Preprint
Article

The Effect of C2H2/H2 Gas Mixture Ratio in Direct Low-Temperature Vacuum Carburization

Altmetrics

Downloads

544

Views

498

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

29 May 2018

Posted:

30 May 2018

You are already at the latest version

Alerts
Abstract
The effect of the acetylene and hydrogen gases mixture ratios in direct low-temperature vacuum carburization was investigated. The gas ratio is an important parameter for producing the free radicals in the carburization. The free radicals can remove the natural oxide film by the strong reaction of the hydrocarbons, and then thermodynamically activity can be increased. When the gas ratio was below 1, the supersaturation expanded austenite layers were formed on the surface of the AISI 316L stainless steel, which had the maximum carbon solubility up to 11.5 at.% at 743 K, were formed. On the other hand, when the gas ratio was above 1, the carbon concentration of them remained low even if the process time was enough increased to reach the maximum carbon solubility. As a result, the carbon concentration underneath the surface was determined to be highly dependent on the gas mixture ratio of acetylene and hydrogen. In conclusion, it is necessary to restrict the ratio of acetylene and hydrogen gases to total mixture gases to form the expanded austenite layer with the high carbon concentration in the direct low-temperature vacuum carburization.
Keywords: 
Subject: Chemistry and Materials Science  -   Surfaces, Coatings and Films
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated