

1 Article

2 Antiproliferative activity of neem leaf extracts 3 obtained by a sequential pressurized liquid extraction

4 Klebson S. Santos ^{1,2*}, Andriele M. Barbosa ¹, Victor Freitas ³, Ana Veruska C.S. Muniz ⁴, Ricardo
5 C. Calhelha ⁵, Isabel C.F.R. Ferreira ⁵, Elton Franceschi ¹, Francine F. Padilha ¹, Maria Beatriz P.P.
6 Oliveira ², Cláudio Dariva ¹

7 ¹NUESC/ITP, Tiradentes University, 49032-490 Aracaju, Sergipe, Brazil; claudio_dariva@itp.org.br (Dariva, C)

8 ²REQUIMTE/LAQV, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, 4050-313
9 Porto, Portugal; Oliveira-beatoliv@ff.up.pt (Oliveira, M.B.P.P)

10 ³Chemistry Investigation Centre (CIQ), Department of Chemistry, Faculty of Sciences, University of Porto, 4169-
11 007 Porto, Portugal; vfreitas@fc.up.pt (Freitas, V)

12 ⁴Embrapa Coastal Tablelands, 49025-040 Aracaju, Sergipe, Brazil; ana.veruska@embrapa.br (Muniz, A.V.C.S)

13 ⁵Mountain Research Center (CIMO), School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa
14 Apolónia, 1172, 5300-253 Bragança, Portugal; iferreira@ipb.pt (Ferreira, I.C.F.R)

15 * Correspondence: klebson-biomedico@hotmail.com; Tel.: +55-079-3218-2153

16

17 **Abstract:** *Azadirachta indica* A. Juss (neem) extracts have been used in pharmaceutical applications as
18 antitumor agents, due to their terpenes and phenolic compounds. To obtain extracts from neem
19 leaves with potential antiproliferative effect, a sequential process of pressurized liquid extraction was
20 carried out in a fixed bed extractor at 25 °C and 100 bar, using hexane (SH), ethyl acetate (SEA) and
21 then ethanol (SE) as solvents. An extraction using only ethanol (EE) was also conducted to compare
22 the characteristics of the fractionated extracts. The results obtained by liquid chromatography-
23 electrospray ionization mass spectrometry suggested the highest concentration of terpenes for SEA
24 extract in comparison to SH, SE and EE extracts. Therefore, antiproliferative activity showed SEA
25 extracts were the most efficient inhibitors to human tumor cells MCF-7, NCI-H460, HeLa, and HepG2
26 between all other extracts studied. However, hepatocellular normal cells were more resistant to SH,
27 SEA, SE, and EE compared to malignant cells of breast, lung, hepatocellular, and cervical. Neem
28 fractioned extracts obtained in the present study seem to be more selective for malignant cells
29 compared to the normal cells.

30 **Keywords:** Neem leaves; Sequential pressurized liquid extraction; Antiproliferative activity

31

32 1. Introduction

33 Neem (*Azadirachta indica* A. Juss) is a tree of the Meliaceae family found worldwide in semi-
34 tropical and tropical climates [1]. Neem leaves extracts are related to medicinal properties, due to the
35 presence of salannin, nimbin, gedunin and nimbolide [2], among others terpenes and phenolic
36 compounds. This neem chemical composition has been important to the management of several
37 diseases [3, 4].

38 Neem-compounds has exhibited a chemopreventive and anticancer efficacy, due to their cellular
39 and molecular mechanisms of action, such as immunomodulatory, carcinogen-detoxification, cell-

40 cycle arrest, programmed cell death, and anti-metastatic [5]. The anticancer activity of neem
41 constituents can be able to inhibit the growth of a variety of human cancers, such as lung, breast, oral,
42 prostate, skin, liver [6, 7] and cervical [8]. Pharmacological bioactive compounds can be obtained by
43 different extraction methods such as maceration, soxhlet, and pressurized liquid extraction (PLE) [9].
44 Furthermore, it is important to select an accurate method for natural compounds extraction [9, 10].

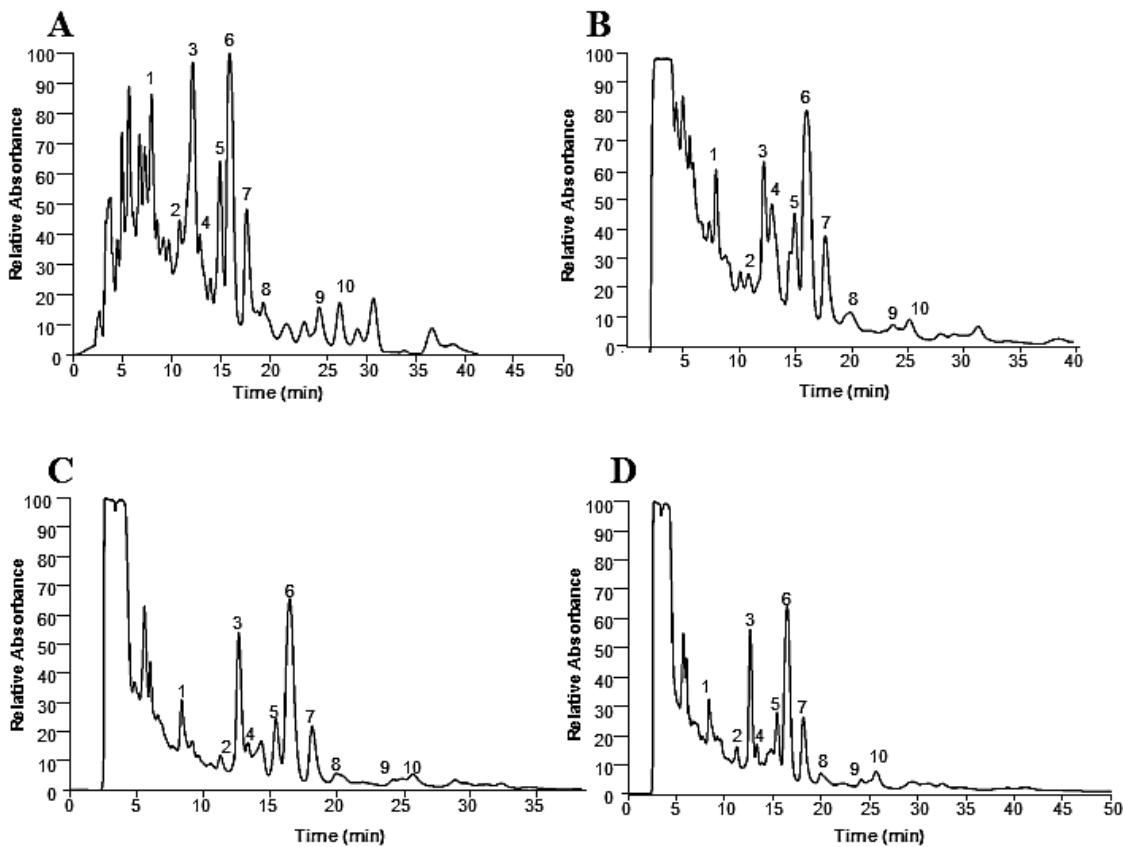
45 PLE shows a potential for the maximum extraction of metabolites from vegetable matrices [13],
46 due to the possibility of using a variety of polar and non-polar solvents under high pressure, which
47 improves the efficiency of the extraction process [14, 15]. PLE reduces the time of extraction and
48 amount of solvent used, contributing for a better extractive process optimization [16, 17]. Moreover,
49 this method reported above has been used to the exhaustive extraction of analytes in one or more
50 clean-up steps [18]. According to Garmus et al. and Monroy et al., the sequential PLE is a good process
51 to obtain natural compounds [11-13].

52 Neem extracts exhibit different chemical composition depending on the solvent used (methanol,
53 hexane, ethyl acetate, ethanol, and water) and, therefore, the potential medicinal activity of the
54 extracts are related to the solvent chosen [4, 10]. Hexane, ethyl acetate, and ethanol are efficient
55 solvents to extract terpenes and flavonoids, compounds important to human health [19]. The aim of
56 this study was developed a method to obtain extracts with antiproliferative effects from neem leaves,
57 by a sequential process of pressurized liquid extraction using hexane (SH), ethyl acetate (SEA), and
58 ethanol (EE) as solvents, and evaluate the cytotoxicity of the extracts obtained against human tumor
59 cell lines and non-tumor liver cells.

60 2. Results and Discussion

61 2.1. Pressurized liquid extraction process

62 In the present study, three extracts were obtained from single neem leaf mass (20 g), using three
63 different solvents hexane (SH), ethyl acetate (SEA), and ethanol (SE) by a sequential process of
64 pressurized liquid extraction and an ethanolic extract (EE) using one-step pressurized liquid
65 extraction. The results in Table 1 showed that the increase of the solvent polarity from hexane to
66 ethanol 80% leads to a significant increase in the obtaining of the extract dry mass from neem leaves.
67 Furthermore, SE and EE are not significantly different $P > 0.05$. Thus, the previous extractions with
68 hexane and ethyl acetate did not reduce the ethanol extractive capacity. However, both hexane and
69 ethyl acetate show lower capacity to obtain extract dry mass from neem leaves compared with
70 ethanol 80% (Table. 1).


71 Table 1. Effect of different solvents, hexane (SH), ethyl acetate (SEA), and ethanol 80% (SE and
72 EE) on dry mass extract of neem leaves.

Neem leaves (20g)	One-step extraction (g)	Three-step extraction (g)
Hexane (SH)	—	0.073 ± 0.002 ^b
Ethyl acetate (SEA)	—	0.063 ± 0.004 ^b
Etanol 80% (SE)	—	1.502 ± 0.117 ^a
Etanol 80% (EE)	1.580 ± 0.25.89 ^a	—

73 Data are reported as mean ± standard deviation values. Equal letters indicate that there is no difference
74 between the extractions. No performed (—).

75 2.2. Liquid chromatography analysis

76 In recent decades, liquid chromatography-mass spectrometry has been used in metabolic studies
77 in the field of analytical chemistry and pharmaceutical analysis, due to their potential to identify
78 compounds [20]. In this study, this methodology was used for chemical characterization of the
79 obtained neem leaves extracts (Fig. 1).

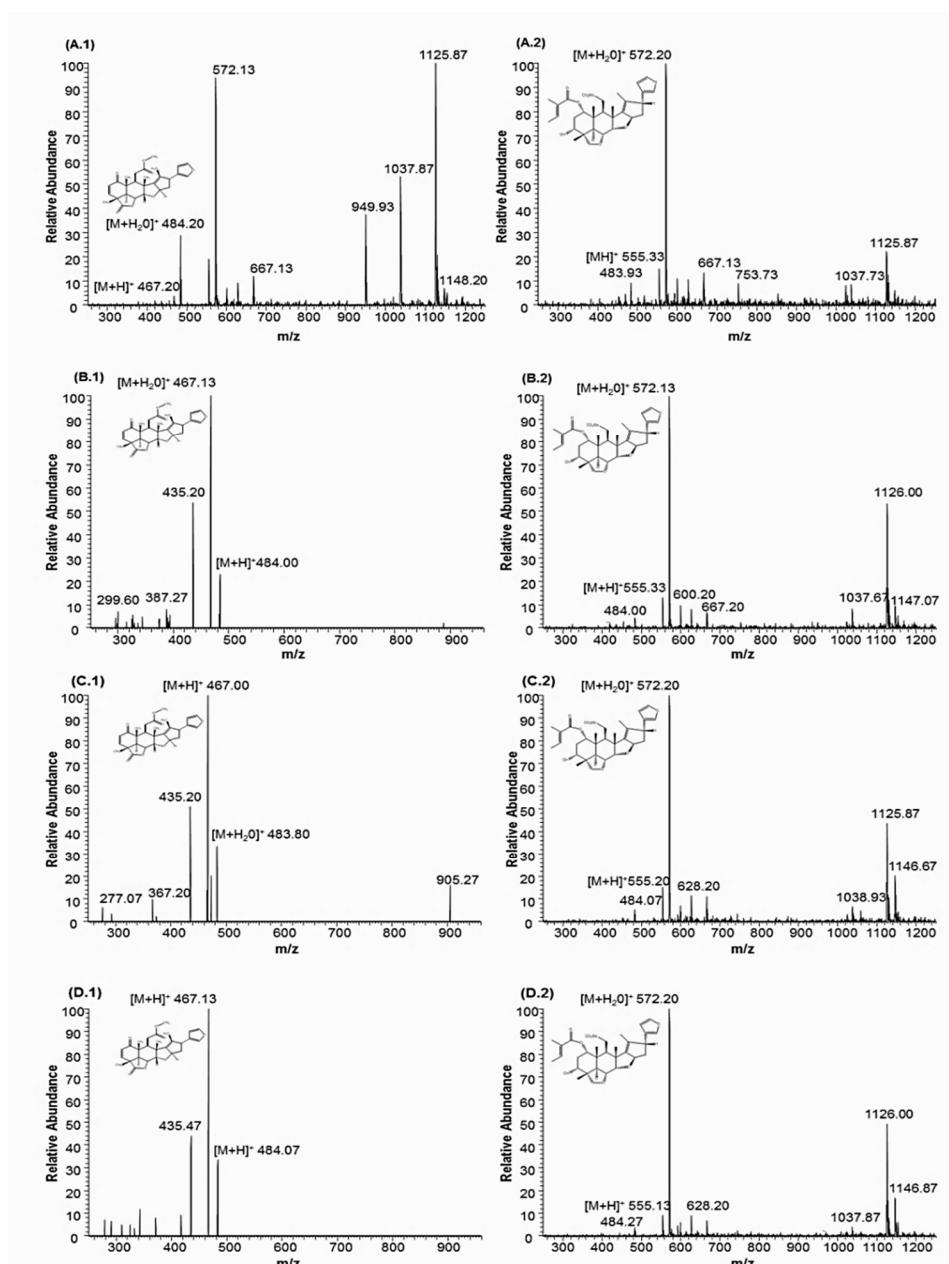
81

82

83 **Figure 1.** LC-PDA chromatograms at 210-220 nm of the neem leaf extracts obtained by SH (A), SEA (B), SE (C), and EE (D).

84

85 Fig. 1 shows the PDA chromatograms of neem extracts obtained by PLE with different solvents.
86 All extracts presented similar compounds and 10 components were identified, as exhibited in Table
87 2.


88 Table. 2. Neem leaves compounds tentatively identified by ESI-MS from their fragmentation
 89 (*m/z*), in positive mode, and respective HPLC areas for different extraction solvents.

Extract	Peak	tR (min)	Area	Compound	Observed ions (<i>m/z</i>)
SH		8.42	45724118		
SEA	1	8.46	38701542	Nimbandiol	371, 401, 421, 425, 441, 444, 457
SE		8.56	20010994		[M+H] ⁺ , 474 [M+H ₂ O] ⁺
EE		8.40	25006988		
SH		11.29	29873977		
SEA	2	11.42	22241890	6-Deacetylnimbin	389, 453, 467, 499 [MH] ⁺ , 516
SE		11.32	2818278		[M+H ₂ O] ⁺
EE		11.46	14511268		
SH		12.77	81159631		
SEA	3	12.75	37973099	2,3-Dihydronimboldine	178, 315, 426, 433, 441, 450, 469
SE		12.76	28340365		[MH] ⁺ , 486 [M+H ₂ O] ⁺
EE		12.84	36750310		
SH		13.91	13066767		
SEA	4	14.02	17659833	Rutin	266, 480, 546, 558, 611 [M+H] ⁺ , 628 [M+H ₂ O] ⁺
SE		13.95	14990955		
EE		14.02	15674396		
SH		15.56	36960991		
SEA	5	15.59	31070403	Nimonol	274, 293, 353, 421, 439, 453
SE		15.67	15495619		[M+H] ⁺ , 470 [M+H ₂ O] ⁺
EE		15.52	20995715		
SH		16.39	70699349		
SEA	6	16.54	86571238	Nimbolide	277, 435, 435, 467 [M+H] ⁺ , 484
SE		16.42	50917437		[M+H ₂ O] ⁺
EE		16.45	57586856		
SH		16.39	70699349		
SEA	6	16.54	86571238	3-Deacetylsalannin	555 [M+H] ⁺ , 572 [M+H ₂ O] ⁺
SE		16.42	50917437		
EE		16.45	57586856		
SH		18.22	32928497		
SEA	7	18.18	37398457	6-Deacetylnimbinene	363, 393, 409, 441 [M+H] ⁺ , 458
SE		18.12	15714996		[M+H ₂ O] ⁺
EE		18.32	21712675		
SH		19.88	15628192		221, 265, 339, 345, 405, 428,
SEA	8	19.93	23156736	Nimbanal	451, 453, 455, 471, 482, 493, 511
SE		19.87	6245251		[M+H] ⁺ , 528 [M+H ₂ O] ⁺
EE		19.74	11010022		
SH		24.96	14175318		
SEA	9	24.86	12952957	Salannin	199, 230, 278, 319, 378, 481, 515,
SE		24.87	5526287		571, 597 [M+H] ⁺ , 614 [M+H ₂ O] ⁺
EE		24.93	2517812		

SH	25.49	17132995		
SEA	10	13462271	Gedunin	184, 259, 287, 344, 372, 405, 425,
SE		6429235		451, 483 $[\text{M}+\text{H}]^+$, 500 $[\text{M}+\text{H}_2\text{O}]^+$
EE		7359673		

90
91
92
93
94
95
96

In Table 1, it can be observed that compounds extracted by SH and SEA were similar, but with different relative absorbance, as could be observed in Fig. 1. As referred, the extracts from SH and SEA are more concentrated in the compounds in comparison to SE and EE. Peak 6 is the most abundant and its mass spectral analysis suggested it corresponded to the compounds nimbolide and 3-Deacetylsalannin. Fig. 2 presents the mass spectra and respective structures.

97
98
99
100
101

Figure 2. Mass spectra of nimbolide (A.1, B.1, C.1, and D.1) and 3-Deacetylsalannin (A.2, B2, C2, and D2) terpenoids extracted by pressurized liquid extraction. Capital letters A, B, C, and D correspond to SH, SEA, SE, and EE, respectively.

102 These compounds have already been described in neem leaves [5, 21-24]. Fig. 1A and 1B show a
 103 relatively higher absorbance (about 20%) for the peaks 1, 3 and 6. Accordingly, these solvents (hexane
 104 and ethyl acetate) have a low contribution to overall extraction yield, but a high contribution for
 105 several compounds (this is the case of 1, 3 and 6).

106 Comparing the solvents, it seems that the chemical profile of the polar solvents presents more
 107 similarity among them when compared with the non-polar one (Fig. 1A). Table 2 summarizes the
 108 compounds tentatively identified by mass spectrometry and retention time of bioactive compounds,
 109 according to previously published data [25-30].

110 Nimbolide mass is 466.199 and its molecular formula is $C_{27}H_{30}O_7$, and the standard shows a mass
 111 spectrum $[M+H]^+$ at 467.211 m/z [21]. In Fig. 2, the spectral analysis shows a peak $[M+H]^+$
 112 corresponding to nimbolide in all extracts obtained. The molecular formula $C_{32}H_{42}O_8$, corresponding
 113 to 3-Deacetylsalannin $[M+H]^+$ at 555.211 m/z, has been identified in neem leaves [22]. The neem
 114 compounds identified by LC-MS show the ability to make adducts with H_2O , forming an additional
 115 fragment $[M+18]^+$. Other fragments can result from the rupture of ester bonds from $[M+H]^+$ [31],
 116 thereby corroborating the identification of some compounds from Table 2.

117 Among the 10 compounds identified in Table 1, just the compound 4 (peak 4) was not a terpene:
 118 it corresponds to rutin, a flavone $[M+H]^+$ at 611m/z [32]. However, the terpenes obtained in this study
 119 are more soluble in less-polar solvents such as n-hexane and ethyl acetate compared with the polar
 120 solvent ethanol. The affinity of the targeted compounds with the solvent used in the extraction is very
 121 important to obtain bioactive compounds such as anthocyanins, flavones, and terpenes [9, 33].
 122 According to the results, ethyl acetate (SEA) and n-hexane (SH) seem to be good options to obtain
 123 terpenes from neem leaves by sequential pressurized liquid extraction. Moreover, in this study, it
 124 was also demonstrated that the sequential extraction in fixed bed extractor cell using SEA in the
 125 second step improves the extraction of terpenes such as nimbolide and 3-Deacetylsalannin, compared
 126 with the other solvents.

127 2.3. Cytotoxicity evaluation of neem leaves extracts

128 The biological efficacy of the neem extracts was evaluated against four human tumor cells and
 129 one normal cell line. The obtained results are summarized in Table 3.

130 **Table 3.** Cytotoxicity of neem leaves extracts obtained by PLE against several human cancer
 131 cells (MCF-7, NCI-H460, HeLa, and HepG2) and the normal cell (PLP2).

Lines	Extract (μ g/mL)				Control (μ g/mL)
	SH	SEA	SE	EE	
MCF-7	188.8 \pm 6.4 a	82.3 \pm 4.3 b	307.7 \pm 26.0 c	312.3 \pm 19.2 c	0.9 \pm 0.1
NCI-H460	224.4 \pm 14.4 a	60.6 \pm 4.3 b	316.6 \pm 16.1 c	>400 d	1.0 \pm 0.1
HeLa	203.9 \pm 13.6 a	48.8 \pm 4.3 b	330.2 \pm 15.3 c	332.4 \pm 7.2 c	1.9 \pm 0.1
HepG2	115.5 \pm 14.4 a	52.3 \pm 4.8 b	333.6 \pm 23.3 c	313.1 \pm 20.1 c	1.1 \pm 0.2
PLP2	>400 a	201.3 \pm 17.0 b	>400 a	>400 a	3.2 \pm 0.7

132 Sequential Hexane (SH), Ethyl Acetate (SEA), and Ethanol (SE) extracts. Non-sequential
 133 Ethanol Extract (EE). Ellipticine positive control. All data <400 are reported as a mean \pm

134 standard deviation, from 50% inhibition of cell growth (IG_{50}). Equal letters in the line indicates
135 that there is no significant difference in the cytotoxic effects ($P < 0.05$).

136 As presented in Table 3, all neem extracts could inhibit the growth of human tumor cell lines.
137 Nevertheless, these extracts exhibit different values regarding IG_{50} . SEA extracts show the highest
138 potential to inhibit the growth of tumor cells, presenting IG_{50} value smaller than values found for SH,
139 SE, and EE, suggesting that the clean-up process performed by the sequential PLE extraction was able
140 to produce fractions with high antitumor effects. NCI-H460, HeLa, and HepG2 cells were more
141 sensitive to SEA among the other studied cells. Some studies have demonstrated that plant-derived
142 fractions obtained by high pressure show an antiproliferative potential against cancer cells [34-38].
143 The results obtained in this study are in agreement with Hao *et al.*, who reported that neem extracts
144 have a potential therapeutic effect on the growth of various types of cancer cells [39].

145 In the present study (Table 2), we found that neem extracts concentrations were more cytotoxic
146 to the MCF-7 and HeLa cells than 50 and 100 μ g/mL of neem ethanolic extract combined with 5 μ M
147 cisplatin (antitumor agent). According to Sharma *et al.*, these combinations have a synergistic effect
148 on cancer cell growth inhibition in 52.2 (MCF-7) and 65% (HeLa) [8]. Moreover, SEA (Table 2) also
149 exhibits higher cytotoxic effect against human tumor cells compared with the leaves methanolic
150 extracts reported by Pereira *et al.*, who obtained IG_{50} values with 83 ± 9 (MCF-7), 262 ± 4 (NCI-H460),
151 160 ± 13 (HeLa) and 100 ± 10 (HepG2) μ g/mL of *Thymus vulgaris* and 154 ± 7 (MCF-7), 229 ± 16 (NCI-
152 H460), 224 ± 12 (HeLa) and 111 ± 12 (HepG2) μ g/mL of *Mentha x piperita* [40].

153 Non-tumor liver PLP2 cells have been used to evaluate toxicity effect for liver normal cells [40-
154 41]. These normal cells were more resistant than human tumor cells (Table 2) to the treatment with
155 SH, SEA, SE and EE. This result can contribute to the alternative therapy development against the
156 growth malignant cells.

157 4. Materials and Methods

158 4.1. Neem samples

159 Neem (*Azadirachta indica* A. Juss) leaves were collected in the Brazilian Agricultural Research
160 Center - Embrapa Coastal Tablelands, in Aracaju, Sergipe, Brazil. All leaves were dried at 45 °C for
161 36 h in an oven with hot-air circulation. After that, the leaves were milled and the granulometry
162 classified in the range from 8 to 16 mesh, using a series of Tyler sieves. The obtained product was
163 stored under refrigeration and protected from light until the extractions.

164 4.2. Pressurized liquid extraction process

165 Neem leaves (20g) were used for the sequential pressurized liquid extraction with n-hexane (SH)
166 in a first step, ethyl acetate (SEA) in a second step, and water/ethanol (20:80 v/v) mixtures (SE) in a
167 third step. Carbon dioxide from 20 to 0 bar at 25 °C was used for total removing the n-hexane and
168 ethyl acetate solvent from the sample, before second and third extraction step. Thereby was
169 achievable the use of only one distinct solvent for each extraction step. One-step pressurized liquid
170 extraction using only a water/ethanol (20:80 v/v) mixtures (EE) was carried out for comparison the
171 effects of extraction sequential. All extractions were performed in triplicate, under experimental
172 conditions of 100 bar, 25 °C, and a flow rate of 1 mL/min during 60 minutes for each extraction solvent.

173 4.3. HPLC-PDA-ESI-MS analysis

174 The extracts were analyzed by HPLC-PDA-ESI-MS using a Finnigan Surveyor Plus High-
175 Performance Liquid Chromatography (HPLC) system fitted with a photodiode array (PDA, at 210-
176 220 nm) and a liquid chromatography quaternary pump. The system was coupled to a Finnigan LCQ
177 Deca XP max mass detector equipped with electrospray ionization source (ESI). A LiChroCART® RP-
178 18 column (150 mm x 4.6 mm, 5 μ m) (Merck Millipore) was used. The mobile phase was
179 acetonitrile/water (60:40 v/v) at a flow rate of 0.50 mL min⁻¹, and the run time was 40 min with a
180 sample volume injection of 25 μ L. The mass spectrometry analysis was performed under positive

181 electrospray ionization (ESI+). The mass spectra were obtained in the scan range of 250-1200 m/z [21],
182 controlled by Xcalibur software version 2.2.

183 **4.4. Cytotoxicity assays**

184 The cell lines used were: MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung
185 cancer), HeLa (cervical carcinoma), HepG2 (hepatocellular carcinoma) and PLP2 (non-tumor liver
186 primary culture). Each of the cell lines was grown in a 96-well microplate, at a density of 7.5×10^3
187 cells/well for MCF-7 and NCI-H460, and 1.0×10^4 cells/well for HeLa, HepG2, and PLP2. The cells
188 were allowed to attach for 24 h. After this period, distinct neem extract concentrations (1.56-400
189 $\mu\text{g/mL}$) or Ellipticine (positive control) were added to the cells and incubated for 48 h. After that, a
190 prechilled trichloroacetic acid (TCA 10%, 100 μL) was added and incubated for 60 min at 4 °C to
191 improve the adherence of the cells. The plates were washed with deionized water, dried and after the
192 addition of a solution of sulforhodamine B (SRB 0.1% in 1% acetic acid, 100 μL), the mixture was
193 incubated for 30 min at room temperature. Subsequently, the plates were washed with acetic acid
194 (1%) to remove the unbound SRB and dried. The bounded SRB was solubilized with Tris (10 mM,
195 200 μL) and the absorbance measured at 540 nm using an ELX800 microplate reader (Bio-Tek
196 Instruments, Inc; Winooski, VT, USA) [40, 42].

197 **4.5. Statistical analysis**

198 Statistical analysis was determined by one-way ANOVA, followed by a post-hoc Tukey's test
199 using Prism version 5.0 software. Statistical significance was concluded with $p < 0.05$.

200 **5. Conclusions**

201 This study demonstrated that sequential-PLE is an efficient methodology for extraction of
202 bioactive compounds from neem leaves. The use of three different solvents for the extraction process
203 provides extracts with different concentrations of bioactive compounds. The ethyl acetate extract
204 (SEA) was the richest extract in terpene compounds. Moreover, SEA was the most efficient growth
205 inhibitor of tumor cells among all extracts tested. Human tumor cells are more sensitive than normal
206 cells to all neem extracts. The present study provides a process to obtain extracts of neem leaves with
207 potential for application antiproliferative against malignant cells.

208 **Author Contributions:** Methodology, Klebson S. Santos, Andriele M. Barbosa and Ricardo C. Calhelha; Formal
209 analysis, Victor Freitas, Ana Veruska C.S. Muniz, Isabel C.F.R. Ferreira and Elton Franceschi.; Writing-Review
210 & Editing, Klebson S. Santos, Francine F. Padilha, Maria Beatriz P.P. Oliveira and Cláudio Dariva.

211 **Acknowledgments:** Klebson Silva Santos thanks CAPES (Process: PDSE 99999.003409/15-5) for the financial
212 support during his Ph.D. studies in Portugal. Authors are grateful to CAPES, CNPq, and FAPITEC for the
213 financial support. The study was also carried out with financial support from FEDER, under the Partnership
214 Agreement PT2020.

215 **Conflicts of Interest:** The authors declare no conflict of interest.

216 **References**

- 217 1. Raphael, E. Phytochemical constituents of some leaves extract of *Aloe vera* and *Azadirachta indica* plant
218 species. *GARJEST*. **2012**, 1, 14-17.
- 219 2. Hashmat, I.; Azad, H.; Ahmed, A. Neem (*Azadirachta indica* A. Juss)-A nature's drugstore: an overview.
220 *Int Res J Biol Sci.* **2012**, 1, 76-79.
- 221 3. Al-Jadidi, H.S.K.; M.A. Studies on total phenolics, total flavonoids and antimicrobial activity from the
222 leaves crude extracts of neem traditionally used for the treatment of cough and nausea. *BJBAS*. **2015**, 4, 93-
223 98.
- 224 4. Hossain, M.A.; Al-Toubi, W.A.; Weli, A.M.; Al-Riyami, Q.A.; Al-Sabahi, J.N. Identification and
225 characterization of chemical compounds in different crude extracts from leaves of Omani neem. *JTUSCI*.
226 **2013**, 7, 181-188.

227 5. Patel, S.M.; Venkata, K.C.N.; Bhattacharyya, P.; Sethi, G.; Bishayee, A. Potential of neem (*Azadirachta*
228 *indica* L.) for prevention and treatment of oncologic diseases. *Semin Cancer Biol.* **2016**, *40*, 100-115.

229 6. Dixit, S.; Ali, H. Anticancer activity of medicinal plant extract-a review. *J. Chem. & Cheml. Sci.* **2010**, *1*, 79-
230 85.

231 7. Atawodi, S.E.; Atawodi, J.C. *Azadirachta indica* (neem): a plant of multiple biological and pharmacological
232 activities. *Phytochem Rev.* **2009**, *8*, 601-620.

233 8. Sharma, C.; Vas, A.J.; Goal, P.; Gheewala, T.M.; Rizvi, T.A. A. Hussain, Ethanolic Neem (*Azadirachta*
234 *indica*) leaf extract prevents growth of MCF-7 and HeLa cells and potentiates the therapeutic index of
235 Cisplatin. *J Oncol.* **2014**, <http://dx.doi.org/10.1155/2014/321754>.

236 9. Azmir, J.; Zaidul, I.; Rahman, M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini,
237 N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: a review. *J Food Eng.*
238 **2013**, *117*, 426-436.

239 10. Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, isolation and
240 characterization of bioactive compounds from plants' extracts. *Afr J Tradit Complement Altern Med.* **2011**, *8*,
241 1-10.

242 11. Garmus, T.T.; Paviani, L.C.; Queiroga, C.L.; Cabral, F.A. Extraction of phenolic compounds from pepper-
243 rosmarin (*Lippia sidoides* Cham.) leaves by sequential extraction in fixed bed extractor using supercritical
244 CO₂, ethanol and water as solvents. *J. Supercrit. Fluids.* **2015**, *99*, 68-75.

245 12. Monroy, Y.M.; Rodrigues, R.A.; Sartoratto, A.; Cabral, F.A. Extraction of bioactive compounds from cob
246 and pericarp of purple corn (*Zea mays* L.) by sequential extraction in fixed bed extractor using supercritical
247 CO₂, ethanol, and water as solvents. *J. Supercrit. Fluids.* **2016**, *107*, 250-259.

248 13. Garmus, T.T.; Paviani, L.C.; Queiroga, C.L. Magalhães, P.M.; Cabral, F.A. Extraction of phenolic
249 compounds from pitanga (*Eugenia uniflora* L.) leaves by sequential extraction in fixed bed extractor using
250 supercritical CO₂, ethanol and water as solvents. *J. Supercrit. Fluids.* **2014**, *86*, 4-14.

251 14. Ong, E.S.; Len, S.M. Pressurized hot water extraction of berberine, baicalein and glycyrrhizin in medicinal
252 plants. *Anal. Chim. Acta.* **2003**, *482*, 81-89.

253 15. Eng, A.T.W.; Heng, M.Y.; Ong, E.S. Evaluation of surfactant assisted pressurized liquid extraction for the
254 determination of glycyrrhizin and ephedrine in medicinal plants. *Anal. Chim. Acta.* **2007**, *583*, 289-295.

255 16. Smith, R.M. Extractions with superheated water. *J Chromatogr A.* **2002**, *975*, 31-46.

256 17. Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants
257 extraction: A review. *Anal. Chim. Acta.* **2011**, *703*, 8-18.

258 18. Subedi, B.; Aguilar, L.; Robinson, E.M.; Hageman, K.J.; Björklund, E.; Sheesley, R.J.; Usenko, S. Selective
259 pressurized liquid extraction as a sample-preparation technique for persistent organic pollutants and
260 contaminants of emerging concern. *Trends Analyt Chem.* **2015**, *68*, 119-132.

261 19. Shirasath, S.; Sonawane, S.; Gogate, P. Intensification of extraction of natural products using ultrasonic
262 irradiations—a review of current status. *Chem. Eng. Process.* **2012**, *53*, 10-23.

263 20. Wu, Q.; H. Yuan, L. Zhang, Y. Zhang, Recent advances on multidimensional liquid chromatography-mass
264 spectrometry for proteomics: From qualitative to quantitative analysis—A review. *Anal. Chim. Acta.* **2012**,
265 *731*, 1-10.

266 21. Mahapatra, S.; Young, C.Y.; Kohli, M.; Karnes, R.J.; Klee, E.W.; Holmes, M.W.; Tindall, D.J. Donkena, K.V.;
267 Antiangiogenic effects and therapeutic targets of *azadirachta indica* leaf extract in endothelial cells. *J Evid
268 Based Complementary Altern Med.* **2012**, <http://dx.doi.org/10.1155/2012/303019>.

269 22. Gika, H.G.; Theodoridis, G.A.; Plumb, R.S.; Wilson, I.D. Current practice of liquid chromatography-mass
270 spectrometry in metabolomics and metabonomics. *J. Pharm. Biomed. Anal.* **2014**, *87*, 12-25.

271 23. Haldar, S.; Mulari, F.A. Aarthy, T.; Dandekar, D.S.; Thulasiram, H.V. Expedient preparative isolation and
272 tandem mass spectrometric characterization of C-seco triterpenoids from Neem oil. *J. Chromatogr. A.* **2014**,
273 *1366*, 1-14.

274 24. Yadav, D.K.; Bharitkar, Y.P.; Chatterjee, K.; Ghosh, M.; Mondal, N.B.; Swarnakar, S. Importance of Neem
275 Leaf: An insight into its role in combating diseases. *NISCAIR.* **2016**, *54*, 708-718.

276 25. Bhajoni, P.S.; Meshram, G.G.; Lahkar, M. Evaluation of the antiulcer activity of the leaves of *Azadirachta*
277 *indica*: An experimental study. *Integ Med Int.* **2016**, *3*, 10-16.

278 26. Wolfender, J.-L.; Ndjoko, K.; Hostettmann, K. Liquid chromatography with ultraviolet absorbance-mass
279 spectrometric detection and with nuclear magnetic resonance spectrometry: a powerful combination for
280 the on-line structural investigation of plant metabolites. *J. Chromatogr. A.* **2003**, *1000*, 437-455.

281 27. Jiang, B.; Kronenberg, F.; Balick, M.; Kennelly, E. Analysis of formononetin from black cohosh (*Actaea*
282 *racemosa*). *biomedmedicine*. **2006**, *13*, 477-486.

283 28. Ji, X.; Avula, B.; Khan, I.A. Quantitative and qualitative determination of six xanthones in *Garcinia*
284 *mangostana* L. by LC-PDA and LC-ESI-MS. *J. Pharm. Biomed. Anal.* **2007**, *43*, 1270-1276.

285 29. Pavei, C.; Kaiser, S.; Verza, S.G.; Borre, G.L.; Ortega, G.G. HPLC-PDA method for quinovic acid glycosides
286 assay in Cat's claw (*Uncaria tomentosa*) associated with UPLC/Q-TOF-MS analysis. *J. Pharm. Biomed. Anal.*
287 **2012**, *62*, 250-257.

288 30. Zhang, Y.; Nie, M.; Shi, S.; You, Q.; Guo, J.; Liu, L. Integration of magnetic solid phase fishing and off-line
289 two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry for
290 screening and identification of human serum albumin binders from *Radix Astragali*. *Food chem.* **2014**, *146*,
291 56-64.

292 31. Liu, J.; Fang, Y.; Yang, L.; Qin, X.; Du, G.; Gao, X. A qualitative, and quantitative determination and
293 pharmacokinetic study of four polyacetylenes from *Radix Bupleuri* by UPLC-PDA-MS. *J. Pharm. Biomed.*
294 **Anal.** **2015**, *111*, 257-265.

295 32. Schaaf, O.; Jarvis, A.P.; van der Esch, S.A.; Giagnacovo, G.; Oldham, N.J. Rapid and sensitive analysis of
296 azadirachtin and related triterpenoids from neem (*Azadirachta indica*) by high-performance liquid
297 chromatography-atmospheric pressure chemical ionization mass spectrometry. *Chromatogr. A*. **2000**, *886*,
298 89-97.

299 33. Savic, S.; Vojinovic, K.; Milenkovic, S.; Smelcerovic, A.; Lamshoeft, M.; Petronijevic, Z. Enzymatic oxidation
300 of rutin by horseradish peroxidase: Kinetic mechanism and identification of a dimeric product by LC-
301 Orbitrap mass spectrometry. *Food chem.* **2013**, *141*, 4194-4199.

302 34. Cowan, M.M. Plant products as antimicrobial agents. *Clin Microbiol. Rev.* **1999**, *12*, 564-582.

303 35. Sánchez-Camargo, A.; Mendiola, J.; Valdés, A.; Castro-Puyana, M.; García-Cañas, V.; Cifuentes, A.;
304 Herrero, M.; Ibáñez, E. Supercritical antisolvent fractionation of rosemary extracts obtained by pressurized
305 liquid extraction to enhance their antiproliferative activity. *J. Supercrit. Fluids*. **2016**, *107*, 581-589.

306 36. Deniz, I.; Ozen, M.O.; Yesil-Celiktas, O. Supercritical fluid extraction of phycocyanin and investigation of
307 cytotoxicity on human lung cancer cells. *J. Supercrit. Fluids*. **2016**, *108*, 13-18.

308 37. Vicente, G.; Molina, S.; González-Vallinas, M.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Molina, A.R.
309 Supercritical rosemary extracts, their antioxidant activity and effect on hepatic tumor progression. *J.*
310 *Supercrit. Fluids*. **2013**, *79*, 101-108.

311 38. Cvetanović, A.; Švarc-Gajić, J.; Zeković, Z.; Mašković, P.; Đurović, S.; Zengin, G.; Delerue-Matos, C.;
312 Lozano-Sánchez, J.; Jakišić, A. Chemical and biological insights on aronia stems extracts obtained by
313 different extraction techniques: From wastes to functional products. *J. Supercrit. Fluids*. **2017**, *128*, 173-181.

314 39. Hao, F.; Kumar, S.; Yadav, N.; Chandra, D. Neem components as potential agents for cancer prevention
315 and treatment. *BBA Rev Cancer*. **2014**, *1846*, 247-257.

316 40. Pereira, E.; Pimenta, A.I.; Calhelha, R.C.; Antonio, A.L.; Verde, S.C.; Barros, L.; Santos-Buelga, C.; Ferreira,
317 I.C. Effects of gamma irradiation on cytotoxicity and phenolic compounds of *Thymus vulgaris* L. and
318 *Mentha x piperita* L. *LWT-Food Sci Technol*. **2016**, *71*, 370-377.

319 41. Pereira, C.; Calhelha, R.C.; Barros, L.; Ferreira, I.C. Antioxidant properties, anti-hepatocellular carcinoma
320 activity and hepatotoxicity of artichoke, milk thistle and borututu. *Ind. Crop Prod.* **2013**, *49*, 61-65.

321 42. Guimarães, R.; Barros, L.; Dueñas, M.; Calhelha, R.C.; Carvalho, A.M.; Santos-Buelga, C.; Queiroz, M.J.R.;
322 Ferreira, I.C. Nutrients, phytochemicals and bioactivity of wild Roman chamomile: a comparison between
323 the herb and its preparations. *Food Chem.* **2013**, *136*, 718-725.

324

325