Preprint
Article

Selenophene Bearing Low Band Gap Conjugated Polymers: Tuning Optoelectronic Properties via Fluorene and Carbazole as Donor Moieties

Altmetrics

Downloads

603

Views

535

Comments

0

This version is not peer-reviewed

Submitted:

23 May 2018

Posted:

24 May 2018

You are already at the latest version

Alerts
Abstract
In this study, two donor-acceptor (D-A) type conjugated polymers namely PQSeCz and PQSeFl were designed and synthesized. Selenophene was incorporated as a π -bridge, quinoxaline as an acceptor unit while carbazole and fluorene were used as the donor units. Polymers were synthesized via palladium catalyzed Suzuki polymerization reaction. All molecules were characterized by 1H and 13C NMR Spectroscopy. The weight and number average molecular weights of the two polymers were determined by gel permeation chromatography (GPC). Electrochemical and spectroelectrochemical characterizations of the polymers were performed to investigate their optoelectronic properties. Oxidation potentials were 1.15 V/ 0.82 V and 1.11 V/ 0.82 V for PQSeCz and PQSeFl respectively, while reduction potentials were -1.26 V /-1.14 V and -1.48 V/ -1.23 V, respectively. In the visible region, maximum absorption wavelengths for the two polymers were 551 nm and 560 nm, respectively. Optical band gaps (Egop) were found from the lowest energy π – π∗ transition onsets as 1.71 eV and 1.58 eV, respectively. Both polymers showed good solubility in common solvents.
Keywords: 
Subject: Chemistry and Materials Science  -   Electrochemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated