Preprint
Article

Low-Frequency Sea Surface Radar Doppler Echo

Altmetrics

Downloads

480

Views

526

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

20 April 2018

Posted:

23 April 2018

You are already at the latest version

Alerts
Abstract
Observed sea surface Ka-band normalized radar backscatter cross section (NRCS) and Doppler velocity (DV) exhibit energy at low frequencies (LF) below the surface wave range. It is shown that non-linearity in NRCS-wave slope Modulation Transfer Function (MTF) and inherent NRCS averaging within the footprint account for the NRCS and DV LF variance with the exception of VV NRCS for which almost half of the LF variance is attributable to wind fluctuations. Although the distribution of radar DV is quasi-Gaussian suggesting virtually little impact of non-linearity, the LF DV variations arise due to footprint averaging of correlated local DV and non-linear NRCS. Numerical simulations demonstrate that MTF non-linearity weakly affects traditional linear MTF estimate (less than 10% for |MTF|< 20). Thus the linear MTF is a good approximation to evaluate the DV averaged over large footprints typical of satellite observations.
Keywords: 
Subject: Environmental and Earth Sciences  -   Oceanography
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated