

1 Article

2 Trust and Distress Prediction in Modal Shift 3 Potential of Long-Distance Road Freight in 4 Containers: Modelling Approach in Transport 5 Services for Sustainability

6 Elżbieta Szaruga ¹, Elżbieta Skapska ^{2,*}, Elżbieta Załoga ³ and Wiesław Matwiejczuk ⁴7 ¹ University of Szczecin, Faculty of Management and Economics of Services, Department of Quantitative
8 Methods; Cukrowa 8 Street, 71-004 Szczecin, Poland; elzbieta.szaruga@usz.edu.pl (ESZ)9 ² Bialystok University of Technology, Faculty of Management Engineering; Division of Managerial
10 Economics; 2 Ojca Tarasiuka Street, 16-001 Kleosin, Poland; e.skapska@pb.edu.pl (ES)11 ³ University of Szczecin, Faculty of Management and Economics of Services, Department of Policy and
12 Transport Systems; Cukrowa 8 Street, 71-004 Szczecin, Poland; elzbieta.zaloga@wzieu.pl (EZ)13 ⁴ Bialystok University of Technology, Faculty of Management Engineering; Department of Production
14 Management; 2 Ojca Tarasiuka Street, 16-001 Kleosin, Poland; w.matwiejczuk@pb.edu.pl (WM)15 * Correspondence: e.skapska@pb.edu.pl; Tel.: +48-500-227-183

16

17 **Abstract:** Confidence in intermodal transport has not yet been defined. There are many different
18 approaches to the concept of trust. However, the authors embedded them in the light of the
19 challenges of sustainability, linking with the shift paradigm. The objective of the article is to indicate
20 the directions and criteria for the implementation of the shift paradigm, inscribed in the idea of
21 sustainable transport. The auxiliary objective is to predict which countries in a given year will have
22 the TRUST status, i.e. implement the shift paradigm, and which will not implement it (DISTRESS).
23 The article uses taxonometric techniques and built a model using General Discriminant Analysis.
24 On their basis, the utility function was approximated, including the directions of implementation of
25 the shift paradigm depending on the scale of the environmental load of transport. In the course of
26 the research, an original and innovative econometric model was constructed, pointing to three
27 variables, which had the greatest impact on trust. Thanks to the cognitive value of the model, it is
28 possible to identify individuals who deserve the trust, i.e. it will implement the shift paradigm, with
29 93% probability. In the future, it is worth expanding the research by models for each country.

30 **Keywords:** sustainability; trust; distress; transport services; road freight transport; modal shift
31 potential; shift paradigm; modelling; prediction; General Discriminant Analysis

32

33 1. Introduction

34 The article focuses on an extremely important subject of trust and distress prediction in modal
35 shift potential of long-distance road freight in containers. An attempt was made to define the concept
36 of trust in the context of the modeling approach in transport services, including the concept of
37 sustainability and the shift paradigm. For the purposes of the article, the main hypothesis was
38 formulated: trust and distress in the implementation of the shift paradigm (based on cooperation)
39 depends on the scale of the environmental burden of transport (production and consumption
40 patterns). Expanding, it can be considered that quantitative predictors express the environmental
41 burden of transport. The aim of the article is to indicate the directions and criteria for the
42 implementation of the shift paradigm, inscribed in the idea of sustainable transport. The auxiliary
43 goal is to predict which countries in a given year will have the TRUST status, i.e. implement the shift

44 paradigm, and which will not implement it (DISTRESS status). The structure of work is subordinated
45 to these purposes, which consists of 5 main parts: first – introduction; second – literature background,
46 where the literature review was done: the concept of trust was discussed, interpretation of sustainable
47 development and the shift paradigm were given. The third part describes the test methods used and
48 presents the research stages. The fourth part presents innovative, original research - econometric
49 model (GDA) along with utility profiles. The article ended with a discussion.

50 **2. Literature background**

51 Every economic relationship is linked to trust, which is an essential link of services, especially
52 transport. The complexity and dynamics of the real economic sphere requires, on the one hand,
53 cooperation and trust, on the other, it creates an economic distress. Therefore, the semantic
54 delimitation of the term "trust" for classic and innovative approaches is necessary. The first one is
55 associated with a subjective measure, a repeating pattern. The second one takes into account new
56 criteria. Selected literature items were used in terms of the economic environment. Traditionally, trust
57 means a way to deal with social uncertainty and complexity [1]. Confidence is a higher value and
58 increases efficiency. This is a phenomenon that in economics is called external effects [2]. Thus, they
59 can be formulated as an expectation that is formed in a community about the regular, honest and
60 cooperative behavior of other members of the community based on commonly recognized norms [3].
61 In addition, it is the expectation that the partner can be relied on and that he will keep his
62 commitments in a predictable way and that he will act honestly in the face of various possibilities [4].
63 Trust imposes on the person of trust the obligation to keep the promise. What counts is the attitude
64 of keeping the promise, the oath as honoring your own declaration of will [5], thus convincing one
65 party of the relationship that the other party will not act against your interests, accepted without
66 doubts and suspicions in the absence of detailed information about the other party's actions [6]. To
67 respect the principles of many people in response to the need for a complex society. Trust is also the
68 conviction that a business partner will take care not only of his or her interest to maintain the
69 exchange relationship [7]. It is also a belief based on moral obligations [8]. Kramer dissociates himself
70 from the recognition of trust as a belief, treating it as a compatible decision with ethical expectations
71 [9]. It is an expression of free will.

72 Then, the literature recognizes the context of the approach to trust, e.g. from the side of the
73 consumer, manager or the whole organization. On the one hand, it means the regulator of decisions
74 made by consumers on the market [10] and the consumer's expectation that his weaknesses will not
75 be used in a situation considered risky [11]. On the other hand, the manager's faith in the strength
76 and capabilities of his subordinates [12]. It is also a factor enabling organizations to face the
77 complexity and changeability of economic reality [13]. A component of customer relations in the logic
78 of service dominance in the concept of managing a promise [14]. A directed relation between two
79 units: trusting and a trustee with risks [15]. Social aspect of the relations connecting participants of
80 economic life [16]. The capital of credibility is the sum of the resources of economic and social benefits.
81 The plant is made about uncertain future actions of people is a key factor in the relationship [17].
82 Consumer confidence the reliability and integrity of online resellers that lead to a successful
83 transaction (via the Internet) [18]. Believing that a trustworthy person is motivated by good intentions
84 and that he is capable of fulfilling what is expected of him [19]. Trust is organizational value, which
85 requires strong ethical foundations [20]. On the one hand (rational) means the assessment of
86 competence and credibility and the possibility of relying on the other person; on the other (affective))
87 - is the result of emotional ties created between cooperating people [21].

88 An innovative approach to trust captures them as a balance of strategic interaction (moral hazard
89 and uncertainty in political activities) between agents and policy makers with incentives for
90 deviations [22]. A key element of society playing a key role in creating interaction and relationships
91 in the context of a platform and service peer-to-peer [23]. Derivative of the personality of the
92 individual and perceived object reliability [24]. Faith to others in providing accurate assessments due
93 to the preferences of the active user. Global trust is the average opinion of the whole community
94 about the credibility of the user [25]. Relying on others not to be used. On the other hand, being

95 trustworthy means that you do not use others for lack of satisfaction [26]. Confidence is influenced
96 by intensively and dynamically diverse factors that appear in diverse environments, by the
97 environment of the economic entity and the individual. For example, citizens' trust in local
98 government authorities. The level of attachment to tourist events affects perception and emotional
99 reactions, creating support based on the theory of social exchange and cognitive theory of assessment
100 [27]. The main difference in the perception of trust in traditional and modern style is the distinction
101 of relationships.

102 Modern global trust models include user reputation calculations, and almost historically local
103 trust models define trust between two users based on their previous interactions. Confidence in
104 classical interpretation usually means expectation, conviction. In turn, in the novel approach -
105 promise. A common element in the various definitions of trust is the intention to accept sensitivity
106 based on positive expectations. A look at trust in transport services requires taking into consideration
107 at least two points of view: the client's perspective and the perspective of the carrier, and the type of
108 transport and the content of transport, i.e. passengers, freight. Taking into account the definitions of
109 trust for the purposes of this article, the authors created a definition referring to the specificity of
110 transport as close to Di Maggio [28] and Bachmann, Zaheer [13] treating trust as a factor enabling
111 enterprises to better use the opportunities created by a variable security-based environment the flow
112 of goods and people XXX is therefore a condition enabling organizations to face the complexity and
113 volatility of economic reality. Furthermore, trust is based on the honoring of commitments and is a
114 factor in facilitating the use of new opportunities provided by the changing environment [28].

115 Trust-related values are characteristics of service providers in relation to rational action, in
116 accordance with the Order of relations assigned to human-focused services. Among these traits, it
117 should distinguish between compulsion, accountability, credibility and a sense of mission
118 [background of my new "Connecting thoughts": The value in combination with trust is the
119 characteristics of service providers towards rational action, according to the Order of relationship,
120 assigned to human-oriented services. Among these traits are dutifulness, accountability, credibility,
121 a sense of mission – ed.]. The desired direction depending on the idea of Ordo is to shape the order
122 corresponding to the human nature, without which it is difficult or impossible to provide services
123 [29].

124 On the background of the presented positions, it is, in particular, important to place the issue of
125 trust in transport. The problem of transport trust is raised in the studies by Ivuts and Matwiejczuk,
126 paying special attention to the contemporary complexity and multidimensionality of the transport
127 process as well as delivery time, which is considered one of the key factors determining the quality
128 of transport services. The attractiveness of freight traffic is a fairly complex process, including services
129 of various types of transport, forwarding services, handling of cargoes and their storage at terminals,
130 etc. [30]. However, future-oriented, modern processes, including transport, require a continuous flow
131 of information in order to constantly develop knowledge [31]. But with regard to the movement of
132 goods, services and manpower there are still many untapped possibilities for changing and extending
133 economic activity. One of the solutions that can help to improve the business environment and
134 economic growth is to ensure a unitary market [32].

135 As notes by Załoga, in the context of the socio-economic and political integration of the EU,
136 liberalization is an appropriate method for the creation of a unitary market for transport services [33].
137 Regulation of the EU's transport services market mainly relied on economic regulation of a structural
138 nature (conditions for market access and the occupation of the carrier), which influenced the shaping
139 of the supply side of services [33]. However, the interest in social regulation has increased in recent
140 years. It has been caused by concern for the environment in a global sense, the need to ensure the
141 safety of transport and its users. As added by Załoga, economic and social regulations often seek to
142 exclude and even conflicting objectives [33]. Sustainability is based on the principle of harmonization
143 of objectives (economic, environmental and social) and long-term actions with short-term decisions.
144 Sustainability is linked to the need for development programming [34]. Alleviating these conflicting
145 objectives is conducive to sustainable transport policies, derived from the idea of sustainable
146 development [33]. One of the paradigms of sustainable transport is the shift paradigm, so-called

147 modal shift. This paradigm is the expression of new patterns of production and consumption of
148 services, relevant to environmental constraints [33]. Załoga notes the three conditions for the
149 adoption of this paradigm in EU transport policy [33]:

- 150 1. The need to halt the dominance of road transport in the transport needs of society and the
151 economy- road transport is characterized by a relatively high environmental impact and affects
152 the barriers to supply of services of modals (congestion, occupancy of area).
- 153 2. Convinced of the occurrence of high-substitutability services of inland (road and rail) and water
154 transport.
- 155 3. Conviction of high complementarity between modals and means of transport.

156 In principle, the *shift paradigm* refers to two types of shifts [33]:

- 157 • freight - from road transport to water or rail transport;
- 158 • people/passengers - from the use of passenger cars for public transport.

159 From a shift paradigm perspective, the functionality of complementary transport is important.
160 Land transport (road and rail) is a condition for the operation of air and water transport, as it links
161 these transport modals with their target markets [35]. Therefore, the question of cooperation and trust
162 plays an important role.

163 According to Kozuch and Sienkiewicz-Malýjurek, the phenomenon of cooperation between
164 organizations derives from the necessity of cooperation, goodwill, commitment and trust [36]. This
165 approach should in principle serve as a basis for the implementation of the *paradigm of shift*. Moreover,
166 in addition-from an analytical perspective-may be the approach of Jabłoński [37]. He points out that
167 when performing multidimensional analysis, attention should be paid to the importance of public
168 trust in value building. Trust becomes a determinant of the relationship between individual
169 stakeholders and the audience of public value development [37]. These groups may be referred to all
170 transport users, including shift paradigm implementers and recipient services formed by the
171 realization of this paradigm.

172 Therefore, the study of modal shift potential of long distance road freight in containers seems to
173 be quite interesting in this context. There have not yet been any author's studies in which this research
174 object was examined in relation to the trust modelling.

175

176 3. Data, Methods & Steps

177 In order to carry out the study on trust and distress prediction in modal shift potential of long-
178 distance road freight in containers, the secondary data from Eurostat [38] and OECD.Stat [39]
179 databases were used. It was assumed that the research period is 2011-2015. The beginning of the
180 research period coincides with the year of publication of the final "White Paper: Roadmap to a Single
181 European Transport Area – Towards a competitive and resource efficient transport system" [40] and end of
182 this period-last updated data. Sixteen countries were included: Bulgaria, Czech Republic, Finland,
183 France, Hungary, Latvia, Lithuania, Luxembourg, Netherlands, Poland, Portugal, Slovak Republic,
184 Slovenia, Spain, Sweden, United Kingdom. The choice of countries was deliberate by reason of the
185 European territory and was dictated by the quality, completeness and availability of the data during
186 the analysis period. The following designations and abbreviations for the representative variables
187 used in the paper have been adopted¹:

188 Trust: one of the dichotomous values for the DT variable for trust status, corresponds with
189 value equal to 1;

190 Distress: one of the dichotomous values for the DT variable for distress status, corresponds with
191 value equal to 0;

192 DT: qualitative dependent variable with vector-encoded (dummy variable); takes value
193 equal to "Trust" (trust status, not distress) or "Distress" (distress status, not trust); to
194 specify the value, the data from Eurostat database for modal shift potential of long-
195 distance road freight in containers [tran_im_mosp] were used (percentage of total tkm).

¹ Quantitative predictors express the environmental burden of transport.

196 In the event that this structure ratio has not increased in relation to the reference period
 197 (2011), the variable DT was equal to "Trust" (1); if it increased, then it took the value
 198 equal to "Distress" (0);
 199 TS: continuous predictor; modal shift potential of long-distance road freight in containers
 200 (in percentage of total tkm); data from Eurostat database [tran_im_mosp];
 201 RFTG: continuous predictor; road freight transport (in tkm per 1000 units of current USD GDP);
 202 data from OECD.Stat [..IND-Meas-Roadgood-GDP];
 203 SRFT: continuous predictor; share of road freight transport in total inland freight transport (in
 204 percentage); data from OECD.Stat [..IND-Meas-Roadgood-Share];
 205 CO2EG: continuous predictor; CO₂ emissions from transport (in tonnes per 1 000 000 units of
 206 current USD GDP); data from OECD.Stat [..IND-Ene-GDP];
 207 SCO2: continuous predictor; share of CO₂ emissions from road in total CO₂ emissions from
 208 transport (in percentage), data from OECD.Stat [..IND-Ene-Road];
 209 ENRTG: continuous predictor; motor fuel deliveries (in tonnes per 1 000 000 units of current USD
 210 GDP); data from OECD.Stat [..IND-Ene-Fuel-GDP].

211 Mainly, taxonometric methods and Generalized Discriminant Analysis (GDA) were used in this
 212 paper (in-depth research using these methods was carried out by: Zioło, Porada-Rochoń & Szaruga
 213 [41]).

214 The first step in the study is to identify the status (trust/distress) of each country and year on the
 215 basis of the criterion described above [Table 1]. It has been assumed that EU countries that implement
 216 the shift paradigm (in the sense of year to 2011), which are inscribed in the sustainable transport
 217 policy, can be called the TRUST. Those that do not realize it (in the sense of year to 2011), and the
 218 name DISTRESS.

219 **Table 1.** Countries and years with trust status and distress status in modal shift potential of long-
 220 distance road freight in containers for selected European countries

Country	2011	2012	2013	2014	2015
Bulgaria	Trust	Trust	Trust	Trust	Trust
Czech Republic	Trust	Distress	Distress	Trust	Trust
Finland	Trust	Distress	Trust	Distress	Trust
France	Trust	Trust	Distress	Distress	Trust
Hungary	Trust	Distress	Distress	Distress	Distress
Latvia	Trust	Distress	Trust	Trust	Trust
Lithuania	Trust	Distress	Distress	Distress	Trust
Luxembourg	Trust	Distress	Trust	Trust	Trust
Netherlands	Trust	Trust	Trust	Trust	Trust
Poland	Trust	Trust	Distress	Distress	Trust
Portugal	Trust	Trust	Trust	Trust	Trust
Slovak Republic	Trust	Trust	Trust	Trust	Trust
Slovenia	Trust	Distress	Trust	Trust	Distress
Spain	Trust	Trust	Distress	Trust	Trust
Sweden	Trust	Trust	Distress	Trust	Trust
United Kingdom	Trust	Distress	Trust	Trust	Trust

221 Source: own elaboration based on data from Eurostat [tran_im_mosp]
 222 <http://ec.europa.eu/eurostat/database> (access: 02/05/2018).
 223

224 As indicated in Table 1, Bulgaria, Netherlands, Portugal and Slovak Republic had a trust status
 225 throughout the entire period considered, which means that they implemented the principles of the
 226 shift paradigm in 2011-2015. Hungary, which in the years 2012-2015 had distress status relative to the
 227 shift paradigm, remains in that context. Among the countries that were marked with the distress
 228 status in only one calendar year were: Latvia, Luxembourg, Spain, Sweden and United Kingdom.
 229 Apart from the reference year, the year 2011 was characterized by the highest number of states with
 230 the status of trust (87.5%), the situation was bad in 2012 - as much as 50% of analyzed countries with
 231 the status of distress.

232 The next stage of the study consisted in classifying the examined countries into clusters due to
 233 similar features. For this purpose, the k-means algorithm was used (taking into account
 234 standardization, the measure of Euclidean distance and maximization of cluster distances from initial
 235 centers). Previously conducted test using a test sample, where it was assumed that the minimum
 236 number of clusters is 1, and the maximum is 16; the minimum decrease is 5%. As a result of the
 237 clustering properties assessment, only one cluster was verified and the distances from the center of
 238 the cluster were estimated (Table 2).

239 **Table 2.** Distance from the center of the cluster

Country	2011	2012	2013	2014	2015
Bulgaria	1,0509	0,8743	0,9040	0,9104	1,2677
Czech Republic	1,1539	1,4682	1,4597	1,0809	1,1800
Finland	1,2261	1,4941	1,1449	1,4995	1,2797
France	1,1918	1,1200	1,4784	1,5034	1,1979
Hungary	1,1646	1,4722	1,4447	1,4739	1,5637
Latvia	1,4598	1,6924	1,2742	1,2750	1,3906
Lithuania	1,3194	1,5994	1,6095	1,6149	1,3956
Luxembourg	1,3144	1,5965	1,1838	1,1881	1,2510
Netherlands	1,3930	1,3373	1,3369	1,3530	1,4444
Poland	1,2312	1,1528	1,5352	1,5337	1,2991
Portugal	1,1811	1,1163	1,0778	1,1056	1,1961
Slovak Republic	1,3350	1,3252	1,1364	1,1790	1,2453
Slovenia	1,4236	1,7351	1,3847	1,3661	1,7967
Spain	1,2731	1,1786	1,5885	1,1301	1,1964
Sweden	1,2385	1,1674	1,5128	1,1998	1,2667
United Kingdom	1,2335	1,5241	1,1573	1,2246	1,2884

240 Source: own calculation based on data from Eurostat [tran_im_mosp] <http://ec.europa.eu/eurostat/data/database>
 241 and OECD.Stat [..IND-Meas-Roadgood-GDP; ..IND-Meas-Roadgood-Share; ..IND-Ene-GDP; ..IND-
 242 Ene-Road; ..IND-Ene-Fuel-GDP] <http://stats.oecd.org/> (access: 02/05/2018).
 243

244 By means of estimated Euclidean distances from the center of the cluster using the k-means
 245 method, it can be concluded that in no year did any of the countries significantly differ from each
 246 other due to the studied statistical features. No outliers were noticed either. Therefore, all years and
 247 all countries can be included in one model without the need to divide the sample into smaller ones.

248 The next stage of the research is the evaluation of the variability of the variables under
 249 investigation, and then the estimation of the model parameters using GDA. After positive verification
 250 of the model - for the desired properties, an approximation of the utility function should be made. To
 251 this end, the utility function for TRUST has been defined:

252 • low - for 0.00, utility is 0.00,

253 • indirect: for 0.50, utility equal to 0.5,
 254 • high: for 1.00, utility 1.00,
 255 whereby optimum values have been given to the factors. The curvature of s (low) is equal to 1.00 and
 256 t (high) is equal to 1.00. The inverse range would have the usability function for DISTRESS-for low
 257 value high usability, and for high value of low usability. In practice, it only means replacing colors
 258 on the service contour profiles of scenarios [see part 3 of paper]. The test culminates in obtaining
 259 profiles for posteriori and utility probabilities. Empirical results are shown in the following section.
 260

261 **4. Empirical results**

262 Table 3 shows the basic descriptive statistics for the variables examined. The data shows that the
 263 greatest variability (in the spatial-temporal dimension) characterized the variable RFTG, and the
 264 smallest SCO2. The variability in the spatial-temporal dimension of the remaining variables was at a
 265 predictable level of 30-40%.
 266

267 **Table 3.** Basic descriptive statistics for cluster

Variable	Mean	Standard deviation	Variation coefficient
TS	53,9900	17,4480	32,3171
RFTG	227,7875	181,8065	79,8141
SRFT	70,2575	19,4214	27,6431
CO2EG	76,9625	31,6230	41,0888
SCO2	95,0375	3,3246	3,4982
ENRTG	23,5375	10,4093	44,2242

268 Source: own calculation based on data from Eurostat [tran_im_mosp] <http://ec.europa.eu/eurostat/database>
 269 and OECD.Stat [..IND-Meas-Roadgood-GDP; ..IND-Meas-Roadgood-Share; ..IND-Ene-GDP; ..IND-
 270 Ene-Road; ..IND-Ene-Fuel-GDP] <http://stats.oecd.org/> (access: 02/05/2018).

271
 272 Table 4 provides summary of multiple regression (stepwise progressive). In four stages it was
 273 possible to determine the variables included in the model and excluded from it. Only three variables
 274 were significant from the point of view of the conducted study, i.e. TS, CO2EG, ENRTG. Therefore,
 275 the parameters of General Discriminant Analysis (GDA) were evaluated further with all effects in
 276 next stage.
 277

278

Table 4. Multiple regression summary (stepwise progressive)

Effect	Steps	Degree of freedom	F to remove	P to remove	F to put	P to put	Decision
TS	Step 1	1			7,89943	0,006250	Entered
RFTG		1			0,44796	0,505283	Outside
SRFT		1			0,32878	0,568026	Outside
CO2EG		1			0,00414	0,948879	Outside
SCO2		1			1,09327	0,298977	Outside
ENRTG		1			1,13102	0,290839	Outside
TS	Step 2	1	7,89943	0,006250			In model
RFTG		1			1,85578	0,177084	Outside
SRFT		1			0,08135	0,776241	Outside
CO2EG		1			11,43696	0,001134	Entered
SCO2		1			0,80317	0,372940	Outside
ENRTG		1			0,65892	0,419444	Outside
TS	Step 3	1	20,38823	0,000022			In model
CO2EG		1	11,43696	0,001134			In model
SRFT		1			0,00513	0,943069	Outside
RFTG		1			0,40656	0,525637	Outside
SCO2		1			1,67220	0,199882	Outside
ENRTG		1			4,20252	0,043813	Entered
TS	Step 4	1	20,51015	0,000022			In model
CO2EG		1	15,33358	0,000195			In model
ENRTG		1	4,20252	0,043813			In model
RFTG		1			0,28034	0,598040	Outside
CO2EG		1			0,16052	0,689815	Outside
SRFT		1			0,26922	0,605384	Outside

279 Source: own calculation based on data from Eurostat [tran_im_mosp] <http://ec.europa.eu/eurostat/data/database>
 280 and OECD.Stat [..IND-Meas-Roadgood-GDP; ..IND-Meas-Roadgood-Share; ..IND-Ene-GDP; ..IND-
 281 Ene-Road; ..IND-Ene-Fuel-GDP] <http://stats.oecd.org/> (access: 02/05/2018).
 282

283 The analysis of standardized coefficient β (beta) shows that the strongest influence on the
 284 recognition of countries with the status of trust or distress is expressed by CO2EG, then TS and
 285 ENRTG. Standardized coefficient shows which variables are the most efficient in discriminating
 286 between trust and distress countries. Contribution in discriminating between trust and distress class
 287 is distributed as follows: approx. 66,82% from TS, 79,37% from CO2EG and 355,76% from ENRTG.
 288 The correct recognition of countries as trust units with the positive contribution has CO2EG and with
 289 negative - TS and ENRTG. Opposite influence with the same level of efficient in discriminating noted
 290 for distress units.

291

Table 5. The parameters evaluation of GDA for 16 analyzed countries (cluster)

Effect	Trust parameter	Trust standard deviation	Trust t	Trust p-value	Trust β	Trust standard deviation β
Const	1,1479	0,1463	7,8437	0,0000		
TS	-0,0172	0,0038	-4,5288	0,0000	-0,6671	0,1473
CO2EG	0,0113	0,0029	3,9158	0,0002	0,7937	0,2027
ENRTG	-0,0154	0,0075	-2,0500	0,0438	-0,3576	0,1744

292

Effect	Distress parameter	Distress standard deviation	Distress t	Distress p-value	Distress β	Distress standard deviation β
Const	-0,1479	0,1463	-1,0105	0,3155 ¹		
TS	0,0172	0,0038	4,5288	0,0000	0,6671	0,1473
CO2EG	-0,0113	0,0029	-3,9158	0,0002	-0,7937	0,2027
ENRTG	0,0154	0,0075	2,0500	0,0438	0,3576	0,1744

293

¹ no statistical significance294
295
296
297

Source: own calculation based on data from Eurostat [tran_im_mosp] <http://ec.europa.eu/eurostat/data/database> and OECD.Stat [..IND-Meas-Roadgood-GDP; ..IND-Meas-Roadgood-Share; ..IND-Ene-GDP; ..IND-Ene-Road; ..IND-Ene-Fuel-GDP] <http://stats.oecd.org/> (access: 02/05/2018).

298
299
300
301
302
303
304

Table 6 presents descriptive statistics for individual classes. Countries with the status of trust had, on average, lower energy intensity than countries with the distress status, to greater extent used other transport modes than the road (difference of 12 percentage points) in long-distance freight transport in containers, but also had a higher intensity of carbon dioxide than states with distress status. However, it should be noted that the trust class has as much as 72.5% of observations and the distress class is the remaining 27.5%, so the difference in the intensity of carbon dioxide emission is insignificant.

305
306**Table 6.** Basic descriptive statistics of predicates in classes

Variable	Mean	Standard deviation	Variation coefficient	Mean	Standard deviation	Variation coefficient	
Trust (p=0,7250)				Distress (p=0,2750)			
TS	50,7517	17,6560	34,7890	62,5273	13,9207	22,2634	
CO2EG	77,1035	34,0808	44,2014	76,5909	24,6802	32,2234	
ENRTG	22,7759	10,8871	47,8010	25,5455	8,9481	35,0281	

307
308
309
310

Source: own calculation based on data from Eurostat [tran_im_mosp] <http://ec.europa.eu/eurostat/data/database> and OECD.Stat [..IND-Meas-Roadgood-GDP; ..IND-Meas-Roadgood-Share; ..IND-Ene-GDP; ..IND-Ene-Road; ..IND-Ene-Fuel-GDP] <http://stats.oecd.org/> (access: 02/05/2018).

311
312
313

Table 7 presents the tests of decomposition of effective hypotheses, verifying the significance of the variables used to identify trustworthy and unreliable units. Verification tests of Wilks, Pillai, Hotteling and Roy shows that all variables were significant.

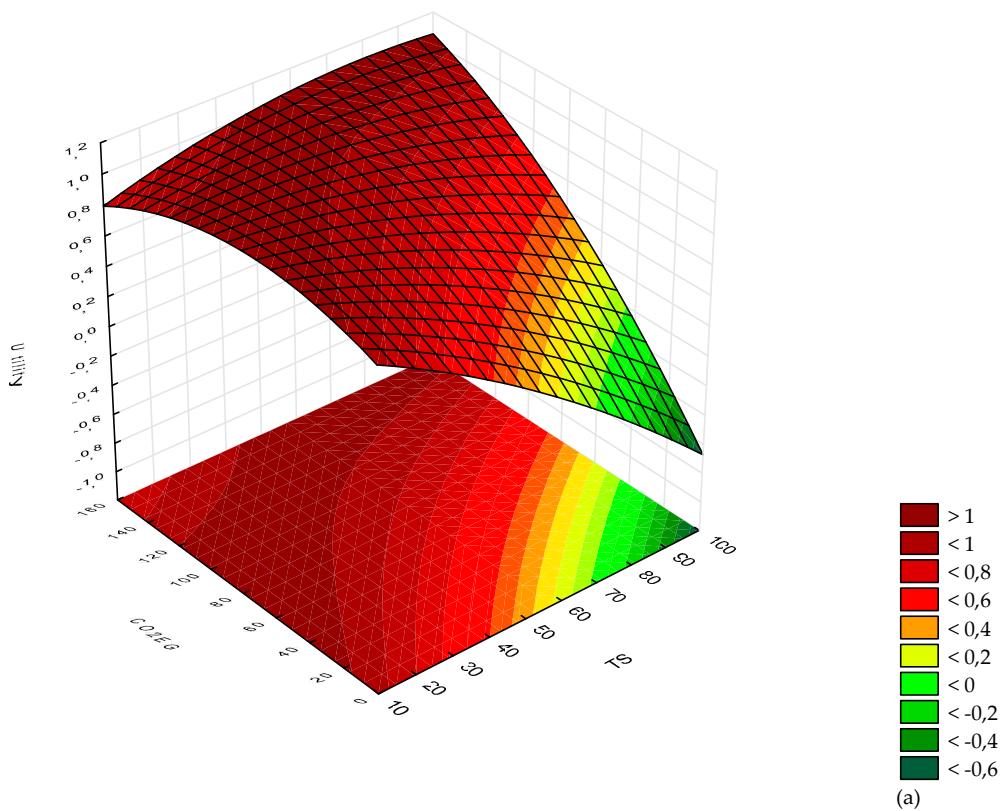
314

315

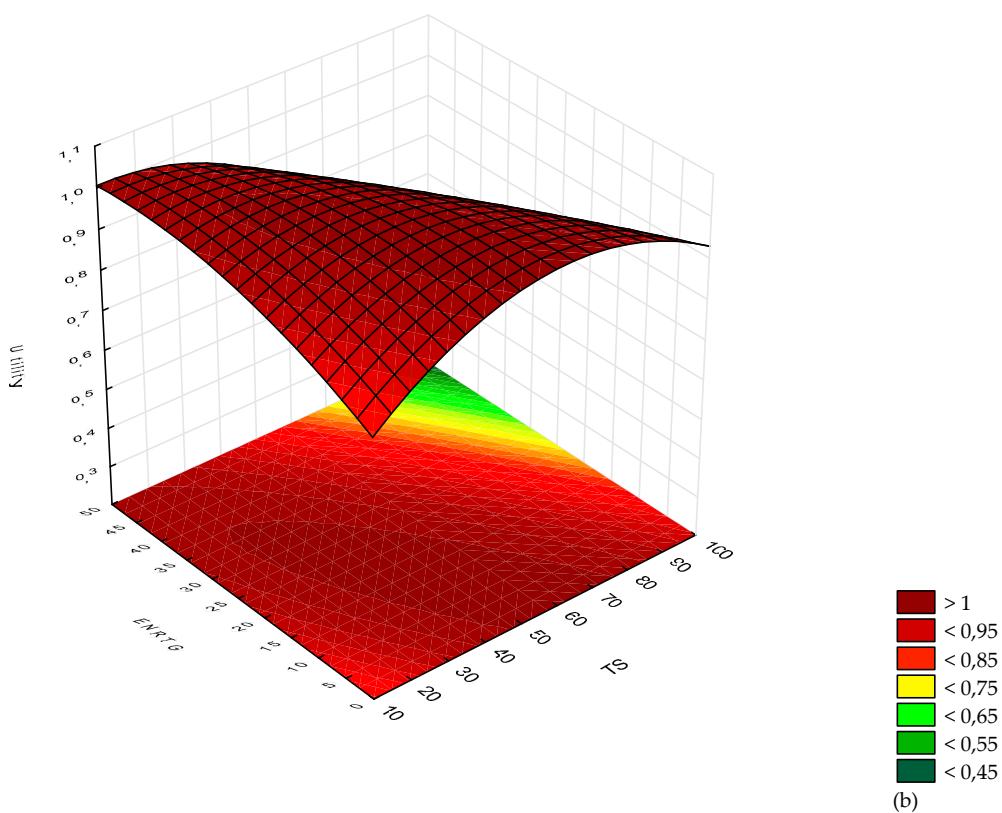
Table 7. Multivariate tests of significance

Effect	Test	Value	F	Effect - df	Error - df	p
Const	Wilks	0,5526	61,5232	1	76	0,0000
	Pillai	0,4474	61,5232	1	76	0,0000
	Hotelling	0,8095	61,5232	1	76	0,0000
	Roy	0,8095	61,5232	1	76	0,0000
TS	Wilks	0,7875	20,5101	1	76	0,0000
	Pillai	0,2125	20,5101	1	76	0,0000
	Hotelling	0,2699	20,5101	1	76	0,0000
	Roy	0,2699	20,5101	1	76	0,0000
CO2EG	Wilks	0,8321	15,3336	1	76	0,0002
	Pillai	0,1679	15,3336	1	76	0,0002
	Hotelling	0,2018	15,3336	1	76	0,0002
	Roy	0,2018	15,3336	1	76	0,0002
ENRTG	Wilks	0,9476	4,2025	1	76	0,0438
	Pillai	0,0524	4,2025	1	76	0,0438
	Hotelling	0,0553	4,2025	1	76	0,0438
	Roy	0,0553	4,2025	1	76	0,0438

316 Source: own calculation based on data from Eurostat [tran_im_mosp] <http://ec.europa.eu/eurostat/data/database>
 317 and OECD.Stat [..IND-Meas-Roadgood-GDP; ..IND-Meas-Roadgood-Share; ..IND-Ene-GDP; ..IND-
 318 Ene-Road; ..IND-Ene-Fuel-GDP] <http://stats.oecd.org/> (access: 02/05/2018).
 319

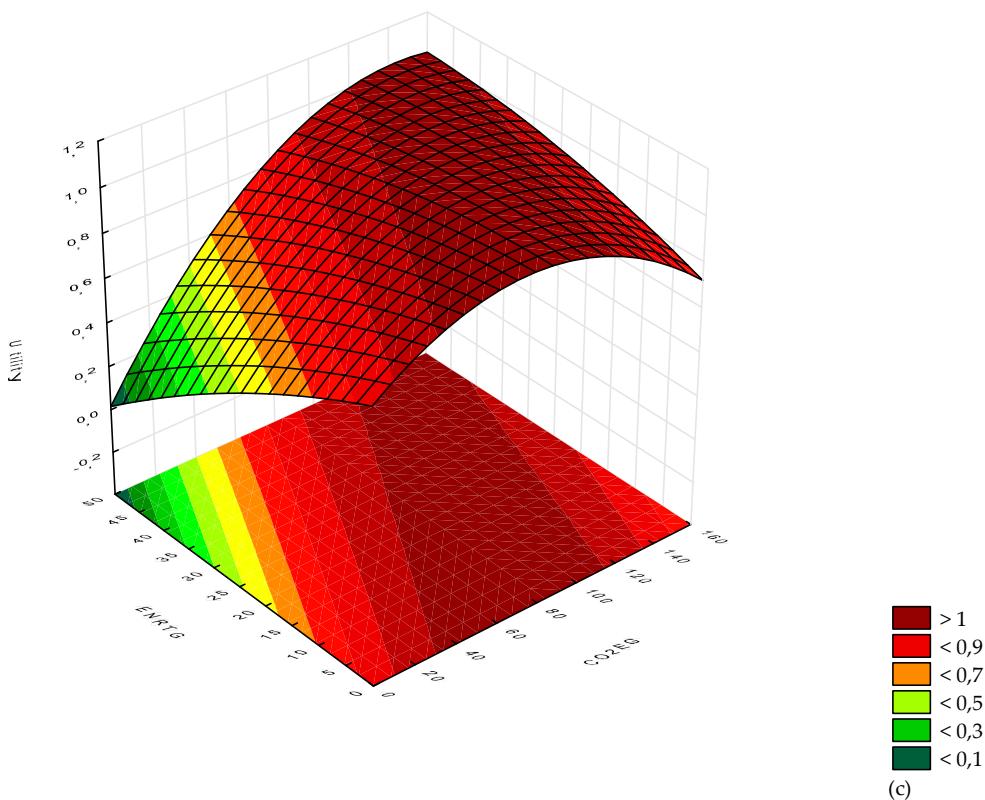

320 Table 8 contains the percentages of correctly classified countries to the trust or distress class. The
 321 model allowed to classify up to 80% of cases into two groups. The model was more accurate for
 322 trusted units than untrusted ones. On the basis of it, the units with the status trust can be selected
 323 with greater probability than with the status of distress. As many as 93% can correctly identify those
 324 units that will meet the criteria for achieving a trust, but only in 45% can be selected those units that
 325 will change direction to the status of distress.

326 **Table 8.** Classification matrix to trust (1) or distress (0) for cluster


Class	Percent - Correct	Trust	Distress
Trust	93,10345	54,00000	4,00000
Distress	45,45455	12,00000	10,00000
Totality	80,00000	66,00000	14,00000

327 Source: own calculation based on data from Eurostat [tran_im_mosp] <http://ec.europa.eu/eurostat/data/database>
 328 and OECD.Stat [..IND-Meas-Roadgood-GDP; ..IND-Meas-Roadgood-Share; ..IND-Ene-GDP; ..IND-
 329 Ene-Road; ..IND-Ene-Fuel-GDP] <http://stats.oecd.org/> (access: 02/05/2018).
 330

331 Figure 1 shows utility ranges of the examined criteria for the assessment of trust or distress in
 332 modal shift potential of long-distance road freight in containers for selected European countries
 333 (scenarios). Red fields mean high utility - desired (TRUST) and green low - undesirable (DISTRESS).
 334 Which means that there is not one optimal scenario for the implementation of the shift paradigm, and
 335 there are infinitely many of them. Similarly when it comes to DISTRESS.



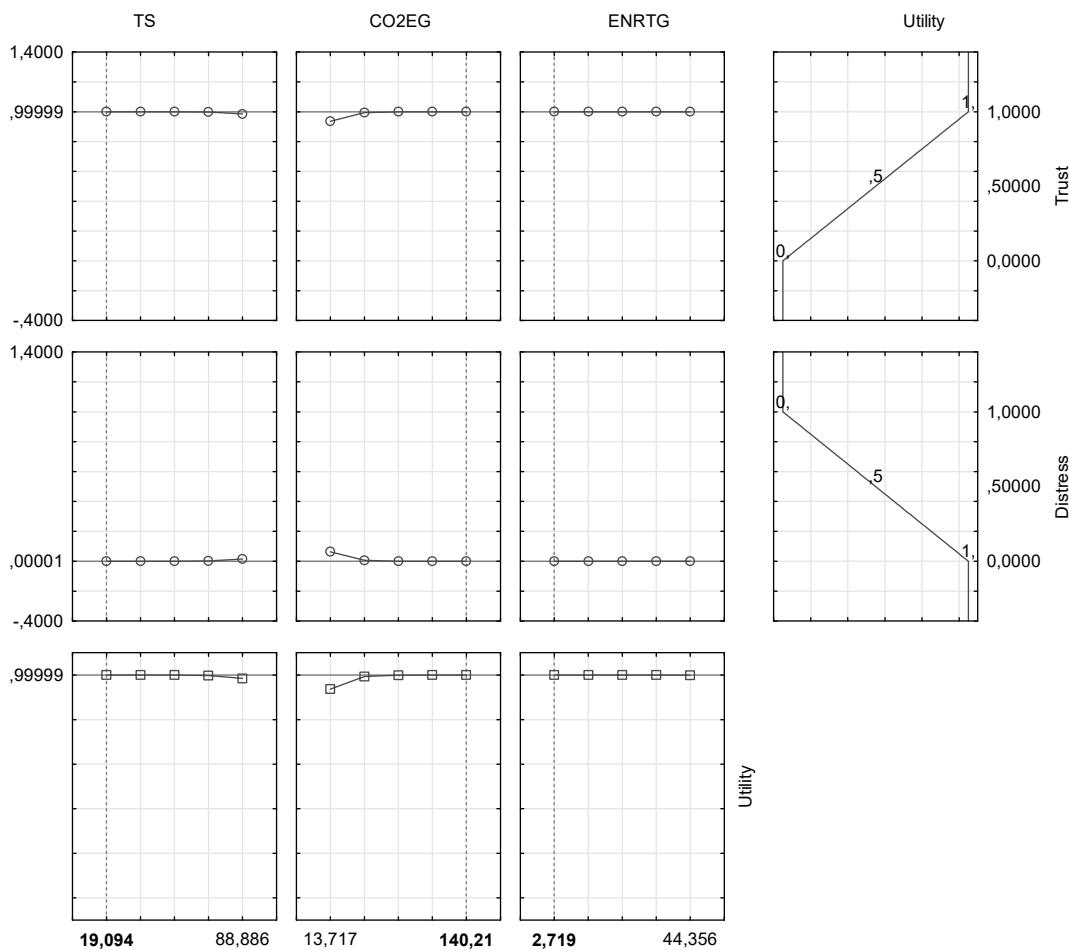
336

337

338

339

340 **Figure 1.** Utility ranges of the examined criteria for the assessment of trust or distress in modal shift
 341 potential of long-distance road freight in containers for selected European countries


342 Source: own calculation based on data from Eurostat [tran_im_mosp] <http://ec.europa.eu/eurostat/data/database>
 343 and OECD.Stat [..IND-Meas-Roadgood-GDP; ..IND-Meas-Roadgood-Share; ..IND-Ene-GDP; ..IND-
 344 Ene-Road; ..IND-Ene-Fuel-GDP] <http://stats.oecd.org/> (access: 02/05/2018).

345

346 In the summary of the investigation appear the profiles for posteriori and utility probabilities. It
 347 can be shown that the selected variables for the identification of EU countries with the status of
 348 TRUST were well-founded. Total utility oscillated within the limits of 0.99. Furthermore, it is
 349 noteworthy to underline that the aggregate probabilities are 1.00, which indicates a properly
 350 conducted study.

351

352

353
354**Figure 2.** Profiles for posteriori and utility probabilities

355 Source: own calculation based on data from Eurostat [tran_im_mosp] <http://ec.europa.eu/eurostat/data/database>
 356 and OECD.Stat [..IND-Meas-Roadgood-GDP; ..IND-Meas-Roadgood-Share; ..IND-Ene-GDP; ..IND-
 357 Ene-Road; ..IND-Ene-Fuel-GDP] <http://stats.oecd.org/> (access: 02/05/2018).

358

359 5. Discussion

360 The conducted research confirms that the quantitative approach to the issue of trust (non-
 361 quantitative) is worth deepening and developing. There are not many quantitative studies on trust
 362 in economics, a negligible number in transport. However, no research was done on modal shift
 363 potential of long-distance road freight in containers (expresses the scope of intermodal transport
 364 activities). The authors managed to combine three very broad terms: trust, sustainability, shift, and
 365 propose methodology and the results of the author's research. The hypothesis has been verified and
 366 the goals achieved.

367 Only three predictors were significantly different from zero. TS, CO2EG and ENRTG [table 4].
 368 It means that the standardized coefficient β indicates which variables are the most efficient in
 369 discriminating between trust and distress countries [table 5]. The most efficient in discriminating
 370 between these two groups CO2EG (contribution above 20%), next ENRTG - contribution is above
 371 17% and TS - contribution approx. to 15%. In this discriminatory analysis all variables in analysis
 372 were important, what the results indicate by Wilks, Pillai, Hotelling, Roy tests [table 7]. On the basis
 373 of the model, it is possible to predict units that will implement the shift paradigm (probability of
 374 about 93%) than those that will be characterized by the erosion of confidence in the shift paradigm

375 (45% probability). Which may mean that it is more likely to correctly identify trustworthy units than
376 those that will lose our trust [table 8].

377 The model enables correct classification of 80.00% cases to trust and distress group (both).

378 Regarding the usability ranges of the examined criteria for the assessment of trust or distress
379 regarding the possibility of modal shift of long-distance road transport in containers for selected
380 European countries [figure 1], it should be noted that the choice of the optimal scenario depends only
381 on the utility value that satisfies the decision maker. Optimal scenarios are infinitely many,
382 depending on the extent of the burden on the environment, you can assess how strong changes can
383 be made to be able to implement the idea of sustainable development. The impedance range of the
384 shift paradigm is very flexible, thanks to which it allows adapting to dynamically changing
385 macroeconomic conditions, sometimes even turbulent ones. Therefore, the authors are deeply
386 convinced that the proposed approach is a contribution to the creation of a comprehensive
387 methodology of trust and distress prediction in intermodal transport in the light of the challenges of
388 sustainable development.

389 Based on the results and conclusions of the research, the own definition of trust in intermodal
390 transport was formulated. Trust in modal shift potential of long-distance road freight in container is
391 based on the implementation of the shift paradigm, inscribed in the idea of sustainable transport. It
392 is expressed by the scale of the environmental burden of transport activity, using a vector: modal
393 shift potential of long-distance road freight in containers, CO₂ emissions from road in total CO₂
394 emissions from transport and motor fuel deliveries [own definition – ESZ & EZ]. Ensuring safety in
395 the implementation of the shift paradigm is therefore an integral element of trust and a form of
396 protection against the threat. This applies in transport to ensuring continuity in meeting transport
397 needs with various transport modals [own definition – ES & WM].

398 In the future, it is worth expanding the research by models for each country, taking into account
399 the wider range of macroeconomic conditions and the drifting of the economy. An inseparable
400 element of the drifting drift is structural shocks, which may indicate the participation of the main
401 factors of disruption / erosion of trust.

402

403 **Author Contributions:** All the authors contribute equally to this paper.

404 **Funding:** This research was funded by [name of funder - will be given at a later date] grant number [will be
405 given at a later date].

406 **Conflicts of Interest:** The authors declare no conflict of interest.

407 **References**

- 408 1. Luhmann, N. *Trust and Power*; J. Willey, Chichester & Sons: New York, USA, 1979; pp. 66-70, ISBN
409 9780471997580.
- 410 2. Arrow, K.J. *Granice organizacji* (into English: *The limits of organization*); Wydawnictwo Naukowe PWN
411 (into English: Polish Scientific Publishers): Warszawa, Poland, 1958; pp. 16-17, ISBN 9788374176668.
- 412 3. Fukuyama, F. *Trust. The Social Virtues and the Creation of Prosperity*; Free Press, A Division of Simon
413 Schuster: New York, USA, 1995; p. 26, ISBN 9780029109762.
- 414 4. Zaheer, A.; McEvily, B.; Perrone, V. Does Trust Matter? Exploring the Effects of Interorganizational
415 and Interpersonal Trust on Performance. *Organization Science* **1998**, *Volume 9, Issue 2*, pp. 141-159, DOI:
416 10.1287/orsc.9.2.141.
- 417 5. Seligman, A.B. *The Problem of Trust*; Princeton University Press: Princeton, New Jersey, USA, 2000;
418 p. 15, ISBN 9780691050201.
- 419 6. Tomkins, C. Interdependencies, trust and information in relationships, alliances and networks.
420 *Accounting, Organizations and Society* **2001**, *Volume 26, Issue 2*, pp. 161-191, DOI: 10.1016/S0361-
421 3682(00)00018-0.
- 422 7. Lin, N. *Social Capital: A Theory of Social Structure and Action*; Cambridge University Press: Cambridge,
423 United Kingdom, 2001; pp. 148-149, ISBN 9780521521673.

424 8. Hardin, R. Conceptions and Explanations of Trust. In: *Trust in Society*; Cook, K.S., Ed.; Russel Sage
425 Foundation: New York, USA, 2001; Volume 2, p. 3, ISBN 9780871541819.

426 9. Messick, D.M., Kramer R.M., Trust as a Form of Shallow. In: *Trust in Society*; Cook, K.S., Ed.; Russel
427 Sage Foundation: New York, USA, 2001; Volume 2, p. 89, ISBN 9780871541819.

428 10. Lewicka-Strzałcka, A. Zaufanie w relacji konsument-biznes (into English: Trust in the consumer-
429 business relationship). *Prakseologia* (into English: *Praxeology*) 2003, Volume 143, pp. 195-208.

430 11. Corritore, C.L.; Kracher, B.; Wiedenbeck, S. On-line trust: concept, evolving themes, a model.
431 *International Journal of Human-Computer Studies* 2003, Volume 58, Issue 6, pp. 737-758, DOI:
432 10.1016/S1071-5819(03)00041-7.

433 12. Andersen, J.A. Trust in managers: a study of why Swedish subordinates trust their managers. *Business
434 Ethics. A European Review* 2005, Volume 14, Issue 4, pp. 392-404, DOI: 10.1111/j.1467-8608.2005.00420.x.

435 13. Bachmann, R.; Zaheer, A. *Handbook of Trust Research*; Edward Elgar Publishing Limited: Cheltenham,
436 Northampton, United Kingdom, 2006; pp. 357-358, ISBN 9781843767541.

437 14. Grönroos, C. *In Search of New Logic for Marketing: Foundations of Contemporary Theory*; John Wiley & Sons
438 Ltd.: London, United Kingdom, 2007; pp. 203-204, ISBN 9780470061299.

439 15. Grudzewski, W.M.; Hejduk, I.K.; Sankowska, A.; Wańtuchowicz, M. *Zarządzanie zaufaniem w
440 organizacjach wirtualnych* (into English: *Management of trust in virtual organizations*); Difin: Warszawa,
441 2007; pp. 13-17, ISBN 9788372516862.

442 16. Schoorman, F.D.; Mayer R.C.; Davis J.H. An Integrative Model of Organizational Trust: Past, Present,
443 and Future. *Academy of Management Review* 2007, Volume 32, Issue 2, pp. 344-354, DOI:
444 10.5465/amr.2007.24348410.

445 17. Sztompka, P. *Zaufanie. Fundament społeczeństwa* (into English: *Trust. Foundation of society*); Znak (into
446 English: Sign): Kraków, Poland, 2007; pp. 67-68, ISBN 9788324008506.

447 18. Angriawan, A.; Thakur R. A Parsimonious model of the Antecedents and Consequence of Online
448 Trust: An Uncertainty Perspective. *Journal of Internet Commerce* 2008, Volume 7, Issue 1, pp. 74-94, DOI:
449 10.1080/15332860802004337.

450 19. Hardin, R. *Zaufanie* (into English: *Trust*); Sic!: Warszawa, Poland, 2009; pp. 25-26, ISBN 9788360457771.

451 20. Bugdol, M. *Wymiary i problemy zarządzania organizacją opartą na zaufaniu* (into English: *Dimensions and
452 problems of managing an organization based on trust*); Wydawnictwo Uniwersytetu Jagiellońskiego (into
453 English: Publisher of the Jagiellonian University): Kraków, Poland, 2011; p. 158, ISBN 9788323330257.

454 21. Dowell, D.; Morrison, M.; Heffernan, T.W. The changing importance of affective trust and cognitive
455 trust across the relationship lifecycle: A study of business-to-business relationships. *Industrial
456 Marketing Management* 2015, Volume 44, pp. 119-130, DOI: 10.1016/j.indmarman/2014.10.016.

457 22. Bursian, D.; Faia, E. Trust in the monetary authority. *Journal of Monetary Economics* 2018, In Press,
458 Corrected Proof, pp. 1-14, DOI: 10.1016/j.jmoneco.2018.04.009.

459 23. Hawlitschek, F.; Notheisen, B.; Teubner, T. The limits of trust-free systems: A literature review on
460 blockchain technology and trust in the sharing economy. *Electronic Commerce Research and Applications*
461 2018, Volume 29, pp. 50-63, DOI: 10.1016/j.elerap.2018.03.005.

462 24. Hallikainen, H.; Laukkanen, T. National culture and consumer trust in e-commerce. *International
463 Journal of Information Management* 2018, Volume 38, Issue 1, pp. 97-106, DOI:
464 10.1016/j.ijinfomgt.2017.07.002.

465 25. Faezeh, S.; Fereidoon, S.A., Hassan, H. A new confidence-based recommendation approach:
466 Combining trust and certainty. *Information Sciences* 2018, Volume 422, pp. 21-50, DOI:
467 10.1016/j.ins.2017.09.001.

468 26. Goeschl, T.; Jarke, J. Trust, but verify? Monitoring, inspection costs, and opportunism under limited
469 observability. *Journal of Economic Behavior & Organization* 2017, Volume 142, pp. 320-330, DOI:
470 10.1016/j.jebo.2017.07.028.

471 27. Ouyang, Z.; Gursoy, D.; Sharma, B. Role of trust, emotions and event attachment on residents' attitudes
472 toward tourism. *Tourism Management* 2017, Volume 63, pp. 426-438, DOI: 10.1016/j.tourman.2017.06.026.

473 28. Di Maggio, P. The Futures of Business Organization and Paradoxes of Change. In *The Twenty-First
474 Century firm: changing economic organization in International perspective*, Di Maggio, P., Ed.; Princeton
475 University Press: Princeton, Oxford, USA, United Kingdom, 2001; pp. 210-212, ISBN 9780691116310.

476 29. Skąpska, E. Services in Theory of Economic Order. Ordo Perspective. In *Smart and Efficient Economy: Preparation for the Future Innovative Economy*; Simberova, I.; Zizlavsky, O.; Milichovsky, F.,Eds.; Brno University of Technology: Brno, Czech Republic, 2016, s. 403-408; ISBN 9788021454132.

477 30. Ivuts, R.; Matwiejczuk, W., Development of transboundary transport-logistic systems of Poland and Belarus. In *Energia w nauce i technice* (into English: *Energy in science and technology*); Jaroszewicz J., Ed; Oficyna Wydawnicza Politechniki Białostockiej (into English: Publishing House of the Białystok University of Technology): Białystok, Poland 2013; pp. 192-205, ISBN 9788362582457.

478 31. Matwiejczuk, T.; Matwiejczuk, W. Virtual forms of cooperation as the sources of regional development. In *Šiuolaikines tarporganizacines sąveikos formos viešajame sektoriuje*; Puškorius, S., Ed; Mykolo Romerio Universitetas: Vilnius, Lithuania, 2006, pp. 95-98; ISBN 9955190442.

479 32. Skąpska, E. *Development of the Service Sector in Poland at the turn of the century. Tendencies, determinants, perspectives*; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2014, p. 165.; ISBN 9783659626494.

480 33. Załoga, E. *Trendy w transporcie lądowym Unii Europejskiej* (into English: *Trends in the European Union's land transport*); Wydawnictwo Naukowe Uniwersytetu Szczecińskiego (into English: Scientific Publisher of University of Szczecin): Szczecin, Poland, 2013; pp. 60, 62, 85, 112-113, ISBN 9788372419330.

481 34. Litman, T. (Victoria Transport Policy Institute, Victoria, Canada). Well Measured: Developing Indicators for Sustainable and Livable Transport Planning, 2016.. Available online: <http://www.vtpi.org/wellmeas.pdf> (accessed on 30 May 2018).

482 35. Załoga, E. Nowa polityka transportowa Unii Europejskiej (into English: New transport policy of the European Union). In *Transport: nowe wyzwania* (into English: *Transport: new challenges*); Wojewódzka-Król, K.; Załoga, E.; Wydawnictwo Naukowe PWN (into English: Polish Scientific Publishers): Warszawa, Poland, 2016, p. 510. ISBN 9788301184629.

483 36. Kożuch, B.; Sienkiewicz-Małyjurek, K. Factors of effective inter-organizational collaboration: A framework for public management. *Transylvanian Review of Administrative Sciences* 2018, No. 47 E, p. 105.

484 37. Jabłoński, A. Public Service Design and Public Trust: Conceptualizing the Sustainability. In *Managing Public Trust*; Kożuch, B.; Magala, S.J.; Palisziewicz, J., Eds.; Palgrave MacMillan: Cham, Switzerland, 2018; p. 166, ISBN 9783319704845.

485 38. Database - Eurostat - European Commission. Available online: <http://ec.europa.eu/eurostat/data/database> (accessed on 02 May 2018).

486 39. OECD Statistics. Available online: <http://stats.oecd.org> (accessed on 02 May 2018).

487 40. *White Paper on transport: Roadmap to a single European transport area – towards a competitive and resource-efficient transport system*; European Union, 2011; ISBN 9789279182709.

488 41. Zioło, M.; Porada-Rochoń, M.; Szaruga, E. The Financial Distress of Public Sector Entities, Causes and Risk Factors. Empirical Evidence from Europe in the Post-crisis Period. In *Risk Management in Public Administration*; Raczkowski, K., Ed.; Palgrave MacMillan: Cham, Switzerland, 2017, pp. 315-360, ISBN 9783319308760.