Preprint
Case Report

Comprehensive Study of Soil-Plant and Surface Water Chemistry Relationships in Highly S Contaminated Environment on Reforested Former Sulfur Borehole Mine Sites

Altmetrics

Downloads

357

Views

341

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

06 June 2018

Posted:

07 June 2018

You are already at the latest version

Alerts
Abstract
Sulfur contamination of topsoil, spatial distribution of contamination and surface water chemistry were investigated on an area of over 200 ha of a new forest ecosystem. Common birch and Scots pine growth reaction, vitality and nutrients supply, as well as wood small-reed (Calamagrostis epigejos (L.) Roth) chemical composition were assayed. The chemistry dynamics of soil leaching and the sulfur load leached from the sulfur contaminated soil-substrates were analyzed. The remediation effect of the birch and pine litter was assayed in an experiment under controlled conditions. It was found that reclamation was effective in a majority of the post-mining site, however hot-spots with sulfur contamination reaching even 45,000 mg kg-1, pH <2.0, and EC 6,500 µS cm-1 were reported. Surface waters typically displayed elevated concentrations of sulfate ions (average 935.13 mg L-1), calcium ions (up to 434 mg L-1) and high EC (average 1.795 µS cm-1), which was connected both with sulfur contamination and sludge lime used in neutralization. Wood small-reed was found to be species adapting well to the conditions of elevated soil salinity and sulfur concentration. We noted that an addition of organic matter had a significant impact on the chemistry of soil solutions but did not indicate in short term experiment a remediation effect by increased sulfur leaching.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated