Chemical Interaction–Induced Evolution of Phase Compatibilization in Blends of Poly(hydroxy ether of bisphenol-A) with Poly(1,4-butylene terephthalate)
An immiscible blend of poly(hydroxy ether of bisphenol-A) (phenoxy) and poly(1,4-butylene terephthalate) (PBT) with phase separation was observed in as-blended samples. However, compatibilization of the phenoxy/PBT blends can be promoted through chemical exchange reactions of phenoxy with PBT upon annealing. In contrast to the as-blended samples, the annealed phenoxy/PBT blends had a homogeneous phase with a single Tg that could be enhanced by annealing at 260°C. Infrared (IR) spectroscopy demonstrated that phase homogenization could be promoted by annealing of the phenoxy/PBT blend, where alcoholytic exchange occurred between the dangling hydroxyl group in phenoxy and the carbonyl group in PBT in the heated blends. The alcoholysis reaction changes the aromatic linkages to aliphatic linkages in carbonyl groups, which initially led to the formation of a graft copolymer of phenoxy and PBT with an aliphatic/aliphatic carbonyl link. The progressive alcoholysis reaction resulted in the transformation of the initial homopolymers into block copolymers and finally into random copolymers, which promoted phase compatibilization in blends of phenoxy with PBT. Due to the fact that the amount of copolymers increased upon annealing, crystallization of PBT was inhibited by alcoholytic exchange in the blends.
Keywords:
Subject: Chemistry and Materials Science - Polymers and Plastics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.