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30 Abstract: Transport of hydrophobic drugs in the human body exhibits complications due to the low
31 solubility of these compounds. With the purpose of enhancing the bioavailability and

32 biodistribution of such drugs, recent studies have reported the use of amphiphilic molecules, such
33 as phospholipids, for synthesis of nanoparticles or nanocapsules. Given that phospholipids can self-
34 assemble in liposomes or micellar structures, they are ideal candidates to function as vehicles of
35 hydrophobic molecules. In this work, we report mesoscopic simulations of nanoliposomes,
36 constituted by lecithin and coated with a shell of chitosan. The stability of such structure and the
37 efficiency of encapsulation of capsaicin, as well as the internal and superficial distribution of
38 capsaicin and chitosan inside the nanoliposome were analyzed. The characterization of the system
39 was carried out through density maps and the potentials of mean force for the lecithin—capsaicin,
40 lecithin—chitosan and capsaicin—chitosan interactions. The results of these simulations show that
41 chitosan is deposited on the surface of the nanoliposome, as has been reported in some experimental
42 works. It was also observed that a nanoliposome of approximately 18 nm in diameter is stable
43 during the simulation. The deposition behavior was found to be influenced by pattern of N-
44 acetylation of chitosan.
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1. Introduction

The advent of nanobiotechnology has seen increasing research and development in the use of
bioconjugates as new therapeutic alternatives [1]. One of the main goal of these technologies is to
focus on utilizing inherent structural, specific recognition or catalytic properties of biomolecules to
assemble composite nanoscale materials or devices with unique or novel properties [2]. For instance,
several carriers, comprised by biopolymers, macromolecules and liposomes have been used to
deliver drugs in vivo [3]. Liposomes are microscopic vesicles formed essentially by phospholipids
dispersed in water, which are amphiphilic molecules containing polar heads and hydrophobic
hydrocarbon tails with the ability to self-associate spontaneously and form bilayer vesicles [4].

The use of colloidal carriers made of hydrophilic polysaccharides, i.e. chitosan (CS), has arisen
as a promising alternative for improving the transport of therapeutic peptides, proteins,
oligonucleotides, and plasmids across biological surfaces [5]. CS is the common name of a linear,
random copolymer of (3-(1-4)-linked D—glucosamine and N-acetyl-D—glucosamine whose molecular
structure comprises a linear backbone linked through glycosidic bonds. CS is a hydrophilic,
biocompatible, and biodegradable polymer of low toxicity. Recent reviews have highlighted the
potential use of CS-based drug deliverers [6, 7]. Also, the characteristics of CS—coated liposomes and
their interactions with leuprolide have been investigated by Gou et al. [8].

On the other hand, lecithin, which has two long hydrocarbon chains, is a major component of
lipid bilayers of cell membranes and a natural, biological amphiphile. Lecithin is a natural lipid
mixture of phospholipids and is frequently used for the preparation of various nanosystem delivery
vehicles, such as microemulsions, liposomes, micelles, and nanoparticles, and is considered to be a
safe and biocompatible excipient [9, 10, 11]. The potential of the various applications that have been
found in lecithin/CS nanoparticles has already been reported, for instance, its potential as a
mucoadhesive colloidal nanosystem for transmucosal delivery of melatonin was investigated [12] as
a topical delivery system for quercetin [13]. The encapsulation of quercetin into lecithin/CS
nanoparticles [14] and chitosan-coated nanocapsules [15], as well as the influence of loaded tamoxifen
on the structure of lecithin/CS nanoparticles has also been investigated [16]. Other nanostructured
materials that harness the interactions of lecithin phospholipid/CS have comprised electrospun
nanofibers [17] and nanoporous hydrogels [18].

Capsaicin (8-methyl-N-vanillyl-6-nonenamide), a lipophilic drug, is the pungent vanilloid
compound in spicy chili peppers. It is also approved as a drug for the treatment of chronic pains (e.g.
arthritis, migraine, diabetic neuropathy) [19, 20] and its potential use in the treatment of urological
disorders, control of satiety and obesity [21], has also been documented. Capsaicin is known to be an
agonist of the transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel which
is involved in the detection of body temperature and heat nociception [22]. Capsaicin has a
nociceptive-blocking action that is the basis of its pharmacological use as an analgesic in persistent
pathological pain states [23].

In light of the well- established pharmacological activities of capsaicin, identifying new potential
nanocarriers for intracellular, transdermal and/or for intranasal delivery of capsaicin, so as to regulate
the activity of its receptors in various tissues, appeals as a potential emerging therapeutic strategy.
However, the handling and administration of capsaicin is not always feasible due to its pungency,
cytotoxicity at high concentrations [24], and sparing solubility in water [25]. Several studies have been
conducted to incorporate capsaicin into nanoformulations in an attempt to make it more compatible
with aqueous physiological environments [26, 27]. For instance, capsaicin-loaded nanoemulsions
stabilized with natural biopolymer such as alginate and CS has been used as a functional ingredient
delivery system [28]. We have encapsulated capsaicin using oil-core CS-based nanocapsules and
examined the effect on modulating its pungency [27, 29], just to mention a few studies.

Notwithstanding the aforementioned, the use of nanostructured materials or functionalized
nanocarriers with biopolymers, has received a great deal of attention. Recent studies show that
biopolymers, such as CS or cellulose and modifications of these, are ideal candidates for developing
improved nanocapsules [30, 31], with increased efficiency in the delivery of different drugs, mainly
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of the hydrophobic type [32]. These drugs have very low solubility, hence its biodistribution is very
limited if there is no suitable vehicle for administration. Thus, nanocapsules represent a very good
option to solve this problem. In addition, colloidal nanocapsules with an oily core and a CS shell have
been investigated as potential nanocarriers for transmucosal drug delivery [33]. These systems
assemble by spontaneous emulsification [34, 35] and are versatile because they can carry both
lipophilic and hydrophilic macromolecules [36, 37].

Experimental work [38, 39] has shown compatibility between lecithin/CS liposomal
nanoparticles as nanocarriers. Coated liposomes may subsequently be of significant interest to food
and pharmaceutical industries for the improved delivery of lipophilic and hydrophilic functional
components such as flavors, antioxidants, antimicrobials, and bioactives [40]. However, at the
molecular level it has been difficult to elucidate, the nature of the interactions between these
components to optimize the formation of nanocapsules. On the other hand, one can dispose of the
methods of computational modeling that are available to study such interactions [41]. These tools
have shown to be quite effective in the prediction of physicochemical and structural properties of
complex systems [42, 43]. Thus, the goal of the current work was to use mesoscopic simulations
through the approach of dissipative particle dynamics (DPD) to analyze and characterize
nanocapsules constituted by nanoliposomes of lecithin coated with a shell of CS and its function as
nanocarriers for the administration of capsaicin, which has proven applications in some therapies.

The remainder of this paper is organized as follows. The models and methods are detailed in
Section 2. The results and discussion are presented in Section 3. Finally, the conclusions are drawn in
Section 4. The general equations of the DPD approach, the simulation methodology, and full details
of our models presented in this work can be found in the supplementary information (SI) that
accompanies this paper.

2. Models and Methods

DPD is a mesoscopic technique previously shown to be successful in the prediction of
equilibrium and non-equilibrium properties of soft matter systems [44, 45], which makes it suitable
to study the coating of nanoliposomes by CS. The numerical simulations presented in this work were
carried out in the canonical assemble (constant density and temperature), with the global density set
equal to three, as is usually done. Molecules of lecithin, capsaicin and CS were derived from atomic
structure in a coarse—graining molecular model, as show in Figure 1. For practical purposes, particles
in the coarse-graining models are interpreted as groups of atoms instead of individual atoms. The
details of this parametrization are in the SI that accompanies this document. All simulations reported
here were performed with our software, SIMES [46], which is designed to run simulations completely
on graphic processing units (GPUs), under the DPD framework.
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134 Figure 1. (Color online). Schematic representation of the coarse-grained models adopted in this
135 work. Mesoscopic models for lecithin (left), CS (center up), water as solvent (center down) and
136 capsaicin (right). The exact division of every functional group is presented in the SI. In overview, the
137 molecular structure of lecithin is composed of three different beads that we have labelled as L1, L2,
138 and L3, that correspond to head, neck and tail groups respectively. The same nomenclature is used
139 for capsaicin, where the beads CI, C2, and C3 correspond to the head, neck, and tail groups
140 respectively. The CS model consists of two types of beads, the first bead represents the glucosamine
141 units, which are labelled G, while the second bead represents the N-acetyl-glucosamine units, which
142 are labelled A. Finally, the solvent (water) is represented by bead W. These Figures were prepared
143 with VMD package [47].
144  3.Results and discussion
145 The simulations are performed starting from an initial configuration of the liposome as shown

146  in Figure 2 (left). This liposome is found in aqueous solution together with capsaicin molecules and
147  polymeric chains of CS, which are dispersed in a random configuration, as shown in Figure 2 (right).
148  The simulations carried out in this work are divided into two sets: the first one consists of keeping
149  the concentration of capsaicin fixed and exploring the behavior of the nanocapsule as a function of
150  CS concentration in solution. The second set involves CS and we explored the influence of the degree
151  of deacetylation (DA) by changing the polymer sequence, as is described below. The degree of
152 deacetylation represents the proportion of glucosamine units (deacetylated monomers) in a CS
153  polymer molecule. The DA of CS is an important characterization parameter since it influences
154  several physicochemical properties [48, 49]. For this second case, the distribution of N-acetyl-D-
155  glucosamine (GlucNA) and D-glucosamine groups (GlcN), over the CS chain affects the properties
156  of the polymer. It also allows the appearance of cooperative effects due to the association of
157  hydrophobic units with the concomitant effect over the properties of nanocapsules. To achieve this
158  purpose, we explored two different sequences (S1 and S2) in the CS polymer, the first (51) was more
159  random that the second (S2). Both sequences maintained a degree of N-acetylation of 30%. The CS
160  monomer sequences considered in the simulations were prepared as follows:

161

162 a)[—GlucNA — [GlcN]; — GlucNA — [GleN]; — GlucNA — GleN —]¢
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163 b) [-[GlucNA ], — [GIcN]o]; — [GlucNAl; — [GlcN],

164 According to this nomenclature, the first sequence consists of five blocks. Each of these blocks
165  was composed of a unit of GlucNA, followed by three units of GlcN. These two sections are repeated
166  and the sequence ends with a GlucNA unit linked to GlcN. The second sequence is composed of three
167  sections. The first section consists of three blocks, which are formed by four units of GlucNA bonded
168 to nine units GlcN. The second section contains three units of GlucNA, while the third section
169  contains eight units of GlcN.

*%%

Lecithin o
Chitosan

170
171 Figure 2. (Color online). Initial configuration of nanoliposome. A snapshot of the initial
172 configuration of lecithin molecules into the structure of a liposome bilayer (left). The yellow spheres
173 represent the hydrophobic part, while the red spheres represent the hydrophilic part of the lecithin.
174 The capsaicin and CS molecules were placed in a random configuration around the lecithin (right).
175 The orange chains represent the CS polymers, while the turquoise chains represent the capsaicin
176 molecules. These Figures were prepared with the VMD package [47].
177  Influence of chitosan concentration on lecithin
178 Density maps corresponding to lecithin, CS and capsaicin were obtained from the simulations.

179  These density maps, mainly of lecithin, are useful to determine if the structure of the liposome was
180  affected by the presence of CS or capsaicin. First, the concentration of capsaicin in the system (250
181  molecules of capsaicin) was fixed and then the concentration of CS was changed, starting with 50
182  chains up to a total of 200 chains, in increments of 50 chains. These amounts of CS correspond to
183  concentrations of 6, 12, 18 and 24 mM respectively. The density maps of lecithin as function of CS
184  concentration are shown in Figure 3. They show the structure of the liposome, as well as the region
185  formed by the lipid membrane which is presented as the region with the highest concentration (in
186  yellow) in the four cases. From these maps it is possible to observe that the core zone shows a more
187  reddish tone, which indicates that the lipid density is lower, as expected. Density maps also show
188  that the nanoliposome is stable during 24 ps of simulation, since the lecithin molecules do not spread
189  all over the simulation box, nor do they collapse in the aqueous core to form a micelle.

190 In regard to the increase of CS in the system, Figure 3—-A) shows that the structure of the
191 nanoliposome is not affected by CS; even more, the nanoliposome remains quasi spherically
192  symmetrical. Figure 3-B) shows the nanoliposome undergoes minimal alteration in its structure,
193  losing some spherical symmetry. Figure 3-C) shows a pronounced protuberance in the
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194  nanoliposome, located in the interval (5, 10) along the x coordinate. In this case the lipid membrane
195  could break, thus influencing the structural stability of the nanoliposome. In Figure 3-D) a
196  protuberance similar to that shown in Figure 3-C) occurs. Under these conditions, the liposome
197  membrane is thicker.
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199 Figure 3. Density maps of lecithin on the xy plane at different concentration of CS. A) 50 chains of CS
200 (6 mM). B) 100 chains of CS (12 mM). C) 150 chains of CS (18 mM). D) 200 chains of CS (24 mM). The
201 scale of density bars starts at 0.0 (black regions) and reaches the maximum at 2.0 (yellow regions). All
202 quantities are expressed in reduced DPD units.
203  Distribution of chitosan on liposome
204 The density maps corresponding to CS are shown in Figure 4. These maps show that CS is

205  adsorbed over the surface of the nanoliposome, as has been reported in experimental work [50-52]. It
206  isalso possible to see how the surface becomes more homogeneous with increasing CS concentration.
207  Figure 4-A) shows that the CS concentration is not sufficient to cover the surface of the nanoliposome,
208  since the area comprising the radius of the nanoliposome exhibits regions of very low density, which
209  indicates a deficiency of polymeric chains in the zone. Figure 4-B) shows that increasing the
210  concentration in 50 CS chains, equivalent to a concentration of 12 mM, the nanoliposome becomes
211  uniformly coated by the polymer. The appearance of yellow regions are indicative of an association
212 of CS polymers. Figure 4-C) shows the distribution of CS at a concentration of 18 mM on the
213 liposome. The regions of greater density are more pronounced than in the previous case. A greater
214  adsorption of CS is observed too. In this case the polymer acts as a protective layer. The last case
215  represents the adsorption of polymers of CS at a concentration of 24 mM. (Figure 4-D). Under this
216  condition the surface of the liposome becomes almost completely coated. It is also possible to observe
217  how an increasing concentration of CSraises the quantity of supernatant polymer in the aqueous
218  medium, thus indicating that a competitive association between CS-liposome and CS-CS is present.
219  The blue regions refer to low density of CS, while the red regions refer to regions of high density of
220 Cs.
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222 Figure 4. Distribution of CS on liposome on the xy plane. A) 50 chains of CS. B) 100 chains of CS, C)

223 150 chains of CS. D) 200 chains of CS. All quantities are reported in reduced DPD units.

224  Influence of chitosan concentration on capsaicin

225 Density maps corresponding to the capsaicin molecules are shown in Figure 5. These maps

226  clearly show that capsaicin is absorbed and encapsulated in the nanoliposome. This phenomenon is
227  not affected by the presence of the CS polymer, which indicates that interactions between capsaicin
228  and CS are very weak in comparison to the interactions between lecithin and capsaicin. In Figures 5-
229  A), 5-B), 5-C) and 5-D) it is possible observe how the capsaicin molecules are deposited close to
230  interface between the nanoliposome and the aqueous medium and even in the interface with the
231  aqueous core which suggests that capsaicin will be transported by the oil phase in the nanoliposome,
232 thus leaving free the aqueous core with capacity to transport other hydrophilic molecules with
233 therapeutic potential. If the capsaicin reached the core, a yellow or high density region would be
234 observed in the center, which does not occur.
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236 Figure 5. Influence of CS concentration on capsaicin on the xy plane at different concentrations of CS
237 polymer. A) 50 chains of CS. B) 100 chains of CS. C) 150 chains of CS. D) 200 chains of CS. All quantities
238 are reported in reduced DPD units.

239  Potential of mean force

240 Other properties obtained from simulations are the potentials of mean force (PMF), which are
241  many - body interactions arising from their complex interplay beyond mean — field approximations
242 [53]. The details about the calculation of the PMF can be found in the SI. Figure 6 shows the PMF
243 between lecithin-CS, lecithin-capsaicin and capsaicin—CS. At higher concentrations of CS the
244  interaction becomes weaker indicating that adsorption over the surface of the nanoliposome
245  decreases when more CS molecules are in solution. Figure 6-B) corresponds to PMF of lecithin—
246  capsaicin. This shows that the interaction between capsaicin and the nanoliposome is not significantly
247  affected by the presence of CS chains, since their PMF are practically the same, making it clear that
248  the interactions between CS and capsaicin are not the leading mechanism of nanocapsule
249  conformation. Both Figures (Figure 6-A, 6-B) show two minimal values that are attributed to the lipid
250  bilayer. Figure 6-C) shows the PMF between capsaicin and CS. It is evident that the attractive
251  interactions become weaker as the quantity of CS increases. This is due to the presence of competitive
252 adsorption which promotes the self-association between CS molecules, so that the interactions
253  between polymer chains with the surface of nanoliposome as well as with capsaicin molecules
254  become weaker thus causing the deposition mainly in the surface of the of the nanoliposome.
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256 Figure 6. Potentials of mean force (PMF) for different concentration of CS as function of separation
257 distance between mass centers of each molecule. A) lecithin-CS, B) lecithin—capsaicin, and C)
258 capsaicin—CS. All quantities are expressed in reduced DPD units.
259  Modifying the sequence of chitosan
260 In this section we present the results obtained from the changes in the CS sequence pattern

261  composition. The analysis presented below corresponds to a second group of simulations described
262  at the beginning of this section. The results show that the pattern (sequence) in which the GlucNA
263  and GIcN monomers are arranged has a clear effect on the PMF (Figure 7). We note that the PMF
264  corresponding to CS-lecithin and CS—capsaicin indicates a favourable condition for attractiveness in
265  the case of sequence S2 with respect to sequence S1, indicating a slight presence of cooperative effects
266  between GlucNA units which promote the association of CS with the nanoliposome and hence with
267  capsaicin. On the other hand, the interaction between lecithin and capsaicin is not affected or
268  modified by these cooperative effects, so that the interaction between capsaicin and CS remains
269  weaker than the interaction of capsaicin with lecithin.

270
0
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271
272 Figure 7. PMF for the two sequences of CS used in this work, S1 (red line) and S2 (blue dotted line),
273 to concentration of CS is 6 mM. PMF for: A) lecithin-CS, B) CS-capsaicin, and C) lecithin—capsaicin.

274 All quantities are expressed in reduced DPD units.
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Mean size of nanoliposome and encapsulation efficiency (EE)

Additional properties obtained from the simulations are the size of the nanoliposome and
encapsulation efficiency of capsaicin. These properties are shown in Table 1. We obtained the
encapsulation efficiency (EE) and mean size from the density profiles of capsaicin and lecithin,
respectively, which are shown in the SI. EE is obtained from the Equation: EE = ((CapsT-
CapsF)/CapsT)x100., where CapsT is the total concentration of capsaicin in the system and CapsF is
the free capsaicin in solution.

Table 1. Mean size of the nanoliposome and encapsulation efficiency (EE) as function of quantity of CS.

CS Size (nm) + (nm) EE(%) * (%)
50 17.89 0.61 96.80 0.59
100 17.95 0.46 96.27 0.69
150 18.04 0.95 96.28 0.51
200 17.90 1.00 96.71 0.61

The mean size of the simulated nanoliposome is smaller but comparable to those obtained
experimentally for CS-coated oil-core nanocapsules (~ 80250 nm) [11, 29, 50, 51]. This is an
encouraging aspect of mesoscale simulation techniques, such as DPD. Additionally, the percentage
of capsaicin encapsulation was very close (96%) to that reported experimentally (92%) [50].

Figure 8 shows snapshots obtained from the simulation trajectory where the system was
monitored along time. It can be observed that capsaicin is being encapsulated inside of nanoliposome
while CS is deposited on the surface. An animation of this simulation is added in the SI section where
capsaicin encapsulation is clearly observed.

2.0us 8.0us 24.0us

0.5 g

Figure 8. Snapshots of adsorption of CS on the nanolipsome at various times during simulation. In
these pictures the conformation of the nanocapsule along different times can be observed. The color
code in this Figure is the same as the one in Figure 2. The solvent molecules are not shown for clarity
purposes. These Figures were prepared with the VMD package [47].

4. Conclusions

We performed DPD simulations to analyze the stability of nanocapsules formed by
nanoliposomes with a polyelectrolyte shell (CS). Results obtained from density maps showed that
the nanocapsule is stable with size but comparable to those of nanocapsules experimentally obtained.
The information provided by the potentials of mean force showed that the interaction between
capsaicin and CS is very weak compared to that with lecithin. An association between capsaicin and
CS, in presence of lecithin, is not likely to occur. Under experimental conditions, the solvent may
harbor other, molecular compounds that can reduce the absorption of capsaicin by the nanoliposome.
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