Preprint
Article

Numerical Study on the Dynamic Behavior of a Francis Turbine Runner Model with a Crack

Altmetrics

Downloads

584

Views

306

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

30 April 2018

Posted:

02 May 2018

You are already at the latest version

Alerts
Abstract
The crack in the blade is the most common type of fatigue damage for Francis turbines. However, the crack sometimes is difficult to be detected in time using the current monitoring system even when the crack is very large. To better monitor the crack, it is imperative to research the effect of a crack on the dynamic behavior of a Francis turbine. In this paper, the dynamic behavior of a Francis turbine runner model with a crack was researched numerically. The intact numerical model was first validated by the experimental data available. Then, a crack was created at the intersection line between one blade and the crown. The change in dynamic behavior with increasing crack length was investigated. Crack-induced vibration localization theory was used to explain the dynamic behavior changes due to the crack. Modal analysis showed that the adopted theory could basically explain the modal behavior change due to the crack. The FFT results of the modal shapes and the localization factors (LF) were used to explain the forced response changes due to the crack. Based on the above analysis, the challenge of crack monitoring was analyzed. This research can also provide some references for more advanced monitoring technologies.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated