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Abstract

Cosmological models with linearly varying deceleration parameter in the cosmological theory
based on Lyra’s geometry have been discussed. Exact solutions have been obtained for a
spatially flat FRW model by considering a time dependent displacement field. We have also
obtained the time periods during which the universe undergoes decelerated and accelerated
expansions for a matter-dominated universe.
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1. INTRODUCTION

Einstein gave a geometric description for Gravitation in his general theory of relativity. In the
absence of the cosmological term, Einstein’s equations allow only non-static cosmological
models when the energy density is nonzero. In order to have a static model of the universe as per
the cosmological principle, Einstein introduced the cosmological constant into his equations.
Weyl [1] put forth a more general theory that was able to provide a geometric description of
electromagnetism also. His theory, however, was not well received as it had some unacceptable
features such as non-integrability of length of a vector under parallel transport.

Later Lyra [2] came up with a variation of Riemannian geometry. Lyra’s geometry may also be
considered as a modification of Weyl’s geometry. Lyra introduced a gauge function into the
structureless manifold. This led to the incorporation of the cosmological constant, in a more
natural way, from the geometry. It also overcame the problem of non-integrability of length of a
vector under parallel transport that was plaguing Weyl’s geometry. Subsequently, a new scalar
tensor theory of gravitation was proposed by Sen [3] and Sen and Dunn [4]. Sen’s field equations
based on Lyra’s geometry, in normal gauge can be written as

1 3 3
Rij =3 9iR +356,9; —;¢k¢k = —8nGT;; 1)

where ¢, is the displacement vector and the other notations have the usual meaning as in
Riemannian geometry.

Halford [5, 6] showed that the role that the cosmological term is played by the displacement
vector field ¢, in Lyra geometry. Many researchers have explored cosmological models in Lyra
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geometry by considering the displacement field vector to be constant. Nevertheless, there is no
apriori reason to consider the displacement field vector to be a constant.

Singh and Singh [7-10] have studied Bianchi Type I, 11, Kantowski- Sachs models based on
Lyra’s geometry with a time dependent displacement field. Singh and Desikan [11] have
discussed a class of models in Lyra’s geometry based on Einstein’s theory by considering a time
varying displacement field and a constant deceleration parameter. Desikan and Das [12] have
taken the deceleration parameter to be constant and studied the behaviour of cosmological
models in Lyra’s geometry in the presence of creation of matter.

Type la Supernova observations indicate that our present universe besides expanding is also
accelerating. This behavior of the universe has been confirmed by various independent
observational data. Akarsu and Dereli [13] proposed a linearly varying deceleration parameter to
obtain accelerating cosmological solutions. This linearly varying deceleration parameter reduces,
as a special case, to the constant deceleration parameter law proposed by Berman [14, 15].

In this paper we have discussed FRW cosmological models with linearly varying deceleration
parameter in Lyra geometry for time varying displacement field vector. The field equations are
given in section 2. Section 3 deals with the solutions of the field equations and their discussion.

2. FIELD EQUATIONS
In equation (1), the time-like displacement vector is given by

¢ =(5(1),0,0,0) )
Assuming a perfect fluid, the energy momentum tensor is given by

Ty =(p+p)uiu; - pg; ©)
where p and p are the energy density and pressure respectively, u;the fluid-four velocity,
and g is the metric tensor.

The field equations (1) for the FRW metric
ds? = dt? — R2(t) [-2 + r2(d6? + sin?0d¢?)|

where k = 1,0, —1, with equations (2) and (3) become

3k 3p°
3H2+¥—%:lp (4)
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where y =87G and H = — is the Hubble’s function.

|o.


https://doi.org/10.20944/preprints201804.0380.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 April 2018 d0i:10.20944/preprints201804.0380.v1

From equations (4) and (5) we get the following continuity equation

z;?+§ﬁﬁ+3{z(p+ P+ }H -0 (6)

By considering a barotropic equation of state
p=yo-1<y<1 ()
and eliminating the energy density p from equations (4) and (5) we have
. 2
2H+3(1+;/)H2+(1+3y)%+(1—y)%:0 (8)
Here B3’ plays the role of a time varying cosmological term. We have three unknowns viz., R(t),

p(t) and S(t) and two independent equations. In order to find a unique solution, we need one

more relation between the variables. Therefore, we have considered a linearly varying
deceleration parameter.

3. EXACT SOLUTIONS OF THE FIELD EQUATIONS

We make use of the following linearly varying deceleration parameter ansatz proposed by
Akarsu and Dereli [13] to obtain the solutions of the field equations.

~RR
(R)*

q= =-kt+m-1 9)

where k, >0 and m>O0are constants. Here k;is a constant with the dimension of time inverse

and mis a dimension free constant. This ansatz covers the rule for constant deceleration
parameter presented by Berman [14, 15], as a special case. Equation (9) reduces to the law of
Berman whenk, =0.

On integrating, equation (9) with k, >0, m>1 we get the following solution [13]:

k
%tanh*(Wl t—1>
R(t) =Rye (10)

where R, is a constant of integration. Now, the Hubble’s parameter is given by
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Using (11) in (8) for a flat universe leads to

o A2(t-m)+30+ )] "
B 30 1) (12)
Using (11) in (12) yields
52— 16[2(k,t —m) +3(1+ )] (13)

3(y =Dt (k,t —m)?

From (13) it can be seen that ° decreases with time. Also, since the denominator is always
negative, we observe that for k, >0

ﬂ2>0ift>w (14)
ok,
and
ﬂ2<0ift<w (15)
2k,

We know that the displacement vector field ¢, behaves like a cosmological term. The attraction

due to gravity of matter is resisted by a positive cosmological constant and it drives the rapid
expansion of the universe because of its negative pressure.

From observations we know that our current matter-dominated universe (7 = 0) is undergoing
accelerated expansion. Using » =0in (14) we get

m-3/2

B? >0 when t> (16)
1
From equation (9) we see that the expansion of the universe will accelerate when
g>mot (17)
ky

From equations (16) and (17) we observe that #? >0 and the universe will decelerate when

m-3/2 m-1
<t<
K, K,

m
and accelerate when t >

1
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Now using (12) in (4) for a flat universe yields

__Ht=m=+6) . 18
xp 1) (18)

From (18) we see that p > 0if t> m-3

as the denominator is always negative. Also, we see that
1

the universe will undergo decelerated expansion when

m-3 m-3/2
<t<
k1 k1

During this time period 4% will be negative.

4. CONCLUSION

We have considered a linearly varying deceleration parameter and obtained solutions for a
flat FRW cosmological model in Lyra geometry. Explicit expressions have been obtained for
both energy density and the displacement vector field. The behaviour of both these parameters
has been discussed for different time periods. Also, the time periods during which the matter-
dominated, flat universe undergoes decelerated/accelerated expansions have been identified. The
period of accelerated expansion is of particular interest in view of the observations that indicate
an accelerating universe at present times.
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