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Abstract: Recent observations of the dark energy density demonstrates the fine-tuning problem and
challenges in theoretical modelling. In this study, we apply the self-similar symmetry (SSS) model,
describing the hierarchical structure of the universe based on the Dirac large numbers hypothesis, to
Einstein’s cosmological term. We introduce a new similarity dimension, DB, in the SSS model. Using
the DB SSS model, the cosmological constant, vacuum energy density, and Hubble parameter can be
simply expressed as a function of the cosmic microwave background (CMB) temperature. We show
that the initial value of the vacuum energy density at the creation of the universe is ρ0 = 1/8πα6

f ,
where α f is the fine structure constant. The results indicate that the CMB is the primary factor for the
evolution of the universe, providing a unified understanding of the problems of naturalness.
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1. Introduction

The cosmological constant problem, i.e., the dark energy problem, poses a formidable challenge
in physics. In 1998, observations of distant supernovae provided evidence for the acceleration of the
expansion of the universe [1,2]. Einstein’s cosmological term emerged as the simplest candidate to
explain the mechanism of the accelerating universe. However, the inconsistencies between theoretical
expectations and observations are extremely problematic, despite many attempts to provide a proper
explanation [3–8]. In order to provide insights into this issue, the axiomatic approach has been
proposed by Beck [9]. Beck formulated a description of the cosmological constant, Λ, using four
statistical axioms: fundamentality (Λ depends only on the fundamental constants of the nature),
boundedness (Λ has a lower bound, 0 < Λ), simplicity (Λ is given by the simplest possible formula,
consistent with the other axioms), and invariance (Λ values obtained using potentially different values
of the fundamental parameters preserve the scale-invariance of the large-scale physics of the universe).
Using the four axioms, Beck showed that Λ is given by:

Λ =
G2

h̄4

(
me

α f

)6

, (1)

where G is the gravitational constant, h̄ is the reduced Planck constant, α f is the fine structure constant,
and me is the electron mass. The same formula has been proposed using different approaches [10,11],
and recently discussed in several reports [12–15].

In this study, we applied the self-similar symmetry (SSS) model [16], that explains the hierarchical
structure of the universe based on the Dirac large numbers hypothesis (LNH) [17,18], to Beck’s formula.
We show that the values of the cosmological constant, vacuum energy density, and Hubble parameter
can be simply expressed as a function of the cosmic microwave background (CMB) temperature, and
that the initial vacuum energy density is uniquely determined by ρ0 = 1/8πα6

f . These results indicate
that the CMB is the primary factor responsible for the evolution of the universe, revealing novel
insights into the outstanding challenges.
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2. DB SSS model

The SSS model [16] describes the CMB with a symmetrical self-similar structure. The model
consists of dimensionless values because a physical constant with a dimension would not have
universality. Therefore, we define the fundamental dimensionless mass ratios of the proton mass mpr,
electron mass me, and Planck mass mPl as follows:

A = log α = log
(

mPl
mpr

)
, B = log β = log

(
me

mpr

)
. (2)

We also defined the fundamental dimensionless time and length ratios as follows:

T = log
(

t
tPl

)
, L = log

(
l

lPl

)
, (3)

where t and l are the time and length scales of the objects, respectively, and tPl and lPl are the Planck
time and length, respectively. Using these dimensionless values, we define the similarity dimension
DA as:

DA =

(
T
L

)3
=

A
A + B

≈ 1.20592. (4)

A new similarity dimension, DB, is then introduced:

DB =
A− B
A + B

≈ 1.41184. (5)

The hierarchical structures of the DB SSS model are constructed according to the following sequences:

L0 = 2(A + B) ≈ 31.70089, (6)

Ln = Dn
BL0 for L > L0, (7)

Lm = (2− Dm
B )L0 for L < L0, (8)

where n and m are the natural numbers that represent the hierarchical levels. The time scales of each
hierarchy are also calculated using Eq. (4).

3. Verification of the DB SSS model

In order to verify the proposed DB SSS model, we compared the model values with reference
values. Table 1 and 2 summarize the length and time scales of the Planck, weak, solar, and universe
hierarchies. The values obtained using the DB SSS model agree well with the reference values. Figure
1 shows the hierarchy time scale as a function of length scale. The coincidences seen in the figure
confirm the validity of the SSS model.

4. Discussion

Using the gravitational coupling constant αG = Gm2
pr/h̄c and Eq. (2), 2A = − log αG is obtained.

The following relations are satisfied:

Ln=1 + L0 = 3L0 − Lm=1 = 4A, (9)

Lm=1 − L0 = L0 − Ln=1 = 4B. (10)

Therefore, αG and β are important in forming the hierarchical structure of the universe. Regarding
the similarity dimension, DA = (ra − rb)/(1− rb), (where ra = (D3

A + D2
A − 2)/DA and rb = (2−
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Table 1. Length scales of the hierarchies of the universe.

Hierarchy l (m) L DB SSS model Error (%)

Planck scalea 1.6× 10−35 0 0.21 (m = 2) -
Weak scalebb 10−16 18.79 18.65 (m = 1) −0.8
Solar scalecc 1.4× 109 43.93 44.76 (n = 1) 1.8
Universe scaledd 4.1× 1028 63.40 63.19 (n = 2) −0.3

a Planck length lPl =
√

h̄G/c3, where c is the speed of light in
vacuum.
b Experimental results show that the range of the weak
interaction is rw ≤ 10−16m [19].
c Diameter of the sun, based on the nominal solar radius defined
by the International Astronomical Union [20].
d Upper bound of the universe derived from the DA SSS model
[16].

Table 2. Time scales of the hierarchies of the universe.

Hierarchy t (s) T DB SSS model Error (%)

Planck scalea 5.4× 10−44 0 0.23 (m = 2) -
Weak scaleb 6.6× 10−27 17.09 19.85 (m = 1) 13.9
Solar scalec 2.3× 105 48.63 47.64 (n = 1) −2.1
Universe scaled 1.7× 1024 67.49 67.26 (n = 2) −0.3

a Planck time tPl =
√

h̄G/c5.
b The electromagnetic and weak forces unify at 100 GeV; [21]
t = h̄/1011 s.
c Sun’s rotational period; [22] t = 2.32× 105 s.
d Time scale of the universe derived from the DA SSS model
[16].

D3
A)/(D2

A − DA) are the ratios of the length scales of the hierarchies [16]) can be used to obtain a
simple relation between ra and rb:

(αβ)ra = αβrb . (11)

Equation (11) can be interpreted as the basic formula for the similarity dimension and indicates the
correlation between the cosmic structure and fundamental dimensionless mass ratios 1. Using Eq. (11),
we obtain:

DB =
2ra − rb − 1

1− rb
. (12)

However, the numerical relation between DB and ra is:

raDB√
2
≈ 1.000009. (13)

Equation (13) indicates the validity of DB; if the DB value is substituted into Eq. (8), Lm=2 is consistent
with the Planck length.

1 Using Eq. (11), we can derive another similarity dimension, DC = −B/(A + B) ≈ 0.20592.
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Figure 1. Time scale as a function of length scale for the SSS model and reference values. The reference
values for the DA SSS model are taken from Ref. [16]. The lower and upper bounds of the universe are
interpolated in the DB SSS model. Note the symmetry of the first term L0, which corresponds to the
CMB temperature. This symmetry indicates that each hierarchy is self-similar to the CMB temperature.

Regarding Λ, Eq. (1) can be written in an equivalent dimensionless form using G = h̄c/m2
Pl:

l2
PlΛ = α−6

f

(
me

mPl

)6
. (14)

We employed the following formulas derived from the DA SSS model [16] in Eq. (14):

αG ' τ
DA
CMB, (15)

β2 ' τ
DA−1
CMB , (16)

where τCMB = TCMB/TPl; TCMB is the CMB temperature and TPl is the Planck temperature. Then, we
obtain:

λ(ξ) ' ξ3 (17)

where λ is the cosmological constant in reduced Planck units, λ = l2
PlΛ, and we defined ξ ≡ α−2

f τDB
CMB.

Equation (17) is based on the LNH and indicates that the CMB temperature can be considered as a
cosmological scalar field.

Using the relation between the vacuum energy density ρΛ and Λ in Einstein’s field equation, we
obtain: ρΛ = c2Λ/8πG. Therefore, the dimensionless vacuum energy density can be expressed as:

ρ(ξ) ≡ ρΛ

ρPl
' ξ3

8π
, (18)
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where ρPl is the Planck density. The solution of the Friedmann equation for a flat universe reveals the
Hubble parameter H:

H2 =
8πG

3
ρΛ

ΩΛ
, (19)

where ΩΛ is the normalized vacuum energy density with respect to the critical density. Then, we
obtain:

h2(ξ) ' ξ3

3ΩΛ
, (20)

where h is the Hubble parameter in reduced Planck units, h = tPlH.
If we employ TCMB = 2.725K and ΩΛ = 0.691 [23] as the current parameters in Eqs. (18) and

(20), we obtain ρcurrent ≈ 1.22× 10−123 and Hcurrent ≈ 69.69(km/s)/Mpc, consistent with the latest
observational data [23].

If we employ TCMB = TPl for the universe initial condition and substitute it into Eqs. (15), (16),
and (18), we obtain α = β = 1 and ρ0 = 1/8πα6

f , which implies that the entire hierarchy was contained
in a single point and that a high-energy density ρ0 can trigger the cosmic inflation. The value of ρ

decreases with the decrease of TCMB � TPl, while the size of the universe L expands according to
L ∼ log (TPl/TCMB). Assuming that TCMB → 0 is the ultimate fate of the universe, L→ ∞ and ρ→ 0.
This indicates that the universe falls into an inactive state as it expands to infinity.

The SSS model can be evaluated by investigating the precise values of αG and β for the region
that exhibits CMB anisotropy [24]. The model predicts that a higher temperature region yields a larger
G and me. This can be identified as the reason for the formation of the large-scale structure in the
universe. An alternative is to measure the precise CMB temperature in the region where dark matter is
considered to exist [25,26]. The model predicts that the CMB temperature in that region is higher than
elsewhere because larger values of G and me can be identified as dark matter.

5. Conclusions

We have demonstrated that the DB SSS model offers the simplest solution to the fine-tuning
problem or the problems of naturalness. The dynamical vacuum energy that can be simply expressed
as a function of the CMB temperature can cause inflation, and thus facilitates the evolution of the
universe. We suggested a testable prediction to verify the hypothesis. Therefore, it is desired to
perform observational investigations using the SSS model in the future.
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