

1 *Communications*

2 **Psychological Pressure Distorts High Jumpers' 3 Perception of the Height of the Bar**

4 **Yoshifumi Tanaka** ^{1,*} **Joyo Sasaki** ², **Kenta Karakida** ^{3,4}, **Kana Goto** ⁵, **Yufu M. Tanaka** ⁶, **Takayuki
5 Murayama** ⁷

6 ¹ Department of Health and Sports Sciences, Mukogawa Women's University, Nishinomiya, 6638558 Hyogo,
7 Japan; tnk@mukogawa-u.ac.jp

8 ² Department of Sports Research, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, Kita-ku, 1150056
9 Tokyo, Japan; joyo.sasaki@jpnspor.go.jp

10 ³ Graduate School of Osaka University of Health and Sport Sciences, 1-1 Asashirodai, Kumatori-cho, Sennan-
11 gun, 5900496 Osaka, Japan; 217d07@ouhs.ac.jp

12 ⁴ Gender Equality Promotion, Mukogawa Women's University, 6-46 Ikebiraki-cho, Nishinomiya, 6638558
13 Hyogo, Japan

14 ⁵ Junior College Division, Mukogawa Women's University, 6-46 Ikebirakicho, Nishinomiya, 6638558
15 Hyogo, Japan; kana_g23@mukogawa-u.ac.jp

16 ⁶ Faculty of Business Administration, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 5778502 Osaka,
17 Japan; ytanaka@bus.kindai.ac.jp

18 ⁷ Section of Sport and Health Science, Institute of Liberal Arts and Sciences, Kanazawa University, Kakuma-
19 machi, Kanazawa, 9201192 Ishikawa, Japan; tmura@staff.kanazawa-u.ac.jp

20 * Correspondence: tnk@mukogawa-u.ac.jp; Tel.: +81-798-45-9737

21

22

Abstract: The effects of psychological pressure on perceiving the height of a jump bar just before starting a high jump run was investigated. University students ($N = 14$) training for a high jump event performed 15 trials (3 practice, 6 pressure, and 6 non-pressure) in counterbalanced order in their daily practice environment. The height of the bar was judged as significantly higher on pressure trials compared to non-pressure trials. A regression analysis indicated that participants who reported increased subjective perceived pressure tended to judge the bar to be higher. There was no significant difference between pressure and non-pressure trials for the performance index, defined as the success rate. This study provides the first evidence that environmental perceptions prior to executing a motor task under pressure may make performance of the task appear to be more difficult.

32

33

34

Keywords: Action-specific perception; dynamic perception; high jump; psychological stress

35 **1. Introduction**

36 In competitive sport, the influence of psychological pressure on the performance of motor skills
37 cannot be ignored. Pressure is defined as "any factor or combination of factors that increases the
38 importance of performing well on a particular occasion [1]", and it affects performance of several
39 motor skills. While positive effect is so called clutch [2,3], and choking means performance decrement
40 under pressure [1,4]. Choking is a particularly acute problem for athletes, and there is a need to
41 understand how pressure influences performance decrement.

42 It would be effective to focus on subjective reports of athletes and link those reports with
43 empirical data to gain a full understanding of this issue. This approach could enable us to focus on
44 significant problems having a large impact on sports performance under pressure. One of these
45 problems is subjective changes in perception of the environment reported by athletes during sports

46 competitions. These changes include alterations in spatial, temporal, and kinematic information
47 about the opponent. For example, a badminton player recollected that she felt her own court to be
48 larger, the net higher, and her opponent's body bigger when she experienced choking during a game
49 [5]. This evidence suggests that environmental perceptions *prior to* executing motor skills under
50 pressure negatively distort task performance, making it more difficult. However, there is no direct
51 evidence of this in sports contexts. Further, a few previous studies have observed no pressure-
52 induced changes in perception of distance, for example, distance to the hole in a golf-putting task [6]
53 and distance to a knife-wielding opponent in a shooting situation [7].

54 The purpose of the present study was to investigate experimentally the effects of psychological
55 pressure on judging the height of a jump bar immediately before starting a high jump run. It was
56 predicted that most participants would perceive the bar as higher when under pressure, and
57 especially individuals who felt greater subjective pressure would particularly perceive the bar to be
58 higher. The relationship between changes in height perception and performance outcome of the high
59 jump task under pressure was also examined.

60 2. Materials and Methods

61 2.1. Participants

62 Participants were 14 healthy university students (seven women and seven men) in training for
63 a high jump event. Eight participants (three women and five men) specialized in the high jump, and
64 six participants (four women and two men) specialized in combined events. Written informed
65 consent was obtained from all participants. The university ethics committee approved the experiment.

66 2.2. Procedure

67 The experiment was conducted in the participants' daily practice environment. Two participants
68 participated as partners in each session. After they warmed up for approximately 30 minutes at their
69 own pace, they performed three practice trials that familiarized them with the task. The height of the
70 bar on practice trials was set to -28, -24, -20 cm of each participant's personal best height. Following
71 the practice trials, they performed 6 non-pressure and 6 pressure trials, with three trials in each of
72 four test sessions. Eight participants (four pairs) performed four sessions in the following fixed order:
73 non-pressure 1, pressure 1, non-pressure 2, and pressure 2 (i.e., A-B-A-B design). To prevent order
74 effects, the other six participants (three pairs) performed the trials in this fixed order: pressure 1, non-
75 pressure 1, pressure 2, and non-pressure 2 (i.e., B-A-B-A design). Two participants performed in an
76 alternating sequence on all trials.

77 The height of the bar in pressure and non-pressure conditions was set to -25, -22, -19, -16, -13, -
78 10 cm of each participant's personal best height. The height of six trials in both conditions was
79 randomized for each participant. Before each trial, participants were blindfolded so that they were
80 unable to observe the two experimenters who adjusted the height of the bar. After adjustments of the
81 bar were completed, participants removed the blindfold. They were requested to verbally state the
82 height of the bar in centimeters before they started their run with own timing. Participants received
83 feedback regarding the height of the bar after each practice trial. However, they did not receive any
84 feedback after non-pressure, or pressure trials.

85 The pressure condition included a combination of pressures, including reward, punishment, and
86 social stress involving the partner. After the practice trials, participants were instructed that they
87 would receive 2000 JPY (about 20 USD) as a reward for participation. In addition, the following
88 instruction was given prior to the pressure condition: "I will give you an extra 500 JPY per trial if you
89 succeed in the high jump task. However, if you fail, both you and your partner will lose 500 JPY of
90 the 2000 JPY participation reward." Before the non-pressure condition, participants were instructed
91 that they would 200 JPY per trial if they succeeded in the task, but there would be no penalty for
92 either the participant or the partner for failing to perform the task.

94 **2.3. Dependent Variables and Data Analysis**

95 To examine psychological effects of the pressure manipulation, perceived pressure and mental
 96 effort required to succeed in the task were measured using Visual Analog Scales (VAS) immediately
 97 prior to judgment of the bar height on each non-pressure and pressure trial. As an index of height
 98 perception, the ratio (%) of the verbal statement of the height of the bar to the actual height was
 99 calculated. The bar was perceived as being higher than its actual height if this score was greater than
 100 zero, and height perception was lower if this score was less than zero. The performance index was
 101 the success rate on the six trials in the two conditions.

102 For all dependent variables, Wilcoxon signed-rank tests were used to analyze differences
 103 between non-pressure and pressure conditions. Variations from the non-pressure to pressure
 104 conditions were calculated for all dependent variables, in the form of the average of the six trials in
 105 the pressure condition minus that in the non-pressure condition. In order to test the relationships
 106 among these variations, Spearman rank-order correlation coefficients ($N = 14$) were calculated for all
 107 relationships. After taking the sample size into consideration, it was decided to use non-parametric
 108 tests. The significance level for all analyses was 5 % (two-tailed).

109 **3. Results**

110 Table 1 shows the means and standard errors for all dependent variables in the non-pressure
 111 and pressure conditions. There were significant increases in perceived pressure (7.42 mm; Wilcoxon
 112 $Z = -2.17, p = .030$), mental effort (6.77 mm; $Z = -2.29, p = .022$), and height perception of the bar (0.59 %;
 113 $Z = -2.17, p = .030$) from the non-pressure to pressure conditions. There was no significant difference
 114 between conditions for success rates on the task (4.76 %; $Z = -1.26, p = .209$).
 115

116 **Table 1.** Means and standard errors of all dependent variables in the non-pressure and the
 117 pressure conditions.

	Non-pressure	Pressure
Perceived pressure (mm)	49.31±5.36	56.73±5.05*
Mental effort (mm)	61.92±3.69	68.69±4.45*
Height perception of the bar (%)	.77±1.23	1.36±1.26*
Success rate of the task (%)	69.05±6.50	73.81±7.76

118 Note: * $p < .05$

119

120 The correlation between changes in perceived pressure and height perception from the non-
 121 pressure to pressure conditions was marginal significant ($r = .468, p = .091$), indicating that
 122 participants who reported greater perceived pressure in the pressure condition tended to judge the
 123 bar to be higher. For height perception, the correlation with mental effort was not significant ($r = .424,$
 124 $p = .131$). For success rate, there were no significant correlations (perceived pressure, $r = -.348, p = .223$;
 125 mental effort, $r = -.229, p = .430$; and height perception, $r = -.352, p = .217$).

126 **4. Discussion**

127 In the present study, the psychological effects of pressure were reflected in ratings of subjective
 128 pressure and mental effort on the VAS. Both scores increased from non-pressure to pressure
 129 conditions by approximately 7 mm. Therefore, the psychological effects of pressure manipulations
 130 used in this study were effective. The mean perceived height of the bar for all participants under
 131 pressure was significantly higher than in the non-pressure conditions, as we expected. In addition,
 132 participants who reported greater subjective pressure tended to judge the bar to be higher. Therefore,
 133 this study provides the first evidence that psychological pressure could distort environmental
 134 perceptions prior to executing a motor task, such that the task would appear to be more difficult.

135 There are several possible reasons for the perceptual changes found in this study. First,
136 attentional changes under pressure may have distorted environmental perception. Choking under
137 pressure is caused by conscious processing [4] and distraction [8] during task execution. Gray and
138 Cañal-Bruland [9] found that choking in a golf-putting task led to changes in size perception of the
139 hole (i.e., it appeared smaller), and participants who choked showed enhanced conscious processing
140 of putting movements. Participants in this study may also have engaged in conscious processing or
141 experienced distraction prior to the run under pressure, and such attentional changes may have
142 affected their height perception.

143 However, attentional changes may not be the sole reason that perception changed prior to task
144 performance. Increased anxiety and fear and decreased confidence in task performance may also
145 have been related to the perceptual changes. In previous studies, increases in slant estimation [10]
146 and in distance estimation [11] have been observed for participants in an elevated location. Similarly,
147 psychological aspects under pressure may have caused greater height perception before task
148 performance.

149 Finally, physiological states under pressure, including arousal [9] and muscular activities [12],
150 may have affected perception. Psychological and physiological effort required for motor tasks have
151 been shown to distort perception in the direction of wasted energy costs. For example, distance and
152 slant estimates increase when a heavy backpack is carried and in the absence of optic flow [13,14].
153 Given that mental effort increased under pressure in the present study, physiological arousal and
154 muscular activities may have also been enhanced under pressure. These physiological changes under
155 pressure may have led to a change in height perception in the direction of greater behavioral energy
156 demand for the task (i.e., a higher bar).

157 Although height perception was distorted under pressure, success rates of the high jump task
158 did not change from non-pressure to pressure conditions. In addition, variations of height perception
159 and success rate from non-pressure to pressure conditions were not significantly correlated. It has
160 been existed a contradictory explanation that perceptual distortion is considered misperceptions
161 related to performance decrements, or perceptual distortion plays as functional roles to maintain
162 performance [15]. Although the perceptual distortion observed in this study would be therefore
163 regarded as playing a functional role in task performance, it is difficult to eliminate the possibility
164 that the distortion might lead to a performance decrement if a stronger level of stress response, similar
165 to an actual athletic competition, was induced under pressure. Moreover, the performance index
166 measured in this study was crude, recording only task success or failure; more precise performance
167 and kinematic indices could be achieved using motion analysis.

168 The results of this study suggested that the perception of the environment is distorted before
169 performing a motor skill, depending on the degree of psychological stress caused by pressure.
170 According to Witt [16], action-specific perception is when “people perceive the surrounding
171 environment in terms of their ability to act in it.” A series of studies on this topic has reported that
172 the skill level [17], dairy performance [18,19], and task difficulty [20,21] influence the perception of
173 the environment. It would, therefore, be interesting to clarify perceptual distortions under pressure
174 by taking interactions among psychological stress and variables related to action-specific perception
175 into consideration.

176 **Conclusions**

177 Athletes need to maintain optimal perception and action even when they are under pressure
178 during sports competitions. A key finding of this study is that prior to executing motor skills in
179 competitive situations, perceptions about the environment, such as spatial information, could be
180 biased in the direction of increasing the difficulty of motor skills. This tendency would increase for
181 athletes that experience increased state anxiety under pressure. It is suggested that the underlying
182 mechanisms of this phenomenon should be examined from the perspective of cognition, emotion,
183 and physiological states in future research. Moreover, detailed studies on the effects of perceptual
184 biases on motor behavior that include kinematics and performance outcomes would be useful. Stern,
185 Cole, Gollwitzer, Oettingen, and Balceris [22] indicated that reducing anxiety under pressure by using

187 an implementation intention strategy led to performance improvements along with compensation
188 for the distance perception bias in golf-putting and dart-throwing tasks. This suggests that
189 psychological skills for reducing state anxiety might play a key role in developing optimal perception
190 and action under high pressure.

191 **Acknowledgments:** This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 16K01686) from
192 Japan Society for the promotion of Science (JSPS) KAKENHI.

193 **Author Contributions:** Y.T. conceived and designed the experiments; Y.T., J.S. and K.K. performed the
194 experiments; Y.T. analyzed the data; Y.T., J.S., K.K., K.G., YM. T. and T.M. wrote the paper.

195 **Conflicts of Interest:** The authors declare no conflict of interest. The founding sponsors had no role in the design
196 of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
197 decision to publish the results.

198 References

1. Baumeister, R.F. Choking under pressure: Self-consciousness and paradoxical effects of incentives on skillful performance. *J. Pers. Soc. Psychol.* **1984**, *46*, 610-620. doi: 10.1037/0022-3514.46.3.610. PMID: 6707866.
2. Otten, M. Choking vs. clutch performance: A study of sport performance under pressure. *J. Sport. Exerc. Psychol.* **2009**, *31*, 583-601. doi: 10.1123/jsep.31.5.583. PMID: 20016110.
3. Otten, M.P. Clutch performance in sport: A positive psychology perspective. *Int. J. Sport. Psychol.* **2013**, *44*, 285-287. doi: 10.7352/IJSP2013.44.288.
4. Masters, R.S.W. Knowledge, knerves and know-how: The role of explicit versus implicit knowledge in the breakdown of complex motor skill under pressure. *Br. J. Psychol.* **1992**, *83*, 343-358. doi: 10.1111/j.2044-8295.1992.tb02446.x.
5. Murayama, T.; Tanaka, Y.; Sekiya, H. Qualitative research on the mechanism of choking under pressure. *Japan. J. Phys. Educ. Hlth. Sport. Sci.* **2009**, *54*, 263-277. doi: 10.5432/jjpehss.a540202.
6. Ogasa, K.; Nakamoto, H.; Ikudome, S.; Mori, S. The effects of psychological pressure on perception and motor planning. *Japan. J. Phys. Educ. Hlth. Sport. Sci.* **2016**, *61*, 133-147. doi: 10.5432/jjpehss.15080.
7. Nieuwenhuys, A.; Cañal-Bruland, R.; Oudejans, R.R.D. Effects of threat on police officers' shooting behavior: Anxiety, action specificity, and affective influences on perception. *Appl. Cogn. Psychol.* **2012**, *26*, 608-615. doi: 10.1002/acp.2838.
8. Mullen, R.; Hardy, L.; Tattersall, A. The effects of anxiety on motor performance: A test of the conscious processing hypothesis. *J. Sport. Exerc. Psychol.* **2005**, *27*, 212-225. doi: 10.1123/jsep.27.2.212.
9. Gray, R.; Cañal-Bruland, R. Attentional focus, perceived target size, and movement kinematics under performance pressure. *Psychon. Bull. Rev.* **2015**, *22*, 1692-1700. doi: 10.3758/s13423-015-0838-z. PMID: 25933628.
10. Stefanucci, J.K.; Proffitt, D.R.; Clore, G.L.; Parekh, N. Skating down a steeper slope: Fear influences the perception of geographical slant. *Perception* **2008**, *37*, 321-323. doi: 10.1088/p5796. PMID: 18414594. PMCID: PMC2293293.
11. Stefanucci, J.K.; Proffitt, D.R. The roles of altitude and fear in the perception of height. *J. Exp. Psychol. Hum. Percept. Perform.* **2009**, *35*, 424-438. doi: 10.1037/a0013894. PMID: 19331498. PMCID: PMC3398806.
12. Tanaka, Y.; Funase, K.; Sekiya, H.; Sasaki, J.; Tanaka, Y.M. Psychological pressure facilitates corticospinal excitability: Motor preparation processes and EMG activity in a choice reaction task. *Int. J. Sport. Exerc. Psychol.* **2014**, *12*, 287-301. doi: 10.1080/1612197X.2014.916336.
13. Durgin, F.H.; Baird, J.A.; Greenburg, M.; Russell, R.; Shaughnessy, K.; Waymouth, S. Who is being deceived? The experimental demands of wearing a backpack. *Psychon. Bull. Rev.* **2009**, *16*, 964-969. doi: 10.3758/PBR.16.5.964. PMID: 19815806.
14. Proffitt, D.R.; Stefanucci, J.; Banton, T.; Epstein, W. The role of effort in perceiving distance. *Psychol. Sci.* **2003**, *14*, 106-112. doi: 10.1111/1467-9280.t01-1-014m27. PMID: 12661670.
15. Gray, R. Embodied perception in sport. *Int. Rev. Sport. Exerc. Psychol.* **2014**, *7*, 72-86. doi: 10.1080/1750984X.2013.871572.
16. Witt, J.K. Action's effect on perception. *Psychol. Sci.* **2011**, *20*, 201-206. doi: 10.1177/0963721411408770.
17. Witt, J.K.; Schuck, D.M.; Taylor, J.E.T. Action-specific effects underwater. *Perception* **2011**, *40*, 530-537. doi: 10.1088/p6910. PMID: 21882717.

238 18. Witt, J.K.; Linkenauger, S.A.; Bakdash, J.Z.; Proffitt, D.R. Putting to a bigger hole: Golf performance relates
239 to perceived size. *Psychon. Bull. Rev.* **2008**, *15*, 581-585. doi: 10.3758/15.3.581. PMID: 18567258. PMCID:
240 PMC3193943.

241 19. Witt, J.K.; Proffitt, D.R. See the ball, hit the ball: Apparent ball size is correlated with batting average. *Psychol.
242 Sci.* **2005**, *16*, 937-938. doi: 10.1111/j.1467-9280.2005.01640.x.

243 20. Witt, J.K.; Sugovic, M. Performance and ease influence perceived speed. *Perception* **2010**, *39*, 1341-1353. doi:
244 10.1088/p6699. PMID: 21180356.

245 21. Witt, J.K.; Sugovic, M. Does ease to block a ball affect perceived ball speed? Examination of alternative
246 hypotheses. *J. Exp. Psychol. Hum. Percept. Perform.* **2012**, *38*, 1202-1214. doi: 10.1037/a0026512. PMID:
247 22201463.

248 22. Stern, C.; Cole, S.; Gollwitzer, P.M.; Oettingen, G.; Balceris, E. Effects of implementation intentions on
249 anxiety, perceived proximity, and motor performance. *Pers. Soc. Psychol. Bull.* **2013**, *39*, 623-635. doi:
250 10.1177/0146167213479612. PMID: 23436769.