We present a distributed optical-fiber temperature sensor with enhanced sensitivity based on an Al-coated fiber using the Rayleigh backscattering spectra (RBS) shift in optical frequency-domain reflectometry (OFDR). The Al-coated sensing fiber with a higher thermal expansion coefficient compared to silica produces a strain-coupled shift in the RBS under an increase in temperature. This effect leads to an enhanced temperature sensitivity of the distributed measurement scheme. Our results revealed that the temperature sensitivity obtained using the Al-coated fiber in OFDR was ~56% higher relative to that of a single-mode fiber. Moreover, the minimum measurable temperature recorded was 1 °C with a spatial resolution of 5 cm.