A peer-reviewed article of this preprint also exists.
Abstract
This study characterizes the microstructure and its associated crystallographic features of bulk maraging steels fabricated by selective laser melting (SLM) combined with a powder bed technique. The fabricated sample exhibited characteristic melt pools in which the regions had locally melted and rapidly solidified. A major part of these melt pools corresponded with the ferrite (alpha) matrix, which exhibited a lath martensite structure with a high density of dislocations. A number of fine retained austenite (gamma) with a <001> orientation along the build direction was often localized around the melt pool boundaries. The orientation relationship of these fine gamma grains with respect to the adjacent alpha grains in the martensite structure was (111) gamma // (011) alpha and [-101] gamma // [-1-11] apha (Kurdjumov–Sachs orientation relationship). Using the obtained results, we inferred the microstructure development of maraging steels during the SLM process. The results depict that new and diverse high-strength materials can be used to develop industrial molds and dies.
Keywords:
Subject:
Chemistry and Materials Science - Metals, Alloys and Metallurgy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.