Relating Catalytic Activity of Cr/HZSM-5 in Oxidative Dehydrogenation of Liquefied Petroleum Gas under External DC Electric Field to the Fermi Level Position and Electrical Properties
CrHZSM-5 was placed in an electric field with appropriate strength in a quartz packed bed reactor with CO2 as oxidant to analyze its catalytic activity. Olefin yield increases with decrease in band gap since lattice oxygen mobility increases by reducing band gap. Fermi level change at the catalyst surface affects the catalytic activity. One way to change Fermi level is use electric field. In high voltage electric field, energy band was curved, bending of the energy band promoted the activity and Fermi level position is increasing. The CCD experiments were carried out with Design-Expert 7.3 software to determine the interaction between four operating variables, namely: temperature, electrical current, gap distance and metal loading. The levels of the independent variables were: temperature (550-700 °C), electrical current (0-12 mA), gap distance (6-14 mm), metal loading (0.5-7.5 %wt.). The conversion of LPG (Liquefied petroleum gas) was greatly increased by weak and effective application of an electric field to the catalyst bed. The obtained results indicated that the maximum yield value (46.94%) can be achieved under 673.66 °C, input electrical current of 11.01 mA, gap distance of 6.55 mm and metal loading of 3.98 wt.%.
Keywords:
Subject: Chemistry and Materials Science - Chemical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.