
obtaining reliable estimates for the parameters of a cognitive model for each individual with fewer
trials [for an example, see the hierarchical diffusion model: 97].

A serious complication of hierarchical modeling is that these models typically have to be
explicitly specified and translated into code for each application, and that software solutions for
parameter estimation are still rare. Nevertheless, hierarchical models do provide the mathematically
accurate and sound solution for estimating the relationship between estimated model parameters
and intelligence measures. Still, the sequential estimation of model parameters and their relationship
to intelligence test scores seems to yield results comparable to hierarchical approaches [93].
In conclusion, while sequential approaches may overestimate the statistical significance of the
relationship between model parameters and covariates (biasing inference), they nevertheless provide
reasonable and unbiased estimates of the effect size of this relationship. For the future, it would be
desirable that the application of cognitive modeling in the field of intelligence research or individual
differences in general leads to the development of further simple software solutions or R packages
[98,99] that simplify the use of hierarchical models.

4. Critical interpretation of the results

Regardless how the relationship between parameters from a cognitive model and intelligence
measures is estimated, ultimately this relationship has to be interpreted on a conceptual level.
Although parameters of a cognitive model provide more specific information about the cognitive
process underlying the behavioral responses, these parameters still have to be interpreted with
respect to the operationalization of the cognitive process. For instance, the diffusion model can be
estimated in a broad set of tasks, ranging from perceptual judgment tasks (e.g., a random-dot motion
task), over elementary cognitive tasks (e.g., Posner or Sternberg task), to even more complex memory
tasks. In all of these different tasks, the diffusion model estimates the same set of parameters (i.e.,
drift rates, boundary separations, and non-decision times). However, this alone does not imply that
model parameters estimated in the different tasks can be interpreted the same way. Specifically, the
drift rate estimated in a random-dot motion task may represent the speed of perceptual information
accumulation towards one response alternative. In a memory recognition task, however, the drift
rate would rather be interpreted as the signal-to-noise ratio of the representation in memory. In
conclusion, the interpretation of parameters of a cognitive model always relies on the specific
experimental task.

In general, a cognitive model always represents a structural description of the behavioral
measures from a specific task. The semantic meaning of the parameters of a model, however, can only
be obtained with respect to the context (i.e., the task or materials) they are estimated in. Consider

These two references focus on Bayesian hierarchical modeling. While Bayesian parameter estimation might have additional
advantages over frequentist estimation approaches [96], the benefits of hierarchical modeling apply to both Bayesian and
frequentist methods.

Typically a Gaussian distribution with a mean and standard deviation is assumed.
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the following equation: v = x/t. On its own, this equation is merely a structural description how
v can be obtained from x and f. In contrast, if the context of the observations of x as a distance
between two points, and t as the time taken to get from one point to the other is known, then v can
reasonably interpreted as the average speed of travel. It is just the same with parameters from any
cognitive model: Without the context of their estimation they are merely transformations or estimated
simplifications of the observed variables. Adding the semantical context of the observations however
allows to interpret the parameters in a meaningful way.

All in all, the matter of adequately interpreting parameters of a cognitive model relates to a
broader issue, namely validity. On the one hand, there is the question in how far a cognitive model
provides a valid description of the cognitive process underlying the behavioral responses in a task.
On the other hand, there is the question in how far individual differences in these parameters
can be generalized across different task and assumed to represent between person variation in a
more general and task-unspecific cognitive process. These are hardly problems that can be solved
within a single study, but there is a combined effort needed to establish which parameters of
cognitive models provide meaningful representations of individual differences in specific aspects of
cognitive processing. However, following certain guidelines and carefully discussing the underlying
assumptions and the operationalization when using a cognitive model provides a more explicit
approach to measuring individual differences in cognitive processes, and thus represents a decisive
improvement compared to the prevailing methods.

5. Conclusion

Altogether, incorporating cognitive models in intelligence research provides numerous
advantages. On the one hand, cognitive models provide explicit theoretical descriptions of cognitive
processes that may underlie individual differences in intelligence. On the other hand they allow to
estimate person specific parameters for each individual that can be related to measures of intelligence.
Therefore, cognitive models allow to relate theoretically founded measures of individual differences
in parameters of cognitive processes to individual differences in intelligence and to overcome the
fuzzy theoretical interpretation of behavioral indicators such as reaction times or accuracies.

Beyond that, cognitive models may allow identifying the effects of experimental or
pharmacological interventions and training interventions on specific cognitive processes. For
example, the Shrinking Spotlight Model of Selective Attention might be used to test if a training
intervention aimed at improving selective attention actually affects interference parameters of the
model or if the intervention only reduces non-decision times or response thresholds. In a similar
vein, the drift diffusion model might be used to characterize experimental effects of a pharmacological
intervention on mental speed by distinguishing an increase in the velocity of evidence accumulation
from an increase in motor response times. Last but not least, cognitive process parameters could not
only be related to intelligence differences, but also to individual differences in neural measures related
to cognitive abilities, and may thus provide a different and possibly more complete perspective on
the neuro-cognitive processes giving rise to individual differences in intelligence. Taken together, the
application of cognitive models provides an exciting new avenue for research on the neurocognitive
processes underlying intelligence.
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The following abbreviations are used in this manuscript:

SOB-CS: Serial-Order in Box Model for Complex Span Tasks
DDM: Drift-Diffusion Model

LBA: Linear Ballistic Accumulator Model

LCA: Leaky Competing Accumulator Model

TBRS: Time-base resource sharing theory/model

AIC: Akaike Information Criterion

BIC: Bayesian Information Criterion

GOF: Goodness-of-fit
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